ESD Protection Diode
 Single Line CAN/LIN Bus Protector

NSQA6V8AW5T2 Series

This integrated surge protection device (surge protection) is designed for applications requiring transient overvoltage protection. It is intended for use in sensitive equipment such as computers, printers, business machines, communication systems, medical equipment, and other applications. Its integrated design provides very effective and reliable protection for four separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Features

- Low Clamping Voltage
- Small SC-88A SMT Package
- Stand Off Voltage: 5 V
- Low Leakage Current $<1 \mu \mathrm{~A}$
- Four Separate Unidirectional Configurations for Protection
- ESD Protection: IEC61000-4-2: Level 4

MILSTD 883C - Method 3015-6: Class 3

- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Benefits

- Provides Protection for ESD Industry Standards: IEC 61000, HBM
- Minimize Power Consumption of the System
- Minimize PCB Board Space

Typical Applications

- Instrumentation Equipment
- Serial and Parallel Ports
- Microprocessor Based Equipment
- Notebooks, Desktops, Servers
- Cellular and Portable Equipment

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Power Dissipation $8 \times 20 \mu$ sec Double Exponential Waveform (Note 1)	P_{PK}	20	W
Steady State Power - 1 Diode (Note 2)	P_{D}	380	mW
Thermal Resistance - Junction-to-Ambient Above $25^{\circ} \mathrm{C}$, Derate	$\mathrm{R}_{\theta \mathrm{JA}}$	327	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature Range		T_{J}	-40 to +125
Storage Temperature Range	${ }^{\circ} \mathrm{C}$		
Lead Solder Temperature - Maximum 10 Seconds Duration	$\mathrm{T}_{\text {Stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
IEC ${ }^{\wedge} 1000-4-2$ (ESD)	260	${ }^{\circ} \mathrm{C}$	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Non-repetitive current pulse per Figure 6.
2. Only 1 diode under power. For all 4 diodes under power, P_{D} will be 25%. Mounted on FR4 board with min pad.
See Application Note AND8308/D for further description of survivability specs.

ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter
I_{PP}	Maximum Reverse Peak Pulse Current
V_{C}	Clamping Voltage @ I_{PP}
$\mathrm{V}_{\mathrm{RWM}}$	Working Peak Reverse Voltage
I_{R}	Maximum Reverse Leakage Current $@ \mathrm{~V}_{\mathrm{RWM}}$
V_{BR}	Breakdown Voltage $@ \mathrm{I}_{\mathrm{T}}$
I_{T}	Test Current
I_{F}	Forward Current
V_{F}	Forward Voltage $@ \mathrm{I}_{\mathrm{F}}$
P_{pk}	Peak Power Dissipation
C	Capacitance @ $\mathrm{V}_{\mathrm{R}}=0$ and $\mathrm{f}=1.0 \mathrm{MHz}$

*See Application Note AND8308/D for detailed explanations of datasheet parameters.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
NSQA6V8AW5T2					
Breakdown Voltage ($\mathrm{I}_{\mathrm{T}}=1 \mathrm{~mA}$) (Note 3)	$\mathrm{V}_{\text {BR }}$	6.4	6.8	7.1	V
Leakage Current ($\mathrm{V}_{\mathrm{RWM}}=5.0 \mathrm{~V}$)	I_{R}	-	-	1.0	$\mu \mathrm{A}$
Clamping Voltage 1 ($\left.\mathrm{IPP}^{\text {e }} 1.6 \mathrm{~A}\right)($ Note 4)	V_{C}	-	-	13	V
Maximum Peak Pulse Current (Note 4)	lpp	-	-	1.6	A
$\begin{aligned} & \hline \text { Junction Capacitance }-\left(\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right) \\ &-\left(\mathrm{V}_{\mathrm{R}}=3.0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right) \end{aligned}$	CJ	-	$\begin{aligned} & 12 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 15 \\ & 9.5 \end{aligned}$	pF
Clamping Voltage - Per IEC61000-4-2	V_{C}	Figures 1 and 2			V

NSQA12VAW5T2

Breakdown Voltage ($\mathrm{I}_{\mathrm{T}}=5 \mathrm{~mA}$) (Note 3)	$V_{B R}$	11.4	12.0	12.7	V
Leakage Current ($\mathrm{V}_{\mathrm{RWm}}=9.0 \mathrm{~V}$)	I_{R}	-	-	0.05	$\mu \mathrm{A}$
Zener Impedence ($\mathrm{I}_{\mathrm{T}}=5 \mathrm{~mA}$)	Z_{z}	-	-	30	Ω
Clamping Voltage 1 (lpp $=0.9 \mathrm{~A}$) ((ote 4)	V_{C}	-	-	23	V
Maximum Peak Pulse Current (Note 4)	I_{PP}	-	-	0.9	A
Junction Capacitance - ($\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$)	C_{J}	-	-	15	pF
Clamping Voltage - Per IEC61000-4-2 (Note 5)	V_{C}	Figures 1 and 2			V

3. V_{BR} is measured at pulse test current I_{T}.
4. Surge current waveform per Figure 5.
5. For test procedure see Figures 3 and 4 and Application Note AND8307/D.

Figure 1. ESD Clamping Voltage Screenshot Positive 8 kV Contact per IEC61000-4-2

Figure 2. ESD Clamping Voltage Screenshot Negative 8 kV Contact per IEC61000-4-2

IEC 61000-4-2 Spec.

Level	Test Volt- age (kV)	First Peak Current (A)	Current at $\mathbf{3 0}$ ns (A)	Current at $\mathbf{6 0}$ ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

Figure 3. IEC61000-4-2 Spec

Figure 4. Diagram of ESD Test Setup

The following is taken from Application Note AND8308/D - Interpretation of Datasheet Parameters for ESD Devices.

ESD Voltage Clamping

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000-4-2 waveform. Since the IEC61000-4-2 was written as a pass/fail spec for larger
systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to AND8307/D.

Figure 5. $8 \times 20 \mu \mathrm{~s}$ Pulse Waveform

Figure 6. Pulse Width

Figure 7. Power Derating Curve

Figure 8. Reverse Leakage versus Temperature

Figure 9. Capacitance

Figure 10. Forward Voltage

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	
G	0.026 BSC		0.65	

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.

```
```

STYLE 1:

```
```

STYLE 1:
PIN 1. BASE
PIN 1. BASE
2. EMITTER
2. EMITTER
3. BASE
3. BASE
4. COLLECTOR
4. COLLECTOR
5. COLLECTOR

```
```

 5. COLLECTOR
    ```
```

```
STYLE 2:
    PIN 1. ANODE
        STYLE 3
```

STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
3. EMITTER 1
4. COLLECTOR
5. COLLECTOR 2/BASE

STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 3
PIN 1. ANODE
2. EMITTER 2. N/C
3. ANODE 2
4. CATHODE 2
5. CATHODE

STYLE 8

PIN 1. CATHODE
2. COLLECTOR
3. N / C
4. BASE
5. EMITTER

SOLDER FOOTPRINT

STYLE 4:
PIN 1. SOURCE 1
2. DRAIN $1 / 2$
3. SOURCE 1
4. GATE 1
5. GATE 2

STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE

STYLE 5:

PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42984B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88A (SC-70-5/SOT-353) | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

