STARPOWER

SEMICONDUCTOR

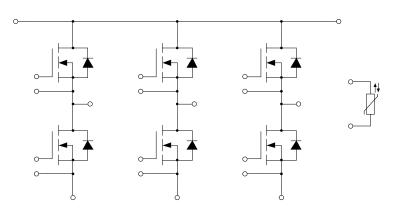
MOSFET

MD15FSR120L2SF

1200V/15A 6 in one-package

General Description

STARPOWER MOSFET Power Module provides very low $R_{\rm DS(on)}$ as well as optimized intrinsic diode. It's designed for the applications such SMPS and solar power.


Features

- SiC power MOSFET
- Low R_{DS(on)}
- Optimized intrinsic reverse diode
- Avalanche ruggedness
- Low inductance case
- substrate for low thermal resistance
- Isolated heatsink using DBC technology

Typical Applications

- Uninterruptible power supply
- Solar Power
- Switching mode power supply

Equivalent Circuit Schematic

©2020 STARPOWER Semiconductor Ltd.

4/22/2020

Absolute Maximum Ratings T_C =25°C unless otherwise noted

MOSFET

Symbol	Description	Value	Unit
$V_{ m DSS}$	Drain-Source Voltage	1200	V
V_{GSS}	Gate-Source Voltage	-4/+22	V
I_D	Drain Current @ T _C =25°C	25	Α
	$@ T_{C} = 100^{\circ}C$	15	Α
I_{DM}	Pulsed Drain Current	77	A
P _D	Maximum Power Dissipation @ T _i =175°C	101	W

Inverse Diode

Symbol	Description	Value	Unit
I_{S}	Source Current @ T _C =100°C	13	Α
I_{SM}	Pulsed Source Current	77	A

Module

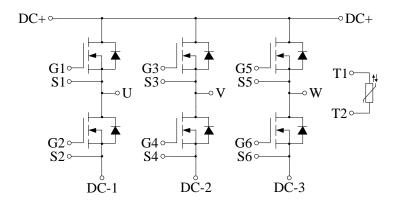
Symbol	Description	Value	Unit
T_{jmax}	Maximum Junction Temperature	175	°C
T_{jop}	Operating Junction Temperature	-40 to +150	°C
T_{STG}	Storage Temperature Range	-40 to +125	°C
$V_{\rm ISO}$	Isolation Voltage RMS,f=50Hz,t=1min	2500	V

$\textbf{MOSFET Characteristics} \ \, T_{C}\!\!=\!\!25^{o}\!C \ \, \text{unless otherwise noted}$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$R_{DS(on)}$	Static Drain-Source	$I_D=10A, V_{GS}=18V, T_i=25^{\circ}C$		80	100	
	On-Resistance	$I_D=10A, V_{GS}=18V,$ $T_j=125^{\circ}C$		120		mΩ
$V_{GS(th)}$	Gate-Source Threshold Voltage	$I_D=5.0$ mA, $V_{DS}=10$ V, $T_i=25$ °C	2.7		5.6	V
g_{fs}	Forward Transconductance	$V_{DS}=10V, I_{D}=10A, T_{i}=25^{\circ}C$		4.4		S
I_{DSS}	Drain-Source Leakage Current	$V_{DS}=V_{DSS}, V_{GS}=0V,$ $T_{j}=25^{\circ}C$			10	μΑ
I_{GSS}	Gate-Source Leakage Current	$V_{GS}=V_{GSS}, V_{DS}=0V,$ $T_j=25^{\circ}C$			100	nA
R_{Gint}	Internal Gate Resistance			12.0		Ω
C_{iss}	Input Capacitance			785		pF
C_{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 800V,$		75		pF
C_{rss}	Reverse Transfer Capacitance	f=1.0MHz		35		pF
$Q_{\rm g}$	Total Gate Charge			60		nC
Q_{gs}	Gate-Source Charge	$I_{D}=10A, V_{DS}=600V,$		15		nC
Q_{gd}	Gate-Drain ("Miller") Charge	$V_{GS}=18V$		25		nC
t _{d(on)}	Turn-On Delay Time	V 400VI 10A		15		ns
t _r	Rise Time	$ \begin{cases} V_{DS}{=}400V, I_{D}{=}10A, \\ R_{G}{=}0\Omega, V_{GS}{=}0/18V, \\ T_{j}{=}25^{\circ}C \end{cases} $		22		ns
$t_{d(off)}$	Turn-Off Delay Time			29		ns
$t_{\rm f}$	Fall Time			24		ns
Eon	Turn-On Switching Loss	V _{DS} =600V,I _D =10A,		0.13		mJ
$E_{ m off}$	Turn-Off Switching Loss	$R_{G}=0\Omega, V_{GS}=0/18V, T_{j}=25^{\circ}C$		0.02		mJ

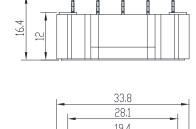
Inverse Diode Characteristics T_C=25°C unless otherwise noted

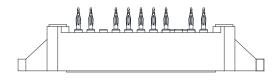
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V_F	Diode Forward Voltage	$I_S=10A, V_{GS}=0V, T_j=25^{\circ}C$		3.20		V
t_{rr}	Diode Reverse Recovery Time	V_R =600V, I_S =10A, di/dt=1100A/ μ s, V_{GS} =0V, T_i =25°C		17		ns
Q_{r}	Diode Reverse Recovery Charge			50		nC
I_{rm}	Peak Reverse Recovery Current	1 _j -23 C		6.0		A

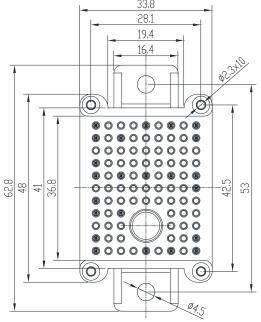

NTC Characteristics $T_C=25^{\circ}C$ unless otherwise noted

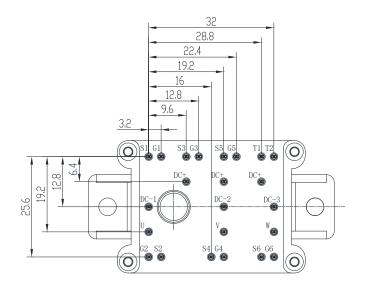
Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
R ₂₅	Rated Resistance			5.0		kΩ
$\Delta R/R$	Deviation of R ₁₀₀	$T_{\rm C}$ =100 °C, R_{100} =493.3 Ω	-5		5	%
P ₂₅	Power Dissipation				20.0	mW
B _{25/50}	B-value	R ₂ =R ₂₅ exp[B _{25/50} (1/T ₂ -1/(298.15K))]		3375		K
B _{25/80}	B-value	$R_2=R_{25}exp[B_{25/80}(1/T_2-1/(298.15K))]$		3411		K
B _{25/100}	B-value	$R_2=R_{25}exp[B_{25/100}(1/T_2-1/(298.15K))]$		3433		K

Module Characteristics $T_C=25$ °C unless otherwise noted


Symbol	Parameter	Min.	Тур.	Max.	Unit	
R_{thJC}	Junction-to-Case (per MOSFET)		1.338	1.472	K/W	
R_{thCH}	Case-to-Heatsink (per MOSFET)		0.348		K/W	
	Case-to-Heatsink (per Module)		0.058			
F	Mounting Force Per Clamp	20		50	N.m	
G	Weight of Module		24		g	


Circuit Schematic




Package Dimensions

Dimensions in Millimeters

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.powersemi.cc), For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.