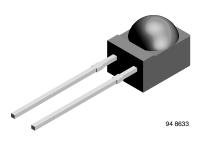
Vishay Semiconductors


RoHS

COMPLIANT

GREEN (5-2008)**

Silicon PIN Photodiode

DESCRIPTION

BPV23F is a PIN photodiode with high speed and high radiant sensitivity in a black, plastic package with side view lens and daylight blocking filter. Filter bandwidth is matched with 900 nm to 950 nm IR emitters. The lens achieves 80 % of sensitivity improvement in comparison with flat package. BPV23FL has long leads, other specifications like BPV23F.

FEATURES

- Package type: leaded
- · Package form: side view
- Dimensions (in mm): 4.5 x 5 x 6
- Radiant sensitive area (in mm²): 4.4
- High radiant sensitivity
- Daylight blocking filter matched with 940 nm emitters
- Fast response times
- Angle of half sensitivity: $\varphi = \pm 60^{\circ}$
- Compliant to PoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

Note

Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

APPLICATIONS

- · High speed detector for infrared radiation
- · Infrared remote control and free air data transmission systems, e.g. in combination with TSALxxxx series IR emitters

PRODUCT SUMMARY				
COMPONENT	I _{ra} (μΑ)	φ (deg)	λ _{0.5} (nm)	
BPV23F	63	± 60	870 to 1050	
BPV23FL	63	± 60	870 to 1050	

ORDERING INFORMATION				
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM	
BPV23F	Bulk	MOQ: 4000 pcs, 4000 pcs/bulk	Side view	
BPV23FL	Bulk	MOQ: 4000 pcs, 4000 pcs/bulk	Side view, long leads	

ABSOLUTE MAXIMUM RATINGS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V _R	60	V	
Power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	Pv	215	mW	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	- 40 to + 100	°C	
Storage temperature range		T _{stg}	- 40 to + 100	°C	
Soldering temperature	t ≤ 5 s	T _{sd}	260	°C	
Thermal resistance junction/ambient	Connected with Cu wire, 0.14 mm ²	R _{thJA}	350	K/W	

1 For technical questions, contact: <u>detectortechsupport@vishay.com</u> Document Number: 81510

BPV23F, BPV23FL

www.vishay.com

Vishay Semiconductors

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	I _F = 50 mA	VF		1	1.3	V
Breakdown voltage	I _R = 100 μA, E = 0	V _(BR)	60			V
Reverse dark current	V _R = 10 V, E = 0	I _{ro}		2	30	nA
Diode capacitance	$V_{R} = 0 V, f = 1 MHz, E = 0$	CD		48		pF
Serial resistance	V _R = 12 V, f = 1 MHz	R _S		900		Ω
Open circuit voltage	$E_e = 1 \text{ mW/cm}^2$, $\lambda = 950 \text{ nm}$	Vo		390		mV
Temperature coefficient of Vo	$E_e = 1 \text{ mW/cm}^2$, $\lambda = 950 \text{ nm}$	TK _{Vo}		- 2.6		mV/K
Short circuit current	$E_e = 1 \text{ mW/cm}^2$, $\lambda = 950 \text{ nm}$	l _k		60		μA
Reverse light current	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm},$ $V_R = 5 \text{ V}$	I _{ra}	45	63		μA
Temperature coefficient of Ira	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}, \\ V_R = 10 \text{ V}$	TK _{Ira}		0.2		%/K
Absolute spectral sensitivity	$V_R = 5 V$, $\lambda = 870 nm$	s(λ)		0.35		A/W
	$V_{R} = 5 V$, $\lambda = 950 nm$	s(λ)		0.6		A/W
Angle of half sensitivity		φ		± 60		deg
Wavelength of peak sensitivity		λ _p		950		nm
Range of spectral bandwidth		λ _{0.5}		870 to 1050		nm
Quantum efficiency	$\lambda = 950 \text{ nm}$	η		90		%
Noise equivalent power	$V_{\rm R} = 10 \text{ V}, \lambda = 950 \text{ nm}$	NEP		4 x 10 ⁻¹⁴		W/√ Hz
Detectivity	$V_{\rm R} = 10 \text{ V}, \lambda = 950 \text{ nm}$	D*		5 x 10 ¹²		cm√Hz/W
Rise time	$V_R = 10 \text{ V}, \text{ R}_L = 1 \text{ k}\Omega, \lambda = 820 \text{ nm}$	t _r		70		ns
Fall time	V_R = 10 V, R_L = 1 k Ω , λ = 820 nm	t _f		70		ns
Cut-off frequency	V_R = 12 V, R_L = 1 k Ω , λ = 870 nm	f _c		4		MHz
	$V_{R} = 12 \text{ V}, \text{ R}_{L} = 1 \text{ k}\Omega, \lambda = 950 \text{ nm}$	f _c		1		MHz

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

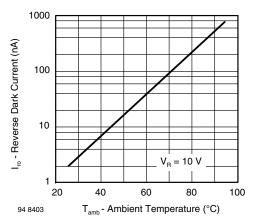
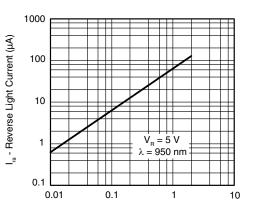


Fig. 1 - Reverse Dark Current vs. Ambient Temperature


Fig. 2 - Relative Reverse Light Current vs. Ambient Temperature

2 For technical questions, contact: <u>detectortechsupport@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

94 8424

E_o - Irradiance (mW/cm²)Fig. 3 - Reverse Light Current vs. Irradiance

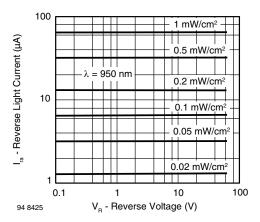


Fig. 4 - Reverse Light Current vs. Reverse Voltage

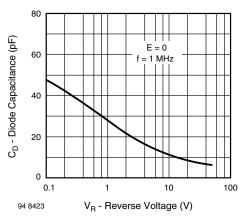


Fig. 5 - Diode Capacitance vs. Reverse Voltage

Vishay Semiconductors

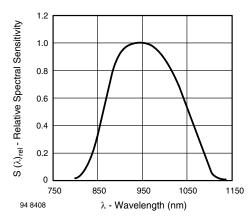


Fig. 6 - Relative Spectral Sensitivity vs. Wavelength

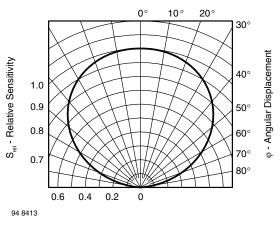
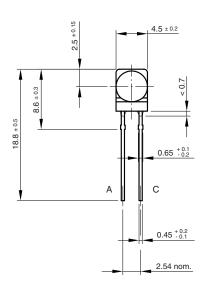
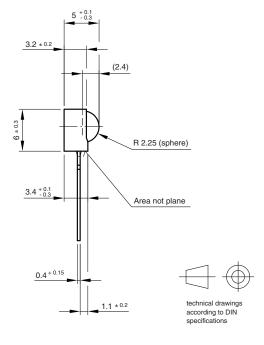
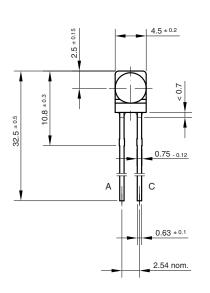


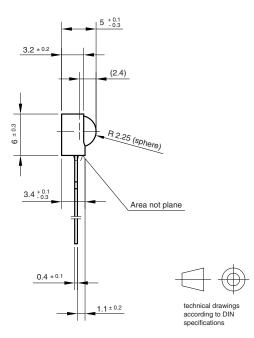
Fig. 7 - Relative Radiant Sensitivity vs. Angular Displacement


3


For technical questions, contact: <u>detectortechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors


PACKAGE DIMENSIONS in millimeters: BPV23F



Drawing-No.: 6.544-5199.01-4 Issue: 2; 19.06.01 95 11475

PACKAGE DIMENSIONS in millimeters: BPV23FL

Drawing-No.: 6.544-5236.01-4 Issue: 2; 07.07.97 96 12205

4
For technical questions, contact: <u>detectortechsupport@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2024

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000