AlphaBot2-Ar (руководство пользователя)

Что расположено на плате?

Роботизированные комплекты AlphaBot2-Ar включают шасси (шасси AlphaBot2-Base) и плату адаптера AlphaBot2-Ar. Робот поддерживает Arduino с адаптерной платой AlphaBot2-Ar.

Благодаря высокоинтегрированной модульной конструкции его легко собрать с помощью защелки, без пайки и без проводов. После нескольких минут, потраченных на сборку оборудования, вы почти у цели, наши демонстрационные коды с открытым исходным кодом готовы помочь вам быстро начать работу.

Аксессуары могут быть разными в разных упаковках. На этой странице описаны совместимые аксессуары для платы Arduino UNO.

AlphaBot2 имеет множество полезных функций, включая отслеживание трека, предотвращение столкновения с препятствиями, ультразвуковой датчик расстояния, инфракрасный пульт дистанционного управления, связь Bluetooth и т.д.

Благодаря высоко-интегрированному модульному дизайну, его довольно легко собрать без пайки как конструктор. После нескольких минут, потраченных на сборку, ваш робот готов к работе. Осталось только запрограммировать ваш контроллер Arduino. Демоверсию программы можно найти на сайте производителя

http://www.waveshare.com/wiki/File:AlphaBot2-Demo.7z.

Конструктивно AlphaBot2-Ar состоит из двух «слоев»- модулей, что обеспечивает необходимую устойчивость и легкость модификации. Нижний модуль AlphaBot2-Base представляет собой 4-х колесное шасси с двумя ведущими и двумя опорными всенаправленными колесами. Также на этом модуле находятся встроенные датчики (ультразвуковой датчик расстояния и ИК датчики), обеспечивающие такие функции, как отслеживание трека и предотвращение столкновения с препятствиями. Верхний модуль – модуль управления AlphaBot2-Ar – представляет собой материнскую плату, с нижней стороны которой подключается контроллер Arduino, а на верхней поверхности находятся слот для подключения Bluetooth-модуля и разъемы для расширения Arduino. Кроме того, там же находятся OLED – дисплей, 5-ти позиционный джойстик и ИК – приемник для управления роботом. В базовой версии робот управляется с помощью ИК пульта, но также предусмотрена возможность управления по Bluetooth.

Особенности:

- Интерфейс Arduino;
- 0.96 дюймовый OLED дисплей двухцветный (yellow/blue), разрешение 128х64;
- TLC1543 АЦП;
- PC8574 расширитель I/O;

- Хbee разъем, для подключения беспроводных модулей;
- 5-канальный инфракрасный датчик, аналоговый выход, в сочетании с алгоритмом PID, стабильное отслеживание линии;
- Встроенные модули, такие как отслеживание линии, предотвращение столкновения с препятствиями, не требуют беспорядочной проводки;
- TB6612FNG драйвер двигателей, по сравнению с L298P, он более эффективен, компактен и меньше нагревается;
- N20 микро редукторный двигатель, с металлическими шестернями, с низким уровнем шума, высокой точностью;
- 4 RGB светодиода WS2812B.

AlphaBot2-Base

- 1. Интерфейс ультразвукового модуля
- 2. Интерфейс управления AlphaBot2: для подключения платы адаптера контроллера
- 3. Индикаторы уклонения от препятствий
- 4. Всенаправленное колесо
- 5. ST188: отражающий инфракрасный фотоэлектрический датчик для предотвращения препятствий
- 6. ITR20001 / Т: отражающий инфракрасный фотоэлектрический датчик, для отслеживания линии
- 7. Потенциометр для регулировки дальности преодоления препятствий

- 8. TB6612FNG это двухканальный мостовой (H-bridge) драйвер для двух коллекторных моторов
- 9. LM393 компаратор напряжения
- 10. N20 редукторный мотор с редуктором 1:30, 6В / 600 об / мин
- 11. Резиновые колеса диаметром 42мм, шириной 19мм
- 12. Выключатель
- 13. Держатель батареи: поддерживает 14500 батарей
- 14. WS2812B: светодиоды RGB настоящего цвета
- 15. Индикатор питания

- 1. Интерфейс управления AlphaBot2: для подключения AlphaBot2-Base
- 2. Расширительный разъем контактов Arduino: для подключения шилдов Arduino
- 3. Интерфейс Arduino: для подключения контроллера, совместимого с Arduino
- 4. Разъем Xbee: для подключения двухрежимного модуля Bluetooth, удаленного управления роботом через Bluetooth
- 5. ИК-приемник
- 6. РС8574: расширитель ввода / вывода, интерфейс SPI
- 7. Периферийные перемычки Arduino
- 8. TLC1543: 10-битный чип сбора данных AD
- 9. Зуммер
- 10. драйвер 0,96-дюймового OLED SSD1306, разрешение 128х64
- 11. Джойстик

Этот набор роботов AlphaBot2 предназначен для использования с платой, совместимой с Arduino, UNO PLUS. Он имеет множество общих функций робота, включая слежение за линиями, устранение препятствий, ультразвуковое измерение, инфракрасный пульт дистанционного управления, связь Bluetooth и т. Д.

Благодаря высоко интегрированной модульной конструкции его легко собрать с помощью защелки, без пайки и без проводки. После нескольких минут, потраченных на сборку оборудования, вы почти у цели, наши демонстрационные коды с открытым исходным кодом готовы помочь вам быстро начать работу.

- 1. Tmega328P-AU
- 2. AMS1117-3.3: регулятор напряжения 3,3B
- 3. NCP1117ST50T3G: регулятор напряжения 5В
- 4. FT232RL: преобразователь USB в UART
- 5. Интерфейс Arduino

совместим со стандартным интерфейсом Arduino с двумя дополнительными аналоговыми входами A6 (конфигурация CFG), A7

прилагаются паяльные контактные площадки, поддерживает макетирование

6. Интерфейс ICSP

- 7. Разъем USB MICRO: для загрузки программы ИЛИ отладки последовательного порта
- 8. Выходной разъем питания: 3,3В ИЛИ 5В, уровень напряжения, настроенный переключателем конфигурации встроенной сети, используется в качестве выходной мощности ИЛИ общего заземления с другими платами
- 9. Контакты FT232: для записи загрузчика в микроконтроллер
- 10. Вход постоянного тока: $7B \sim 12B$
- 11. Кнопка сброса
- 12. Индикатор питания
- 13. Индикатор Rx / Tx последовательного порта
- 14. Пользовательский светодиод
- 15. 500 мА быстрый самовосстанавливающийся предохранитель
- 16. Конфигурация питания: для настройки рабочего напряжения
- 17. Переключатель выбора загрузчика

-- включить: плата будет сброшена при включении питания ИЛИ при обнаружении подключения других USB-устройств к ПК

-- выключить: встроенная программа запускается сразу после включения питания, и плата не сбрасывается при обнаружении подключения других USB-устройств к ПК.

Быстрый старт

Мы предоставили управляющие программы для Arduino, которые могут реализовывать множество функций, таких как отслеживание, обход препятствий, дистанционное управление и так далее.

Вы можете получить примеры программ, описанных в следующих разделах, из File: AlphaBot2-Demo.7z. Чтобы применить эти примеры к вашему приложению, вам необходимо скопировать библиотеки файлов в каталоге Arduino в папки библиотек в каталоге установки Arduino IDE. Затем перезапустите Ariduino IDE и нажмите «Файл» -> «Пример», чтобы увидеть, есть ли опция TRSensors. Если да, это означает, что библиотеки успешно импортированы.

Моторное тестирование

Скомпилируйте и скачайте программу Run-Test. Обычно умный робот движется вперед, когда программа запускается и приводит мотор во вращение. В случае неправильного направления движения вам может потребоваться изменить сжатия мотора или изменить настройки вывода в вашей программе. Мы рекомендуем последний способ. Если левые колеса робота движутся в неправильном направлении, вы должны поменять настройки AIN1 и AIN2. Для правых колес поменяйте настройки BIN1 и BIN2.

В случае если все колеса вращаются в неправильном направлении, вы должны изменить настройки в демоверсиях, например:

#define PWMA	5	//Left Motor Speed pin (ENA)
#define AIN2	AO	//Motor-L forward (IN2).
≢define AIN1	A1	//Motor-L backward (IN1)
#define PWMB	6	//Right Motor Speed pin (ENB)
#define BIN1	A2	//Motor-R forward (IN3)
#define BIN2	A3	//Motor-R backward (IN4)

5-позиционный джойстик

Скомпилируйте и скачайте программу Joystick. Этот джойстик имеет 5 направлений управления: вверх, вниз, влево, вправо и по центру (ввод). Откройте последовательный монитор и установите скорость передачи 115200. Затем на мониторе отобразится текущее нажатие клавиши. Когда нажата клавиша, звучит зуммер, и двигатель вращается в направлении, соответствующем клавише. Если колесо (колеса) вращается в неправильном направлении, вам следует изменить настройки соответствующих выводов.

💿 COM4		_			×
					Send
Joystick example!!					^
up					
right					
down					
left					
center					
center					
					~
Autoscroll	No line	ending	\sim	1152	00 baud ·

Инфракрасный пульт дистанционного управления

Скомпилируйте и скачайте программу IR. Вы можете управлять умным роботом, нажимая

цифровые кнопки на инфракрасном пульте дистанционного управления, где «2» - для движения вперед, «8» - для движения назад, «4» - для поворота влево, «6» - для поворота вправо, и «5» для остановки. Клавиши «-» и «+» могут регулировать

скорость робота, а «EQ» может восстановить настройку скорости по умолчанию.

Кодировка ключа может меняться в зависимости от инфракрасного пульта дистанционного управления. Вы можете изменить программу по мере необходимости.

Инфракрасное преодоление препятствий

Скомпилируйте и скачайте программу Infrared-Obstacle-Avoidance. Когда впереди робота нет препятствий, зеленые светодиоды на роботе не горят. Когда препятствие обнаружено, зеленые светодиоды загорятся. Если светодиоды всегда выключены или всегда включены, вы можете попробовать отрегулировать потенциометры в нижней части робота, чтобы светодиоды работали правильно.

В этом примере робот движется прямо, когда нет препятствий, и поворачивает направо, когда препятствие обнаружено.

Ультразвуковое измерение расстояния

Скомпилируйте и скачайте программу Ultrasonic_Ranging. Откройте монитор последовательного порта и установите скорость передачи 115200. Затем монитор отображает текущее измеренное расстояние.

Ультразвуковое измерение расстояния

Скомпилируйте и скачайте программу Ultrasonic_Ranging. Откройте монитор последовательного порта и установите скорость передачи 115200. Затем монитор отображает текущее измеренное расстояние.

Ультразвуковой обход препятствий

Скомпилируйте и скачайте программу Ultrasonic-Obstacle-Avoidance. В этом примере робот движется прямо, когда нет препятствий, и поворачивает направо, когда препятствие обнаружено. Поскольку ультразвуковое излучение может отражаться, если препятствие не находится перед роботом, а находится под углом к роботу, расстояние, измеренное между роботом и препятствием, может быть неточным.

Ультразвуковой инфракрасный обход препятствий

Скомпилируйте и скачайте программу Ultrasonic-Infrared-Obstacle-Avoidance. В этом примере робот движется прямо, когда нет препятствий, и поворачивает направо, когда препятствие обнаружено.

Тестирование датчика слежения

Импортируйте библиотеку TRSensors в библиотеки файлов в установочном каталоге Arduino IDE. Затем нажмите Файл -> Пример -> TRSensors -> TRSensorExample, чтобы открыть проект. Скомпилируйте и загрузите программу на плату разработки Arduino.

Датчик трекера может обнаружить черную линию на фоне белого цвета. Вы можете выбрать черную клейкую ленту шириной 15 см и вставить ее на белую область КТ, чтобы создать сценарий для отслеживания умного робота. Темный цвет фона уменьшит возможности умного робота на линии слежения.

Откройте последовательный монитор и установите скорость передачи 115200. Когда монитор отображает символы «Пример TRSensor», вы должны держать робота в середине черной линии и близко к земле, а затем поворачивать робота из стороны в сторону. Затем умный робот переходит в режим калибровки, определяя макс. и мин. обмолота каждого датчика. Калибровка может иметь прямое влияние на возможности линии слежения робота.

После калибровки монитор показывает макс. и мин. обмолота каждого датчика. А затем отображаются измеренные значения датчиков. Чем больше значение, тем глубже цвет. Последний столбец значений указывает положение черной линии, в которой «2000» означает, что черная линия находится в середине робота, «0» означает, что черная линия находится на самой левой стороне робота, а «4000» означает, что черная линия находится на самой правой стороне робота.

Когда эта программа работает хорошо, датчик отслеживания линии работает правильно. В противном случае датчик не может выполнять отслеживание линии.

00	COM4							_		×
										Send
TRSer	isor examp	ple								^
calib	rate done	2								
19 12	0 186 115	5 157								
957 <mark>8</mark>	42 951 78	81 <mark>91</mark> 9								
2	97	953	58	112	2151					
2	140	997	71	92	2088					
3	120	1000	61	29	1950					
3	95	1000	97	82	2130					
3	92	1000	92	83	2131					
3	96	1000	92	73	2112					
3	96	1000	92	73	2112					
3	96	1000	92	73	2112					
3	96	1000	92	71	2109					
3	95	1000	92	71	2110					
3	95	1000	92	71	2110					
-										*
⊠ A	utoscroll			-		No line	ending	\sim	115200	baud ~

Инфракрасное отслеживание линии

Скомпилируйте и скачайте программу Infrared-Line-Tracking. Включите адаптер питания и удерживайте робота в центре черной линии и близко к земле, затем поверните робота из стороны в сторону. Умный робот переходит в режим калибровки, определяя макс. и мин. обмолота каждого датчика. Калибровка может иметь прямое влияние на возможности линии слежения робота. Когда колеса робота начнут двигаться, вы можете отпустить робота, и он побежит вдоль черной линией.

RGB светодиоды

Скомпилируйте и скачайте программу W2812. В нижней части робота расположены 4 светодиода RGB (красный, зеленый, синий и желтый соответственно).

Для запуска этой программы вы должны импортировать соответствующую библиотеку в Arduino IDE.

OLED

Скомпилируйте и скачайте программу OLED. Программа-пример демонстрирует основные функции отображения символов и операции рисования, включая рисование линии, цикл, прямоугольник и тому подобное. Для запуска этой программы вы должны импортировать соответствующую библиотеку в Arduino IDE.

Комплексная программа

Скомпилируйте и скачайте программу Line-Tracking. Включив адаптер питания, на OLEDдисплее отображаются символы «AlphaBot2». Затем поместите робота на черную линию и нажмите клавишу. Теперь умный робот переходит в режим калибровки, двигаясь влево, а затем вправо. И светодиод RGB горит зеленым. Когда калибровка завершена, светодиод RGB горит синим цветом. OLED показывает информацию, как показано на рисунке ниже справа, где «**» указывает текущее положение черной линии. Когда умный робот перемещается влево или вправо, этот символ будет перемещаться. При повторном нажатии клавиши умный робот запускается вместе с черной линией, а светодиод RGB Когда обнаруживается разные цвета. препятствие, умный робот показывает останавливается и звучит зуммер. Когда препятствие исчезает, умный робот продолжает бежать. Если вы возьмете робота, он тоже остановится. Затем поместите его на черную линию, и он снова запустится.

Умный робот работает лабиринты

Скомпилируйте и скачайте программу MazeSolver. Включив адаптер питания, на OLEDдисплее отображаются символы «AlphaBot2». Затем поместите робота на черную линию и нажмите клавишу. Теперь умный робот переходит в режим калибровки, двигаясь влево, а затем вправо. И светодиод RGB горит зеленым. Когда калибровка завершена, светодиод RGB горит синим цветом. OLED показывает информацию, как показано на рисунке ниже справа, где «**» указывает текущее положение черной линии. Когда умный робот перемещается влево или вправо, этот символ будет перемещаться. Если умный робот сталкивается с прямым углом, он поворачивается и автоматически ищет конец. Умный робот останавливается, когда приходит конец. Теперь снова включите умный робот и нажмите клавишу, и вы увидите, что умный робот бежит до конца вместе с кратчайшим маршрутом.

Вот некоторые требования к созданию лабиринта: угол должен быть прямым, а лабиринт не должен иметь петли.

О программе: когда умный робот обнаруживает какой-либо угол, он замедляется и определяет, есть ли угол еще раз. Поскольку используется разница между напряжением двигателя и рабочим напряжением, интеллектуальный робот может не определить угол. В этом случае вы можете изменить настройки скорости и времени задержки в программе. Кроме того, когда умный робот должен повернуть за угол, ему необходимо увеличить время задержки, чтобы оценить степень угла. Поэтому, если есть какие-либо проблемы с

поворотом на угол, вы также можете изменить настройку скорости и время задержки в программе.

follow_segment();

// Езжай прямо. Это помогает нам в случае, если мы вошли в пересечение под углом.

// Обратите внимание, что они замедляются - это мешает роботу// от чрезмерного опрокидывания.

SetSpeeds(30, 30);

<u>delay(40)</u>:

// Эти переменные записывают, видел ли робот линию слева, прямо и вправо при проверке текущего //пересечения.

unsigned char found_left = 0; unsigned char found_straight = 0; unsigned char found_right = 0;

// Теперь прочитайте датчики и проверьте тип пересечения.

trs. readLine(sensorValues);

// Проверьте левый и правый выходы,

if (sensorValues[0] > 600)
found_left = 1:

if (sensorValues[4] > 600)

found_right = 1;

// Езжайте прямо больше - этого достаточно, чтобы выровнять наши колеса с пересечения.

SetSpeeds (30, 30);

delay(100):

```
// Проверьте на прямой выход,
```

trs.readLine(sensorValues);

if (sensorValues[1] > 600 || sensorValues[2] > 600 || sensorValues[3] > 600)

found_straight = 1;

```
void turn (unsigned char dir)
{
   // if(millis() - lasttime >500)
   {
```

switch(dir)

```
{
  case L :
  // Turn left.
  SetSpeeds(-100, 100);
  delay(190);
  break;
  case ' R' :
  // Поверните направо.
  SetSpeeds(100, -100);
  delay(190):
   break; case ' B' :
  // Поверните вокруг.
   SetSpeeds(100, -100);
  delav(400);
  break;
case 'S':
  // Ничего не делай!
  break;
  }
```

}

Bluetooth управление умным роботом

Скомпилируйте и скачайте программу Bluetooth. Вы должны удалить модуль Bluetooth из интеллектуального робота перед загрузкой, иначе программа не может быть загружена. Когда закончите, вы должны снова вставить модуль Bluetooth в интеллектуального робота.

Затем отсканируйте приведенный ниже QR-код на своем мобильном телефоне и загрузите соответствующее приложение в соответствии с операционной системой вашего мобильного телефона. Для iOS для связи с модулем применяется Bluetooth BLE, и требуется iphone4S или выше. Для Android применяется Bluetooth EDR.

Запустите приложение и нажмите «Сканировать» (Примечание: включите Bluetooth на своем мобильном телефоне). Затем вставьте модуль Bluetooth в интеллектуальный робот. Через несколько секунд вы можете найти соответствующее устройство Bluetooth в списке. Для iOS выберите устройство «Waveshare_BLE». Для Android выберите устройство «Waveshare_ERD». Затем перейдите на следующую страницу и выберите «режим дистанционного управления».

•••• 14:43	🖉 🕴 39% 🔳 🕨	******	14:43	¥ 39% ∎⊃•
	Scan	Back		
Waveshare_BLE	>	Waveshare_BLE		
		UUID: ADF390BA-91B6		18EAAB8C
		R	omote Control	
			UART	
		D	evice Contro	l.

https://www.waveshare.com/wiki/File:Dual-mode-Bluetooth-User-Manual03.png

Примечание. Если ваш мобильный телефон Android также поддерживает Bluetooth BLE, он будет сканировать два устройства. На данный момент, пожалуйста, выберите устройство с MAC-адресом 00: 0E: 0E.

Find Bluetooth devices	Search
Waveshare_BLE	
Waveshare_EDR	

Выберите «Режим дистанционного управления» и нажмите «Настройки», чтобы настроить команды в соответствии с программой. Когда нажата клавиша, запускается соответствующая команда. И когда ключ отпускается и связывается, он запускает команду «Стоп».

if(strcmp(command, "Forward") == 0)	//Вперед
forward();	
else if(strcmp(command, "Backward") = 0)	//Назад
backward():	
else if(strcmp(command," Left") = 0)	//Влево
left();	
else if(strcmp(command. "Right") = 0)	//Вправо
rightO:	
else if(strcmp(command, "Stop") = 0)	//Стоп
st op O:	
else if(strcmp(command, "Low") = 0)	//Низкая
Speed = 50;	
else if (strcmp (command, "Medium") = 0)	//Средняя

Speed = 150; else if (strcmp (command, "High") = 0) //Высокая Speed = 250;

Когда цвет кнопки скорости меняется с серого на черный цвет, это означает, что программа была связана. Теперь, нажав клавишу, вы можете управлять умным роботом. В то же время, светодиод RGB отображает разные цвета. Для получения дополнительной информации о двухрежимном Bluetooth, пожалуйста, обратитесь к соответствующей странице: Dual-mode_Bluetooth

Умный робот с Bluetooth-управлением (команда в формате JSON)

Снимите модуль Bluetooth, затем скомпилируйте и загрузите программу Bluetooth-json. Затем запустите приложение и вставьте модуль Bluetooth в робота. Затем выберите опцию «Режим дистанционного управления», чтобы управлять роботом, и выберите опцию «Периферийное управление», чтобы управлять звуковым сигналом, и светодиод RGD для отображения разных цветов. (Светодиод RGD может быть недоступен для другого робота, поэтому вы не можете управлять им на другом роботе.)