

X-CON BRAND

CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

PRODUCT SPECIFICATION 規格書

CUSTOMER :

Г

(客戶): 志盛翔

DATE: (日期):2016-05-09

CATEGORY (品名)	:		DUCTIVE POLYMER ALUMINUM D CAPACITORS
DESCRIPTION (型号)	:	ULR	16V220 μ F (φ8X8)
VERSION (版本)	:	01	
Customer P/N	:	/	
SUPPLIER	:	/	

SUPPLI	ER	CUS	FOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
李婷	王国华		

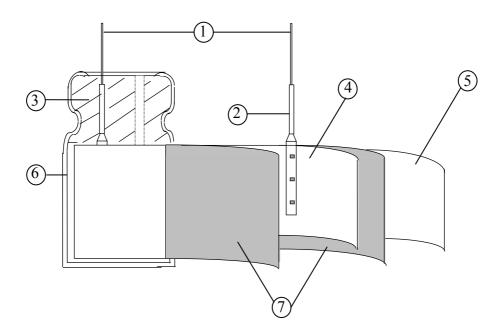
		SPECIFICAT ULR SERIE	ALTERN	ATION HIS' ECORDS	TORY		
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approver
1.0. V.	Duit	IVIUI N	I ugo	Contents	1 01 0050		
							1

Version	01	Daga	1
VCISIOII	01	1 age	1

C O N T E N T S	
	Sheet
. Application	3
. Part Number System	3
. Construction	4
. Characteristics	5~11
4.1 Rated voltage & Surge voltage	
4.2 Capacitance (Tolerance)	
4.3 Leakage current	
4.4 Tangent of loss angle	
4.5 ESR	
4.6 Temperature characteristic4.7 Load life test	
1.7 Load file test 1.8 Surge test	
4.9 Damp heat test	
4.10 Maximum permissible ripple current	
.11 Rapid change of temperature	
.12 Lead strength	
.13 Resistance to vibration	
.14 Solderability	
.15 Resistance to soldering heat	
. Product Marking	10
. Product Dimensions, Impedance & Maximum Permissible Ripple Cu	rrent 11
. Application Guideline	12~13
-1 Circuit design	
-2 Voltage	
-3 Sudden charge and discharge restricted	
-4 Ripple current	
-5 Leakage current	
-6 Failure rate	
-7 Capacitor insulation	
-8 Precautions for using capacitors	
Long Term Storage	13
. Mounting Precautions	13
0. List of "Environment-related Substances to be Controlled ('Controlled Substanc	ces')" 14

Version	01		Page	2
---------	----	--	------	---

1.


Application This specification applies to conductive polymer aluminum solid capacitors used in electronic equipment. 2. Part Number System <u>ULR 227 M 1C F</u> <u>08</u> <u>RR</u> -Type (2.3) Case Length (2.6) – Diameter (2.5) -Voltage (2.2) - Tolerance (2.4) Capacitance (2.1)Series 2.1 Capacitance code Code 227 Capacitance (μF) 220 2.2 Rated voltage code Code **1**C Voltage (W.V.) 16 2.3 <u>Type</u> Code RR Type Bulk 2.4 Capacitance tolerance "M" stands for $-20\% \sim +20\%$ 2.5 Diameter Code F Diameter 8 2.6 Case length 08=8mm

Version	01	Page	3
	-		-

3.Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be formed and carbonized, impregnated with polymer and polymerized, then will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber.

No	Component	Material
1	Lead Line	Tinned Copper Line or CP Line(Pb Free)
2	Terminal	Aluminum
3	Sealing Material	Rubber
4	Al-Foil (+)	Aluminum
5	Al-Foil (-)	Aluminum
6	Case	Aluminum
7	Electrolyte paper	Manila Hemp

|--|

4. Characteristics

Standard atmospheric conditions Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows: Ambient temperature: 15°C to 35°C Relative humidity : 45% to75% Air Pressure : 86kPa to 106kPa

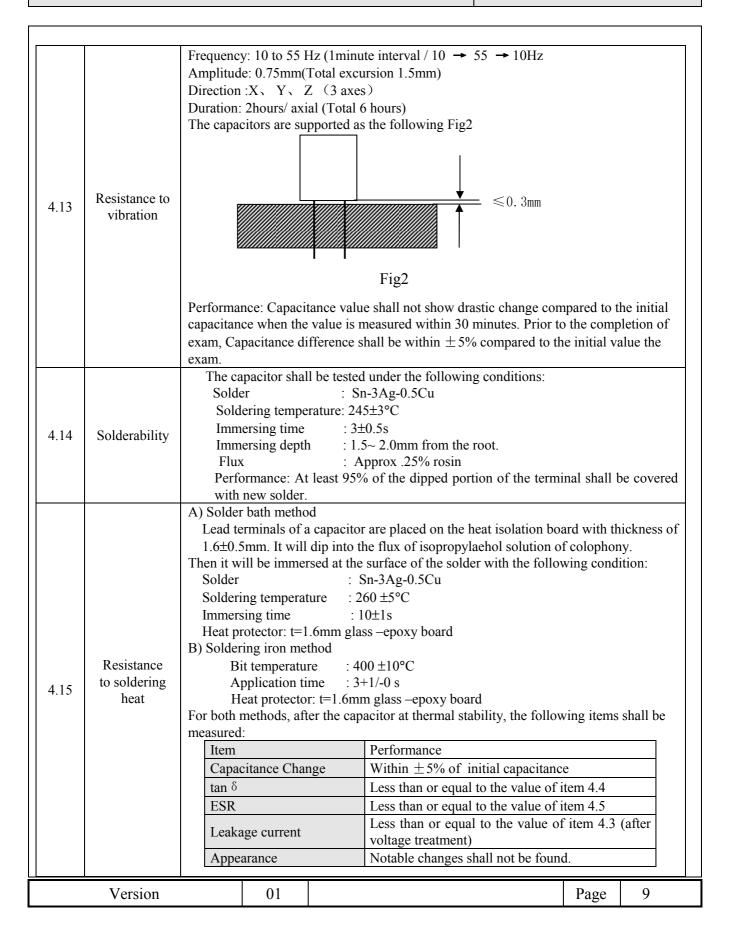
If there is any doubt about the results, measurement shall be made within the following conditions: Ambient temperature: $20^{\circ}C \pm 2^{\circ}C$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

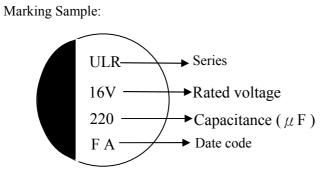
The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -55°C to 105°C.

			_
Version	01	Page	5

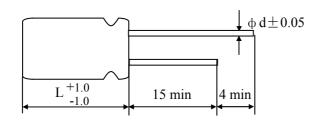
	ITEM			I	PERFO	RMANCE			
4.1	Rated voltage (WV) Surge voltage		VV (V.DC)	16]				
	(SV)	k	SV (V.DC)	10.4					
4.2	Nominal capacitance (Tolerance)	<condition>Measuring Frequency: 120Hz\pm12HzMeasuring Voltage: Not more than 0.5VrmsMeasuring Temperature: $20\pm 2^{\circ}C$<criteria>Shall be within the specified capacitance tolerance.</criteria></condition>							
4.3	Leakage current	Condition> After DC Voltage is applied to capacitors through the series protective resistor (1k $\Omega \pm 10 \Omega$) so that terminal voltage may reach the rated voltage .The leakage current when measured after 2 minutes shall not exceed the values of the following equation. In case leakage current value exceed the value shown in Table 3, remeasure after voltage treatment that applies the rated voltage shown in 4.1 for 120minutes at 105 °C Criteria> See Table 3							
4.4	tan δ	<Condition> See 4.2, for measuring frequency, voltage and temperature. $<$ Criteria>Working voltage (v)16 16 0.10							
4.5	ESR	Condition> Measuring frequency : 100kHz to 300kHz; Measuring temperature:20±2°C Measuring point : 1mm max from the surface of a sealing resin on the lead wire. Criteria> (20°C)Less than the initial limit(See Table 3).						lead wire.	
		<conditi< td=""><td>on></td><td></td><td></td><td>o at 100kHz;</td><td>,</td><td></td><td></td></conditi<>	on>			o at 100kHz;	,		
				perature($^{\circ}$ C)		Item	(Characteris	tics
		1		20±2	M	easure: Capacitance、 tanδ、 Impedance			
16	Temperature	2		-55+3		Z-55℃ / 20℃		≤1.25	
4.6	characteristic	3	-	$15 \text{ to } 35^{\circ}\text{C}$ nutes or mor					
		4		105 ± 2		$Z105^\circ\!\!\mathbb{C}\ /\ 20^\circ\!\!\mathbb{C}$		≤1.25	
		5	$\sqrt{C^2 0^{\circ} C \cdot C^2}$	20 ± 2	ange at 1	Δ C/C 20°C tanδ	Less	$\frac{1}{100} \pm 5\%$ of than or equivalent of iterations of the second seco	jual to
			at 120Hz.			<i>2</i> 011 <i>2</i> ,			
	Version		01					Page	6

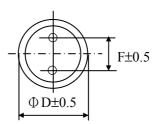


4.7	Load life test	-	 d at a temperature of 105 ±2 °C with rated a) hours . The result should meet the following table: Performance Within ±20% of initial capacitance Less than or equal to 1.5 times of the value of item 4.4 Less than or equal to 1.5 times of the value of item 4.5 Less than or equal to the value of item 4.3 Notable changes shall not be found.
4.8	Surge test	5 seconds in every5 mi times. Then the capacito measurement. < Criteria> Item Capacitance Change tan δ ESR Leakage current Attention: This test si	ed the surge voltage through $1k \Omega$ resistor in series for $30\pm$ nutes 30s at $15\sim35^{\circ}$ C. Procedure shall be repeated 1000 rs shall be left under normal humidity for 1-2hours before Performance Within $\pm 20\%$ of initial capacitance Less than or equal to 1.5 times of the value of item 4.4 Less than or equal to 1.5 times of the value of item 4.5 Less than or equal to the value of item 4.3 mulates over voltage at abnormal situation, and not be
4.9	Damp heat test	<condition> Humidity Test: The capacitor shall b</condition>	r voltage is always applied. e exposed for 1000 ± 48 hours in an atmosphere of 2°C, the characteristic change shall meet the following Performance Within $\pm 20\%$ of initial capacitance Less than or equal to 1.5 times of the value of item 4.4 Less than or equal to 1.5 times of the value of item 4.5 Less than or equal to 1.5 times of the value of item 4.5 Notable changes shall not be found.
	Version	01	Page 7


4.10	Maximum permissible (ripple current)	The At 1 Tab The rate Frec	100kHz and ca le 3	an be appli lue of D.C shall not 1	voltage voltage reverse v ≪	aximum oper and the peak	naximum A.C rating temperat x A.C voltage s 10kHz≤ f<100kHz	ture see shall not and a shall not a	exceed the 0kHz≤ 500kHz
			Coefficient	0.05		0.30	0.70		1.00
						0.20	0.70		
4.11	Rapid change of temperature	Perfo	ied voltage: w e number: 5 c diagram: Fig. <u>ormance: The</u> <u>Item</u> <u>oacitance char</u> tan δ eakage curren	ycles 1 capacitors Perfenge With Less	shall me ormance in $\pm 10^{\circ}$ than or	eet the follow % of initial equal to value equal to the	30±3 min min or less ycle ving specificati		5 cycles.
4.12	Lead strength	A sta in a b) Lead be When table a horizo 2~3se The a Perfoo Item Leak	direction away Lead wire 0.5 < ending a the capacitor above is appli- ontal position conds. additional ben Lead wire 0.5 < d = rmance: The c	y from the e diameter $d \le 0.8$ is placed ed to one l and then re ds are mad diameter (n ≤ 0.8 characteris	in a vert ead and eturned t le in the mm) tic shall Perfor Less th	r 10 \pm 1 s. ical position then the cap o a vertical p opposite dir <u>copposite dir</u> <u>L</u> <u>meet the fol</u> mance nan or equal	l in the axial dir Load force (N 10 and the weigh bacitor is slowly position thus co ection oad force (N) 5 lowing value a to the value of ck of lead term	t specific y rotated ompleting fter a) or item4.3	ed in the 90° to a g bends for
L	1	I							
	Version		01					Page	8

5. Product Marking




Code Year	2013	2014	2015	2016						Table 2	2
able 2									see Tab		
Week	1	2	3	4	5	6	7	8	9	10	11
Code	A	В	С	D	Е	F	G	Н	Ι	J	K
Week	12	13	14	15	16	17	18	19	20	21	22
Code	L	Μ	Ν	0	Р	Q	R	S	Т	U	V
Week	23	24	25	26	27	28	29	30	31	32	33
Code	W	Х	Y	Z	A	B	<u>C</u>	D	E	F	G
Week	34	35	36	37	38	39	40	41	42	43	44
Code	H	Ι	<u>J</u>	<u>K</u>	L	M	<u>N</u>	<u>0</u>	<u>P</u>	Q	<u>R</u>
Week	45	46	47	48	49	50	51	52			
Code	<u>S</u>	T	<u>U</u>	V	W	<u>X</u>	<u>Y</u>	<u>Z</u>			

Version	01		Page	10
---------	----	--	------	----

6. Product Dimensions, Impedance & Maximum Permissible Ripple Current Unit: mm

φD	8
L	8
F	3.5
фd	0.6

Table 3

Working Voltage (V)	Capacitance (µF)	Dimension (D×L, mm)	Maximum permissible ripple current at 105°C 100kHz (mA rms)	ESR at 20°C100kHz to300kHz (mΩ)	Leakage current (µA) 2min
16	220	8X8	4300	13	704

Version	01	Page	11

7. Application Guideline:

X-CON Solid Aluminum Electrolytic Capacitor should be used compliance with the following guidelines

7-1Circuit design

Prohibited Circuits for use

Do not use the capacitors with the following circuits.

- 1) Time constant circuits
- 2) Coupling circuits
- 3) Circuits which are greatly affected by leakage current
- 4) High impedance voltage retention circuits.
- 7-2. Voltage
 - 1) Over voltage

The application of over-voltage and reverse voltage below can cause increases in leakage current and short circuits. Applied voltage, refers to the voltage value including the peak value of the transitional instantaneous voltage and the peak Value of ripple voltage, not just steady line voltage. Design your circuit so that the peak voltage does not exceed the stipulated voltage.

Over voltage exceeding the rated voltage may not be applied even for an instant as it may cause a short circuit.

2) Applied voltage

① Sum of the DC voltage value and the ripple voltage peak values must not exceed the rated voltage.

(2) When DC voltage is low, negative ripple voltage peak value must not become a reverse voltage that exceeds 10% of The rated voltage.

③ Use the X-CON within 20% of the rated voltage for applications which may cause the reverse voltage during the Transient phenomena when the power is tunid off or the source is switched.

7-3 Sudden charge and discharge restricted

Sudden charge and discharge may result in short circuit's large leakage current. Therefore, a protection circuits are recommended to design in when on of the following condition is expected.

1) The rush current exceeds 10A

2) The rush current exceeds 10 times of allowable ripple current of X-CON.

A protection resistor (1K Ω) must be inserted to the circuit during the charge and discharge when measuring the leakage Current.

7-4 Ripple current

Use the capacitors within the stipulated permitted ripple current. When excessive ripple current is applied to the capacitor, It causes increases in leakage current and short circuits due to self- heating. Even when using the capacitor under the Permissible ripple current, reverse voltage may occur if the DC bias voltage is low.

7-5 Leakage current

There is a risk of leakage current characteristics increasing even if the following use environments are within the stipulated range However, even if leakage current increases once, it has the characteristic that leakage current becomes small in most cases after voltage is applied due to its self-correction mechanism.

7-6 Failure rate

The main failure mode of X-CON is open mode primarily caused by electrostatic capacity drop at high temperature (i.e.wear out failure), besides random short circuit mode failures primarily caused by over voltage occurs as minor one. The time it takes to reach the failures mode can be extended by using the X-CON with reduced ambient temperature, ripple current and applied voltage.

7-7 Capacitor insulation

1) Insulation in the marking sleeve is not guaranteed. Be aware that the space between the case and the negative electrode Terminal is not insulated and has some resistance.

2) Be sure to completely separate the case, negative lead terminal, and positive lead terminal and PCB patterns with each other.

Version	01		Page	12
---------	----	--	------	----

7-8 Precautions for using capacitors

X-CON capacitors should not be used in the following environments.

1) Environments where the capacitor is subject to direct contact with salt water or oil can directly fall on it.

2) Environments where capacitors are exposed to direct sunlight.

3) High temperature (Avoid locating heat generating components around the X-CON and on the underside of the PCB), or humid environments where condensation can form on the surface of the capacitor.

4) Environments where the capacitor is in contact with chemically active gases.

5) Acid or alkaline environments.

6) Environment subject to high-frequency induction.

7) Environment subject to excessive vibration and shock.

8.Long Term Storage

Store the X-CONs in sealed package bags after delivery per the table below;

1 8 8	51
X-CON Type	Before unsealing
Radial lead type packed in bags	Must be used within 24~36 months after delivery
	status)
Radial lead type packed in taping method	Must be used within 24~36 months after delivery
Radial lead type packed in taping method	status)

9. Mounting Precautions

9. Mounting Prec		1
Mounting phase	Things to note before mounting	Disposal
	1) Used X-CON capacitors	Not reused
	2) LC-increased X-CON capacitors	Apply them with rated voltage in series with 1K Ω
	after long storage	resistance for 1 hour at the range between 60 and 70° C
	3) X-CON capacitors dropped to the	Not reused
	floor	
Before mounting	4) Precautions on polar, capacitance	Products without remarkable polar, capacitance and rated
Before mounting	and rated voltage	voltage shouldn't be available
	5) Precautions on the pitch between	The products can be used only when said pitch is matched
	lead terminal and PCB	
	6) Precautions on the stress that lead	The products can be used for production only when lead
	terminal and body of X-CON	terminal and body are not subject stress.
	capacitors enduring in mounting	
	1) Soldering with a soldering iron	Both temperature and duration in mounting should meet
		the requirements of out-going SPEC; no stress should be
		allowed to occur in mounting; Don't let the tip of the
		soldering iron touch the X-CON itself.
Mounting	2) Flow soldering	X-CON capacitor body should be prohibited to submerge
		in melted solder; both temperature and duration in
		mounting should meet the requirements of out-going
		SPEC; The rosin is not allowed to adhere to any where
	1) Decentions and marking states	other than lead terminal.
	1) Precautions on mounting status	Do not tilt, bend twists X-CON; Do not allow other matter touch X-CON.
	2) Washing the PCB (available	Used immersion or ultrasonic waves to clean for a total of
	cleaning agent 1)high quality	less than 5 minutes and the temperature be less than 60° C;
After mounting	alcohol-based cleaning fluid such as	The conductivity, PH, specific gravity and water cleaning,
	st-100s 750L,750M;2) Detergents	X-CON products should be dried with hot air (less than
	including substitute freon such as	the maximum operating temperature).
	AK-225AES and IPA)	
	$AK^2 22 JAEO allu II Aj$	

Version01Page13	Page 13
-----------------	---------

10. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-OA-072).

	Substances
	Cadmium and cadmium compounds
Heavy metals	Lead and lead compounds
Treavy metals	Mercury and mercury compounds
	Hexavalent chromium compounds
	Polychlorinated biphenyls (PCB)
Chloinated	Polychlorinated naphthalenes (PCN)
organic	Polychlorinated terphenyls (PCT)
compounds	Short-chain chlorinated paraffins(SCCP)
	Other chlorinated organic compounds
D · (1	Polybrominated biphenyls (PBB)
Brominated	Polybrominated diphenylethers(PBDE) (including
organic	decabromodiphenyl ether[DecaBDE])
compounds	Other brominated organic compounds
Tributyltin comp	oounds(TBT)
Triphenyltin con	npounds(TPT)
Asbestos	
Specific azo com	pounds
Formaldehyde	
Polyvinyl chloric	de (PVC) and PVC blevds
Beryllium oxide	
Beryllium copp	er
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)
Perfluorooctane	sulfonates (PFOS)
Specific Benzotr	iazole

Version 01 Page 14
