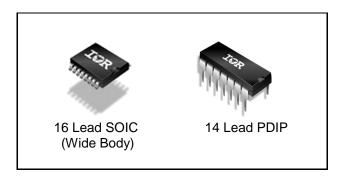


High and Low Side Driver

Features

- Floating channel designed for bootstrap operation
- Fully operational to +1200 V
- Tolerant to negative transient voltage
- dV/dt immune
- Gate drive supply range from 12 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V logic compatible
- Separate logic supply range from 3.3 V to 20 V
- Logic and power ground ±5 V offset
- CMOS Schmitt-triggered inputs with pull-down
- Cycle by cycle edge-triggered shutdown logic
- Matched propagation delay for both channels
- Outputs in phase with inputs

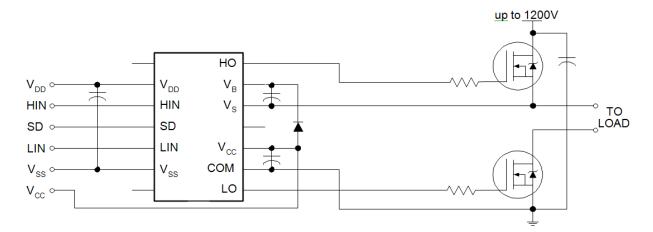

Product Summary

V _{OFFSET} (max)	1200 V
I _{O+/-}	1.7 A / 2 A
Vout	12 V – 20 V
t _{on/off} (typical)	280 ns / 225 ns
Delay Matching	30 ns

Description

The IR2213(S) is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 1200 V.

Package Options



Ordering Information

Danie Bard Norrellian		Standard Pack		On least to Boot News too
Base Part Number	Package Type	Form	Quantity	Orderable Part Number
IR2213SPBF	SO16WB	Tube	45	IR2213SPBF
IR2213SPBF	SO16WB	Tape and Reel	1000	IR2213STRPBF
IR2213PBF	PDIP14	Tube	25	IR2213PBF

Typical Connection Diagram

Refer to Lead Assignments for correct pin configuration. This/These diagram(s) show electrical connections only. Please refer to our Application Notes and Design Tips for proper circuit board layout

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High Side Floating Supply Voltage		-0.3	1225	
Vs	High Side Floating Supply Offset Vo	ltage	V _B - 25	V _B + 0.3	
V _{HO}	High Side Floating Output Voltage		V _S - 0.3	V _B + 0.3	
V _{cc}	Low Side Fixed Supply Voltage		-0.3	25	V
V_{LO}	Low Side Output Voltage		-0.3	V _{CC} + 0.3	7 V
V_{DD}	Logic Supply Voltage		-0.3	V _{SS} + 25	
V_{SS}	Logic Supply Offset Voltage		V _{CC} - 25	$V_{CC} + 0.3$	
V_{IN}	Logic Input Voltage (HIN, LIN & SD)		V _{SS} - 0.3	$V_{DD} + 0.3$	
dV _S /dt	Allowable Offset Supply Voltage Train	nsient (Figure 2)	_	50	V/ns
В	Package Power Dissipation	(14 Lead PIDP)	_	1.3	W
P _D	@ T _A ≤ +25°C	(16 Lead SOIC)		1.0	VV
В	Thermal Resistance, Junction to	(14 Lead PDIP)	<u> </u>	75	°C/W
R_{THJA}	Ambient	(16 Lead SOIC)		100	C/VV
T_J	Junction Temperature			125	
Ts	Storage Temperature	-55	150	°C	
T_L	Lead Temperature (Soldering, 10 se	conds)	_	300	

Recommended Operating Conditions

The Input / Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset ratings are tested with all supplies biased at 15 V differential.

Symbol	Definition	Min.	Max.	Units
V_{B}	High Side Floating Supply Absolute Voltage	V _S + 12	V _S + 20	
Vs	High Side Floating Supply Offset Voltage	†	1200	
V_{HO}	High Side Floating Output Voltage	Vs	V _B	
V _{CC}	Low Side Fixed Supply Voltage	12	20	
V_{LO}	Low Side Output Voltage	0	V _{CC}	\ \
V_{DD}	Logic Supply Voltage	V _{SS} + 3	V _{SS} + 20	
V_{SS}	Logic Supply Offset Voltage	-5 ^{††}	5	
V_{IN}	Logic Input Voltage (HIN, LIN & SD)	V _{SS}	V_{DD}	

Logic operational for V_S of -5 to +1200V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

www.irf.com

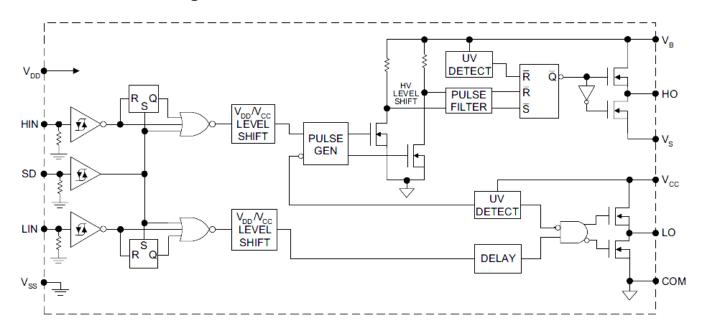
© 2016 International Rectifier

When V_{DD} <5V, the minimum V_{SS} offset is limited to - V_{DD}

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15 V, C_L = 1000 pF, T_A = 25 °C and V_{SS} = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.

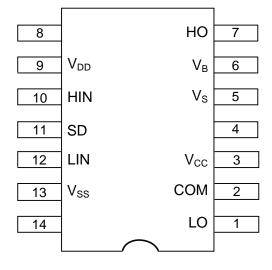
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-On Propagation Delay	_	280			$V_S = 0V$
t _{off}	Turn-Off Propagation Delay		225			V _S = 1200V
t _{sd}	Shutdown Propagation Delay	_	230	_		V _S = 1200V
t _r	Turn-On Rise Time	_	25	_	ns	
t _f	Turn-Off Fall Time	_	17	_		
MT	Delay Matching, HS & LS Turn- On/Off	_	_	30		

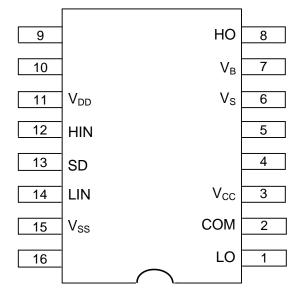

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15 V, T_A = 25 °C and V_{SS} = COM unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all three logic input leads: HIN, LIN and SD. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V_{IH}	Logic "1" Input Voltage	9.5				
V_{IL}	Logic "0" Input Voltage	1	1	6.0		
V_{OH}	High Level Output Voltage, V _{BIAS} - V _O		_	1.2	V	$I_O = 0A$
V_{OL}	Low Level Output Voltage, Vo		_	0.1		$I_O = 0A$
I_{LK}	Offset Supply Leakage Current		_	50		$V_{B} = V_{S} = 1200V$
I_{QBS}	Quiescent V _{BS} Supply Current		125	230		$V_{IN} = 0V \text{ or } V_{DD}$
I _{QCC}	Quiescent V _{CC} Supply Current		180	340	μA	$V_{IN} = 0V \text{ or } V_{DD}$
I_{QDD}	Quiescent V _{DD} Supply Current	-	15	30	μΛ	$V_{IN} = 0V \text{ or } V_{DD}$
I _{IN+}	Logic "1" Input Bias Current	1	20	40		$V_{IN} = V_{DD}$
I _{IN-}	Logic "0" Input Bias Current	1	1	1.0		$V_{IN} = 0V$
V_{BSUV+}	V _{BS} Supply Undervoltage Positive Going Threshold	8.7	10.2	11.7		
V _{BSUV} -	V _{BS} Supply Undervoltage Negative Going Threshold	7.9	9.3	10.7	V	
V _{CCUV+}	V _{CC} Supply Undervoltage Positive Going Threshold	8.7	10.2	11.7		
V _{CCUV} -	V _{CC} Supply Undervoltage Negative Going Threshold	7.9	9.3	10.7	-	
I _{O+}	Output High Short Circuit Pulsed Current	1.7	2.0	_	А	$V_O = 0V, V_{IN} = V_{DD}$ PW \leq 10 \mus
I _{O-}	Output Low Short Circuit Pulsed Current	2.0	2.5	_		V _O = 15V, V _{IN} = 0V PW ≤ 10 μs

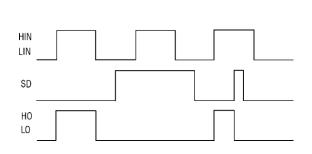
Functional Block Diagram




Lead Definitions

Symbol	Description
V_{DD}	Logic Supply
HIN	Logic Input for High Side Gate Driver Output (HO), In Phase
SD	Logic Input for Shutdown
LIN	Logic Input for Low Side Gate Driver Output (LO), In Phase
V _{SS}	Logic Ground
V_B	High Side Floating Supply
НО	High Side Gate Drive Output
Vs	High Side Floating Supply Return
V_{CC}	Low Side Supply
LO	Low Side Gate Drive Output
COM	Low Side Return

Lead Assignments


14-Lead PDIP

16-Lead SOIC (Wide Body)

Application Information and Additional Information

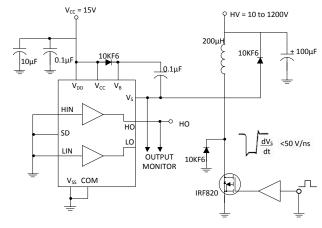
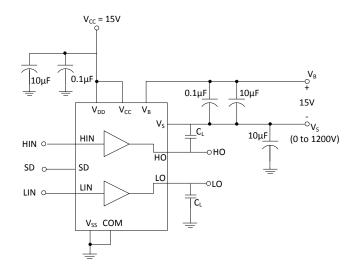



Figure 1. Input / Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

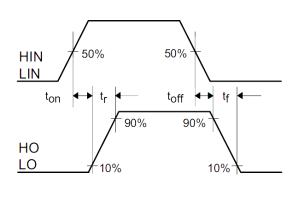
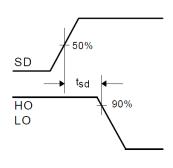



Figure 3. Switching Time Test Circuit

Figure 4. Switching Time Waveform Definition

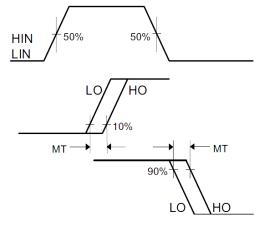
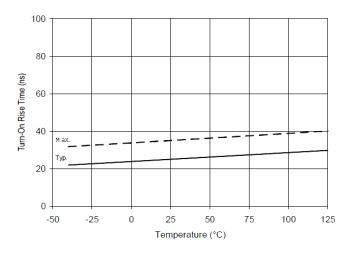



Figure 5. Shutdown Waveform Definitions

Figure 6. Delay Matching Waveform Definitions

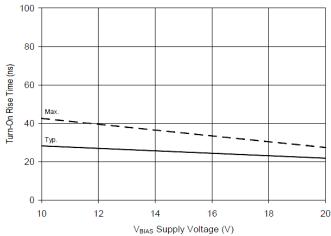
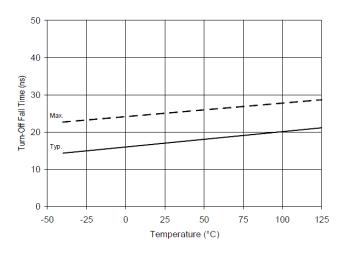



Figure 7A. Turn-On Rise Time vs. Temperature

Figure 7B. Turn-On Rise Time vs. Voltage

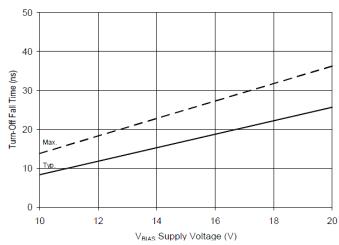
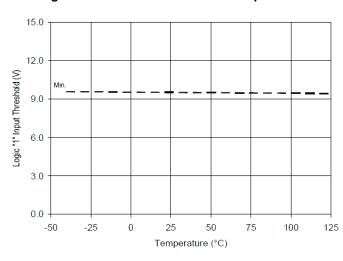



Figure 8A. Turn-Off Fall Time vs. Temperature

Figure 8B. Turn-Off Fall Time vs. Voltage

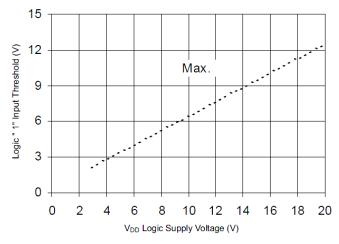
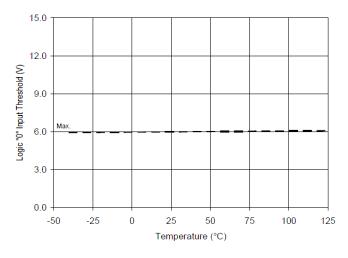


Figure 9A. Logic "1" Input Threshold vs. Temperature


Figure 9B. Logic "1" Input Threshold vs. Voltage

-50

-25

0

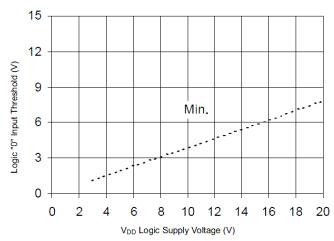


Figure 10A. Logic "0" Input Threshold vs. Temperature

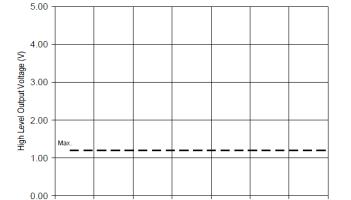


Figure 10B. Logic "0" Input Threshold vs. Voltage

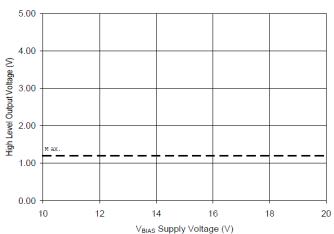


Figure 11A. High Level Output vs. Temperature

Temperature (°C)

25

50

75

100

125

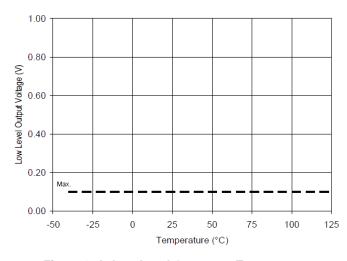


Figure 11B. High Level Outputs vs. Voltage

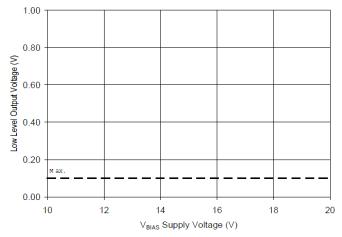
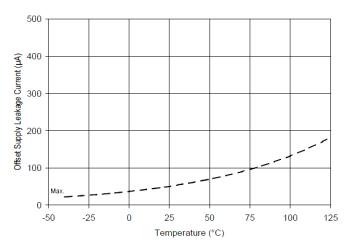



Figure 12A. Low Level Output vs. Temperature

Figure 12B. Low Level Output vs. Voltage

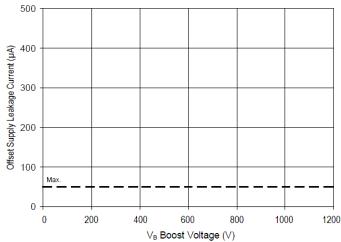


Figure 13A. Offset Supply Current vs. Temperature

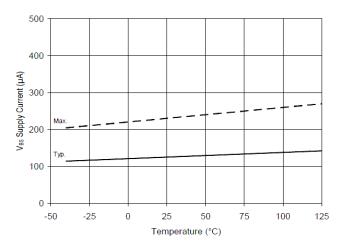


Figure 13B. Offset Supply Current vs. Voltage

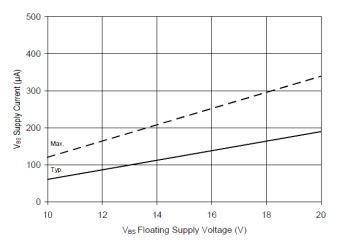


Figure 14A. V_{BS} Supply Current vs. Temperature

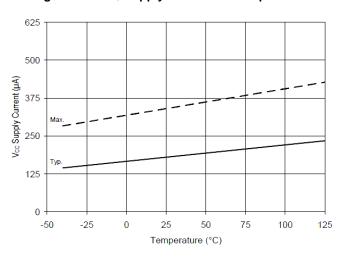


Figure 14B. V_{BS} Supply Current vs. Voltage

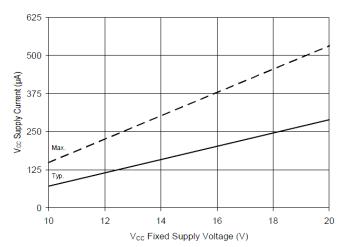
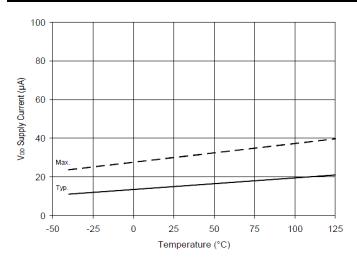



Figure 15A. V_{CC} Supply Current vs. Temperature

Figure 15B. V_{CC} Supply Current vs. Voltage

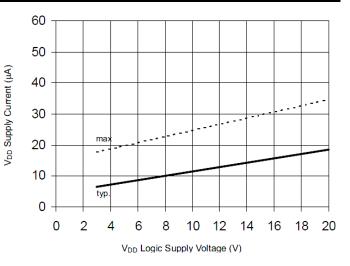
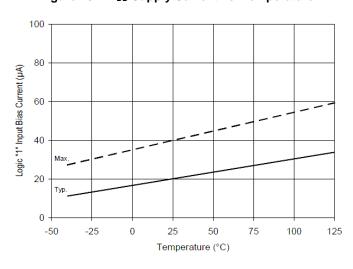



Figure 16A. V_{DD} Supply Current vs. Temperature

Figure 16B. V_{DD} Supply Current vs. V_{DD} Voltage

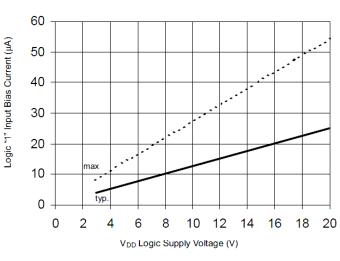
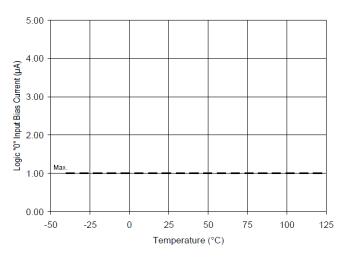



Figure 17A. Logic "1" Input Current vs. Temperature

Figure 17B. Logic "1" Input Current vs. V_{DD} Voltage

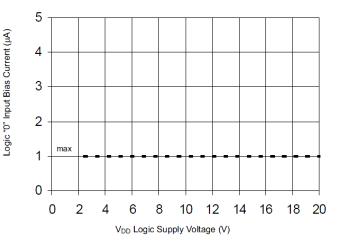
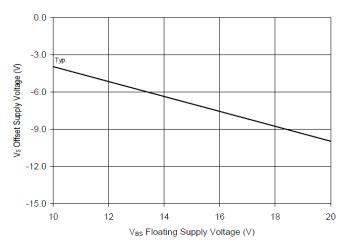



Figure 18A. Logic "0" Input Current vs. Temperature

Figure 18B. Logic "0" Input Current vs. V_{DD} Voltage

20.0 Vss Logic Supply Offset Voltage (V) 16:00 8:0 8:0 4:0 0.0 10 12 18 20 14 16 V_{CC} Fixed Supply Voltage (V)

Figure 19. Maximum V_S Negative Offset vs. V_{BS} Supply Voltage

65 55 Temperature (C) 45 35 25 15 0.1 10 100 Frequency (KHZ)

Figure 21. IR2213S vs. Frequency (IRFBC20) $R_{gate}=33\Omega$, $V_{CC}=15V$

Figure 20. Maximum V_{SS} Positive Offset vs. V_{CC} Supply Voltage

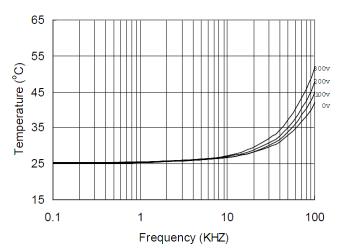
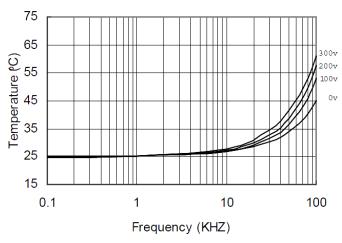



Figure 22. IR2213S vs. Frequency (IRFBC30) R_{gate} =22 Ω , V_{CC} =15V

75 300v 65 200v Temperature (C 100v 55 45 35 25 15 0.1 1 10 100 Frequency (KHZ)

Figure 23. IR2213S vs. Frequency (IRFBC40)

 R_{gate} =15 Ω , V_{CC} =15V

65 55 Temperature (C) 45 35 25 15 0.1 10 100 1 Frequency (KHZ)

 R_{gate} =10 Ω , V_{CC} =15V65

Figure 24. IR2213S vs. Frequency (IRFBC50)

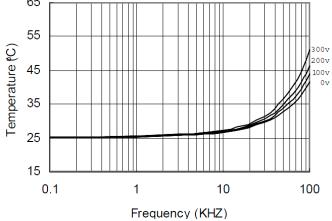
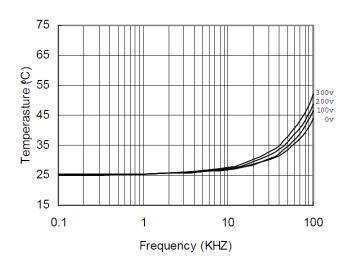
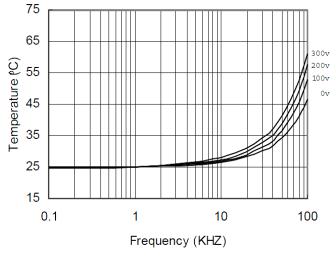
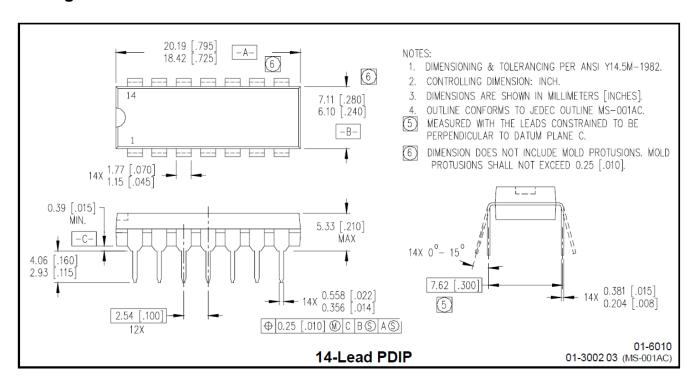



Figure 25. IR2213 vs. Frequency (IRFBC20) $R_{gate}=33\Omega$, $V_{CC}=15V$

Figure 26. IR2213 vs. Frequency (IRFBC30) R_{gate}=22Ω, V_{CC}=15V

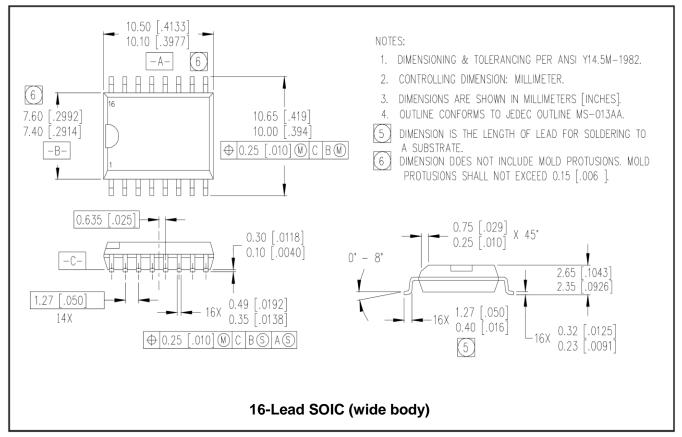
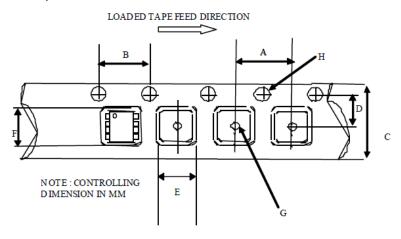
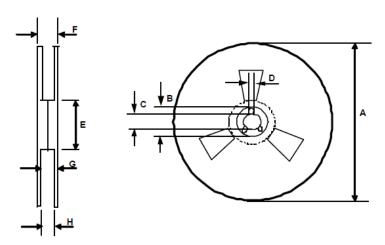

Figure 27. IR2213 vs. Frequency (IRFBC40) $$R_{\text{gate}}$=$15\Omega,\,V_{\text{CC}}$=$15V$

Figure 28. IR2213 vs. Frequency (IRFBC50) $$R_{gate}$=$10\Omega,\,V_{CC}$=$15V$

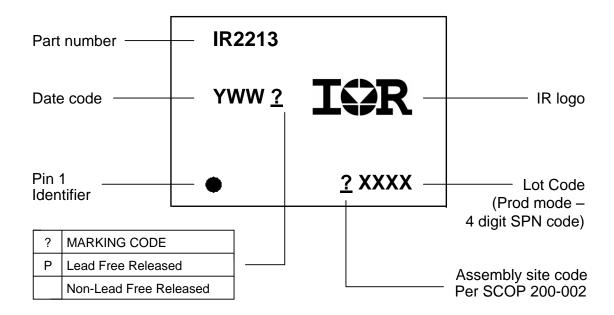

Package Details



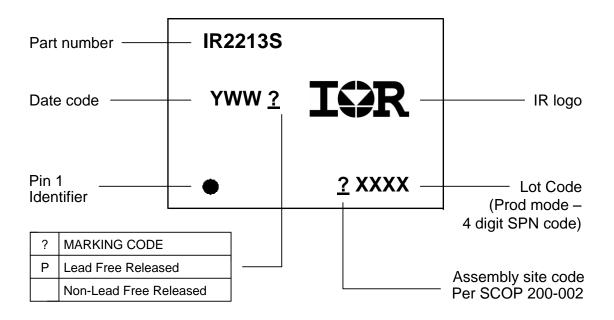
Tape and Reel Details, SO16WB

CARRIER TAPE DIMENSION FOR 16SOICW

	M etric		lm p erial	
Code	M in	Max	Min	Max
Α	11.90	12.10	0.468	0.476
В	3.90	4.10	0.153	0.161
С	15.70	16.30	0.618	0.641
D	7.40	7.60	0.291	0.299
E	10.80	11.00	0.425	0.433
F	10.60	10.80	0.417	0.425
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062



REEL DIMENSIONS FOR 16SOICW


	M etric		lm p	erial
Code	M in	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	22.40	n/a	0.881
G	18.50	21.10	0.728	0.830
Н	16.40	18.40	0.645	0.724

Part Marking Information

14-Lead PDIP

16-Lead SOIC (wide body)

Qualification Information[†]

Qualification Level		Industrial ^{††} (per JEDEC JESD 47)			
		Comments: This family of ICs has passed JEDEC's			
		Industrial qualification. IR's Consumer qualification level is granted by extension of the higher Industrial level.			
	SOIC16WB	MSL3 ^{†††}			
Moisture Sensitivity Level	00.0.01.2	(per IPC/JEDEC J-STD 020)			
moisture constituty zever	PDIP14	Not applicable			
	FDIF14	(non-surface mount package style)			
RoHS Compliant		Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

www.irf.com © 2016 International Rectifier