2.5V / 3.3V ECL 2-Input Differential AND/NAND

Description

The MC100LVEP05 is a 2-input differential AND/NAND gate. The MC100LVEP05 is the low voltage version of the MC100EP05 and is functionally equivalent to the EL05 and LVEL05 devices. With AC performance much faster than the LVEL05 device, the MC100LVEP05 is ideal for low voltage applications requiring the fastest AC performance available.

The 100 Series contains temperature compensation.

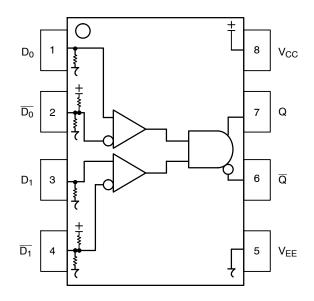
Features

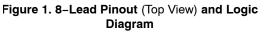
- 220 ps Typical Propagation Delay
- Input Clock Frequency > 3 GHz
- 0.2 ps Typical RMS Random Clock Period Jitter
- LVPECL Mode Operating Range: $V_{CC} = 2.375$ V to 3.6 V with $V_{EE} = 0$ V
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -2.375 V$ to -3.6 V
- Open Input Default State
- Q Output Will Default LOW with Inputs Open
- These are Pb-Free Devices*

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS* 8 8 8 8 8 KVP05 AYWW= SOIC-8 **D SUFFIX** 88 **CASE 751** 8 9 9 9 9 KU05 ALYW= TSSOP-8 ο . DT SUFFIX 티티티티 CASE 948R 6N M-DFN8 **MN SUFFIX** CASE 506AA K = MC100 Y = Year M = Date Code W = Work Week A = Assembly Location = Pb-Free Package L = Wafer Lot


(Note: Microdot may be in either location)


*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Table 1. PIN DESCRIPTION

Pin	Function
D0*, D1*, <u>D0</u> **, <u>D1</u> **	ECL Data Inputs
Q, <u>Q</u>	ECL Data Outputs
V _{CC}	Positive Supply
V _{EE}	Negative Supply
EP	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

* Pins will default LOW when left open. ** Pins will default to $V_{CC}/2$ when left open.

Table 2. TRUTH TABLE

D0	D1	DO	D1	Q	Q
L L H H	L H L H	H H L L	H L H L		ΤΤΤΙ

Table 3. ATTRIBUTES

Characteristics	Value				
Internal Input Pulldown Resistor	75 kΩ				
Internal Input Pullup Resistor	37.5	ōkΩ			
ESD Protection Human Body Model Machine Model Charged Device Model	> 4 kV > 200 V > 2 kV				
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) TSSOP-8 DFN8	Pb Pkg Level 1 Level 1	Pb–Free Pkg Level 3 Level 1			
Flammability Rating Oxygen Index: 28 to 34	UL 94 V–0	@ 0.125 in			
Transistor Count	167 D	evices			
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test					

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 _6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			–65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W °C/W
T _{sol}	Wave Solder	3 sec @ 260°C		265	°C
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN8	35 to 40	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

2. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

Table 5. 100EP DC CHARACTERISTICS, PECL V_{CC} = 2.5 V, V_{EE} = 0 V (Note 3)

			−40°C			25°C			85°C		
Symbol	Characteristic		Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	15	25	32	17	27	36	19	28	38	mA
V _{OH}	Output HIGH Voltage (Note 4)		5 1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{OL}	Output LOW Voltage (Note 4)	555	730	900	555	730	900	555	730	900	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	135	5	1620	1355		1620	1355		1620	mV
V _{IL}	Input LOW Voltage (Single-Ended)	555		900	555		900	555		900	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Notes 5, 6)	1.2		2.5	1.2		2.5	1.2		2.5	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0 0.5 0 -15)		0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

3. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.125 V to –1.3 V. 4. All loading with 50 Ω to V_{CC} – 2.0 V.

5. Single–ended input CLK pin operation is limited to V_{CC} \geq 3.0 V in PECL mode.

6. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

				–40°C		25°C		85°C				
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		15	25	32	17	27	36	19	28	38	mA
V _{OH}	Output HIGH Voltage (Note 8)		2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 8)		1355	1530	1700	1355	1530	1700	1355	1530	1700	mV
V _{IH}	Input HIGH Voltage (Single-Ended)		2075		2420	2075		2420	2075		2420	mV
V _{IL}	Input LOW Voltage (Single-Ended)		1355		1675	1355		1675	1355		1675	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 9)		1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current				150			150			150	μA
IIL	Input LOW Current	D D	0.5 -150			0.5 -150			0.5 -150			μA

Table 6. 100EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 7)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V.
 All loading with 50 Ω to V_{CC} - 2.0 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			−40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	15	25	32	17	27	36	19	28	38	mA
V _{OH}	Output HIGH Voltage (Note 11)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 11)	-1945	-1770	-1600	-1945	-1770	-1600	-1945	-1770	-1600	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1945		-1600	-1945		-1600	-1945		-1600	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 12)	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

Table 7. 100EP DC CHARACTERISTICS, NECL V_{CC} = 0 V, V_{EE} = -2.375 V to -3.6 V (Note 10)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

10. Input and output parameters vary 1:1 with V_{CC} .

11. All loading with 50 Ω to V_{CC} – 2.0 V. 12. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			-40°C		25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (Figure 2)				3.0			3.0			GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	160	210	260	170	220	270	210	260	320	ps
ţ JITTER	RMS Random Clock Jitter $f_{in} \leq 3.0 \text{ GHz}$ (Figure 2)		0.2	1		0.2	1		0.2	1.5	ps
V _{PP}	Input Voltage Swing (Differential Config- uration)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times Q (20% - 80%)	70	120	170	80	130	180	100	150	200	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

13. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V.

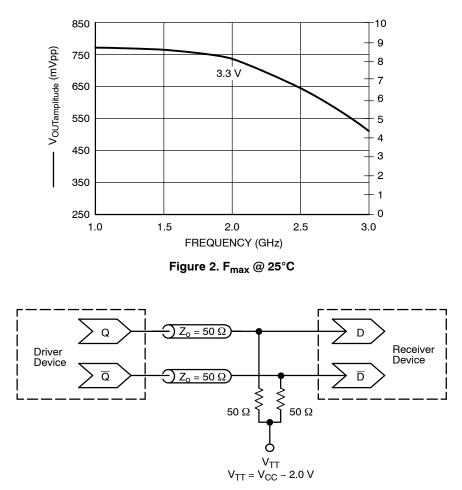
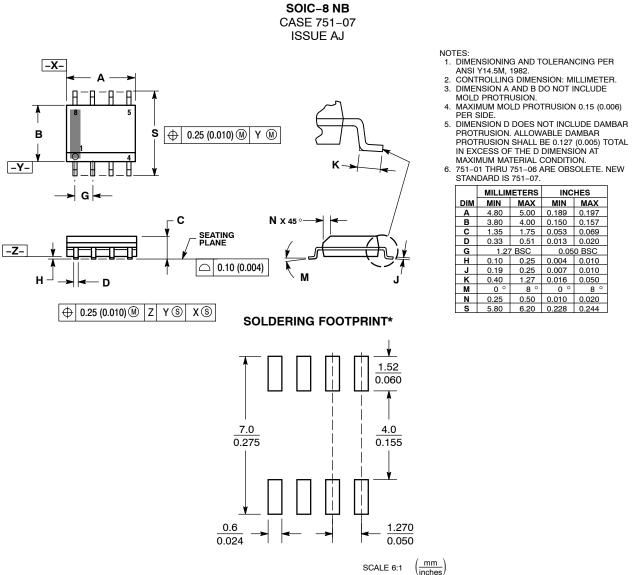


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

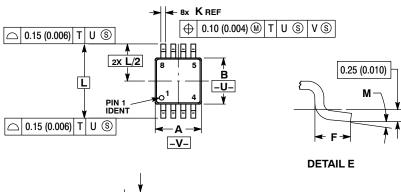

Device	Package	Shipping [†]
MC100LVEP05DG	SOIC-8 (Pb-Free)	98 Units / Rail
MC100LVEP05DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC100LVEP05DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC100LVEP05DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
MC100LVEP05MNTXG	DFN8 (Pb–Free)	1000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

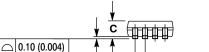
Resource Reference of Application Notes

AN1405/D	_	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

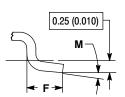

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

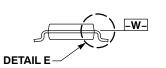
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDADD IS 751-07
- STANDARD IS 751-07.


	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.05	0 BSC	
н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
к	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
Ν	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

PACKAGE DIMENSIONS

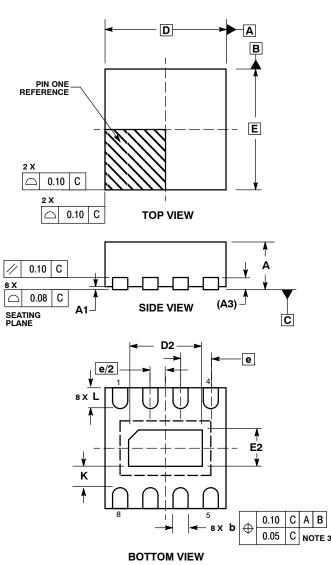
TSSOP-8 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**




G

D

-T- SEATING PLANE


NOTES:	
 DIMENSIONI 	NG AND TOLERANCING PER ANSI
V14 5M 108	0

- DIMENSIONED AND TOLEINANDING TELTANDI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
С	0.80	1.10	0.031	0.043
D	0.05	0.15	0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65 BSC		0.026	BSC
K	0.25	0.40	0.010	0.016
L	4.90 BSC		0.193	BSC
M	0°	6 °	0°	6 °

PACKAGE DIMENSIONS

DFN8 CASE 506AA-01 ISSUE D

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 .

2. CONTROLLING DIMENSION:

 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.

 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.80	1.00	
A1	0.00	0.05	
A3	0.20 REF		
b	0.20	0.30	
D	2.00 BSC		
D2	1.10	1.30	
Е	2.00 BSC		
E2	0.70	0.90	
е	0.50 BSC		
к	0.20		
L	0.25	0.35	

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agosciated with such unintended or unauthorized use persons, and reasonable attorney fees andigne the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Technical Support: Order Literature: http://

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MC100LVEP05DG MC100LVEP05DR2G MC100LVEP05MNTXG MC100LVEP05DTG MC100LVEP05DTR2G