Panasonic ideas for life

POWERTYPE SMALL \& SLIM AUTOMOTIVE RELAY

FEATURES

1. Compact type for automotives We successfully developed a power type that is the same size as our CT relay. 2. 30 A maximum switching capacity Switching of 30 A motor loads is possible due to change of COM spring material and other improvements.
2. Still top-of-its-class for silent operation
Maintains equally silent operation as our CT relay (ACT).

4. Sealed type

Sealed type makes automatic cleaning possible.

APPLICATIONS

Power windows, Powered seats, Auto door lock, Slide door closers, Power sunroof, etc.

10-terminal layout

*8-terminal type has no terminals.

Compliance with RoHS Directive

Characteristics

Max. operating speed (at nominal switching capacity)			6 cpm
Initial insulation resistance*4			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage ${ }^{* 5}$	Between open contacts		500 Vrms for 1 min.
	Between c and coil	ntacts	500 Vrms for 1 min.
Operate time* ${ }^{*}$ (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (Initial)
Release time*6 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (Initial)
Shock resistance ${ }^{\text {F }}$ F		tiona** ${ }^{* 7}$	Min. $100 \mathrm{~m} / \mathrm{s}^{2}$ \{10G\}
		tructive*8	Min. 1,000 m/s ${ }^{2}$ \{100G\}
Vibration resistance		ctional*9	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
	Des	tructive*10	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}$ \{4.5G\}
Conditions for operation, transport and storage*11 (Not freezing and condensing at low temperature)		Ambient temp	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5\% R.H. to 85\% R.H.
Mass			Twin type: approx. 8.0g .28oz 1 Form C type: approx. 4.0 g .14 oz

SPECIFICATIONS

Contact

Arrangement			1 Form $\mathrm{C} \times 2$, 1 Form C
Contact material			Ag alloy (Cadmium free)
Initial contact resistance (Initial) (By voltage drop 6 V DC 1 A)			Typ. $7 \mathrm{~m} \Omega$ (N.O.) Typ. $10 \mathrm{~m} \Omega$ (N.C.)
Rating	Nominal s capacity	witching	$\begin{aligned} & \hline \text { N.O.: } 30 \text { A } 14 \text { V DC } \\ & \text { N.C.: } 10 \text { A } 14 \text { V DC } \end{aligned}$
	Max. carrying current (N.O.)		40 A for 2 minutes, 25 A for 1 hour (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) 35 A for 2 minutes, 20 A for 1 hour (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
	Min. switc	ing capacity\#1	1 A 12 V DC
Expected life (min. operation)	Mechanical	(at 120 cpm)	Min. 10^{6}
	Electrical	Resistive load	Min. $5 \times 10^{4 * 1}$
		Motor load	Min. 10 ${ }^{5 * 2}$ (free)
			Min. $5 \times 10^{4 * 3}$ (lock)

Coil

Nominal operating power	$1,000 \mathrm{~mW}$
\#1 This value can change due to the switching frequency, environmental conditions,	

Remarks

*1 At nominal switching capacity, operating frequency: 1 s ON, 9s OFF
*2 N.O.: at 7 A (steady), 30 A (inrush)/N.C.: at 15 A (brake) 14 V DC, operating frequency: 0.5 s ON, 9.5 s OFF
${ }^{*}$ At 30 A 14 V DC (Motor lock), operating frequency: 0.5 s ON, 9.5 s OFF
*4 Measurement at same location as "Initial breakdown voltage" section
*5 Detection current: 10 mA
*6 Excluding contact bounce time
${ }^{* 7}$ Half-wave pulse of sine wave: 11 ms ; detection: $10 \mu \mathrm{~s}$
*8 Half-wave pulse of sine wave: 6 ms

* Detection time: $10 \mu \mathrm{~s}$
${ }^{*} 10$ Time of vibration for each direction;
X, Y, direction: 2 hours
Z direction: 4 hours
${ }^{*} 11$ Refer to Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT
Please inquire if you will be using the relay in a high temperature atmosphere $\left(110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}\right)$.
* If the relay is used continuously for long periods of time with coils on both sides in an energized condition, breakdown might occur due to abnormal heating depending on the carrying condition. Therefore, please inquire when using with a circuit that causes an energized condition on both sides simultaneously.

TYPES AND COIL DATA (at $\mathbf{2 0}^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Standard packing; 1 Form C: Carton(tube package) 30pcs. Case 1,500pcs.
1 Form C $\times 2$: Carton(tube package) 30pcs. Case 900pcs.

Contact arrangement	Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (Initial)	Drop-out voltage, V DC (Initial)	Coil resistance, Ω	Nominaloperating current, mA	Nominal operating power, mW	Usable voltage range, V DC
1 Form C	ACTP112	12	Max. 7.2	Min. 1.0	144 $\pm 10 \%$	$83.3 \pm 10 \%$	1,000	10 to 16
1 Form C $\times 2$ (8 terminals type)	ACTP212	12	Max. 7.2	Min. 1.0	$144 \pm 10 \%$	$83.3 \pm 10 \%$	1,000	10 to 16
$\begin{gathered} 1 \text { Form } C \times 2 \\ \text { (10 terminals type) } \end{gathered}$	ACTP512	12	Max. 7.2	Min. 1.0	$144 \pm 10 \%$	$83.3 \pm 10 \%$	1,000	10 to 16

* Other pick-up voltage types are also available. Please contact us for details.

DIMENSIONS

1. Twin type (8 terminals)

PC board pattern (Bottom view)

Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

2. Twin type (10 terminals)

PC board pattern (Bottom view)

Schematic (Bottom view)

[^0]
CT (ACTP)

3. Single type (1 Form C)

Dimension:
Max. 1 mm .039 inch:
Tolerance

1 to 3 mm .039 to 118 inch:
Min. 3 mm .118 inch:
$\pm 0.2 \pm .008$
$\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering Intervals between terminals is measured at A surface level.

EXAMPLE OF CIRCUIT

Forward/reverse control circuits of DC motor for power windows

(M) : Power window motor

REFERENCE DATA

1-(1). Coil temperature rise (at room temperature)
Sample: ACTP212, 3pcs.
Contact carrying current: 0A, 10A, 20A

3. Distribution of pick-up and drop-out voltage Sample: ACTP212, 40pcs.

1-(2). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$) Sample: ACTP212, 3pcs
Contact carrying current: $0 \mathrm{~A}, 10 \mathrm{~A}, 20 \mathrm{~A}$

4. Distribution of operate and release time Sample: ACTP212, 40pcs.

* Without diode

5. Electrical life test (Motor free)

Sample: ACTP212, 3pcs.
Load: 7A steady, Inrush 30A
Brake current: 15A 14V DC,
Power window motor actual load (free condition)
Operating frequency: (ON : OFF = $0.5 \mathrm{~s}: 9.5 \mathrm{~s}$)
Ambient temperature: Room temperature
Circuit:

Load current waveform
Inrush current: 30A, Steady current: 7A
Brake current: 15A

6. Electrical life test (Motor lock)

Sample: ACTP212, 3pcs.
Load: 30A 14V DC
Switching frequency: (ON : OFF = $0.5 \mathrm{~s}: 9.5 \mathrm{~s})$
Ambient temperature: Room temperature

Circuit:

Load current waveform

Change of contact resistance

Change of contact resistance

[^0]: * Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

