## features

## - 250ksps Throughput Rate

- $\pm 0.5 p p m$ INL (Typ)
- Guaranteed 20-Bit No Missing Codes

■ Low Power: 5.3 mW at $250 \mathrm{ksps}, 5.3 \mu \mathrm{~W}$ at 250 sps

- 104dB SNR (Typ) at $\mathrm{f}_{\mathrm{N}}=2 \mathrm{kHz}$
- -125 dB THD (Typ) at $\mathrm{f}_{\mathrm{IN}}=2 \mathrm{kHz}$
- Digital Gain Compression (DGC)
- Guaranteed Operation to $85^{\circ} \mathrm{C}$
- 2.5V Supply
- Fully Differential Input Range $\pm \mathrm{V}_{\text {REF }}$
- $V_{\text {REF }}$ Input Range from 2.5V to 5.1 V
- No Pipeline Delay, No Cycle Latency
- 1.8 V to 5 V I/O Voltages
- SPI-Compatible Serial I/O with Daisy-Chain Mode
- Internal Conversion Clock
- 16-Lead MSOP and $4 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN Packages


## APPLICATIONS

- Medical Imaging
- High Speed Data Acquisition
- Portable or Compact Instrumentation
- Industrial Process Control
- Low Power Battery-Operated Instrumentation
- ATE
$\mathbf{\Sigma T}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. Patents Pending. Protected by U.S. Patents, including 7705765, 7961132, 8319673.

20-Bit, 250ksps, Low Power SAR ADC with 0.5ppm INL

## DESCRIPTIOn

The LTC ${ }^{\circledR 2376-20 ~ i s ~ a ~ l o w ~ n o i s e, ~ l o w ~ p o w e r, ~ h i g h ~ s p e e d ~}$ 20-bit successive approximation register (SAR) ADC. Operating from a 2.5 V supply, the LTC2376-20 has a $\pm \mathrm{V}_{\text {REF }}$ fully differential input range with $\mathrm{V}_{\text {REF }}$ ranging from 2.5 V to 5.1 V . The LTC2376-20 consumes only 5.3 mW and achieves $\pm 2 \mathrm{ppm}$ INL maximum, no missing codes at 20 bits with 104dB SNR.

The LTC2376-20 has a high speed SPI-compatible serial interface that supports $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5 V logic while also featuring a daisy-chain mode. The fast 250 ksps throughput with no cycle latency makes the LTC2376-20 ideally suited for a wide variety of high speed applications. An internal oscillator sets the conversiontime, easing external timing considerations. The LTC2376-20 automatically powers down between conversions, leading to reduced power dissipation that scales with the sampling rate.
The LTC2376-20 features a unique digital gain compression (DGC) function, which eliminates the driver amplifier's negative supply while preserving the full resolution of the ADC. When enabled, the ADC performs a digital scaling function that maps zero-scale code from OV to 0.1 • $\mathrm{V}_{\text {REF }}$ and full-scale code from $\mathrm{V}_{\text {REF }}$ to $0.9 \cdot \mathrm{~V}_{\text {REF }}$. For a typical reference voltage of 5 V , the full-scale input range is now 0.5 V to 4.5 V , which provides adequate headroom for powering the driving amplifier from a single 5.5 V supply.

## TYPICAL APPLICATION



Integral Nonlinearity vs Output Code


## ABSOLUTG MAXIMUM RATINGS

(Notes 1, 2)

Supply Voltage (VDD) .............................................2.8V
Supply Voltage (OVDD) ...............................................6V
Reference Input (REF). $\qquad$
Analog Input Voltage (Note 3)
$\mathrm{IN}^{+}, \mathrm{IN}^{-}$ $\qquad$ (GND -0.3 V ) to (REF + 0.3V)
REF/DGC Input (Note 3)
....(GND -0.3 V ) to (REF + 0.3V)
Digital Input Voltage
(Note 3) $\qquad$ $(G N D-0.3 V)$ to $\left(0 V_{D D}+0.3 V\right)$

Digital Output Voltage
(Note 3)......................... (GND - 0.3V) to ( $0 \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ )
Power Dissipation ............................................. 500 mW Operating Temperature Range

LTC2376C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2376I $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range .................. $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

## PIn CONFIGURATIOn




## ORDER INFORMATION

http://www.linear.com/product/LTC2376-20\#orderinfo

| LEAD FREE FINISH | TAPE AND REEL | PART MARKING* | PACKAGE DESCRIPTION | TEMPERATURE RANGE |
| :--- | :--- | :--- | :--- | :--- |
| LTC2376CMS-20\#PBF | LTC2376CMS-20\#TRPBF | 237620 | $16-L e a d ~ P l a s t i c ~ M S O P ~$ | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| LTC2376IMS-20\#PBF | LTC2376IMS-20\#TRPBF | 237620 | $16-L e a d ~ P l a s t i c ~ M S O P ~$ | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |
| LTC2376CDE-20\#PBF | LTC2376CDE-20\#TRPBF | 23760 | $16-L e a d ~(4 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| LTC2376IDE-20\#PBF | LTC2376IDE-20\#TRPBF | 23760 | $16-L e a d ~(4 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with \#TRMPBF suffix.

## ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

| SYMBOL | PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IN }}+$ | Absolute Input Range ( $\mathrm{IN}^{+}$) | (Note 5) | $\bullet$ | -0.1 |  | $V_{\text {REF }}+0.1$ | V |
| $\mathrm{V}_{\text {IN }}$ | Absolute Input Range ( $\mathrm{IN}^{-}$) | (Note 5) | $\bullet$ | -0.1 |  | $V_{\text {REF }}+0.1$ | V |
| $\mathrm{V}_{\text {IN+ }} \mathrm{V}_{\text {IN- }}$ | Input Differential Voltage Range | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IN }}+-\mathrm{V}_{\text {IN }}$ | $\bullet$ | $-V_{\text {REF }}$ |  | $+V_{\text {REF }}$ | V |
| $\mathrm{V}_{\text {CM }}$ | Common-Mode Input Range |  | $\bullet$ | $\begin{gathered} \mathrm{V}_{\text {REF }} / 2- \\ 0.1 \end{gathered}$ | $\mathrm{V}_{\text {REF }} / 2$ | $\begin{gathered} \mathrm{V}_{\text {REF }} / 2+ \\ 0.1 \end{gathered}$ | V |
| $\mathrm{I}_{\text {N }}$ | Analog Input Leakage Current |  |  |  | 0.01 |  | $\mu \mathrm{A}$ |
| $\mathrm{C}_{\text {IN }}$ | Analog Input Capacitance | Sample Mode Hold Mode |  |  | $\begin{gathered} 45 \\ 5 \end{gathered}$ |  | pF |
| CMRR | Input Common Mode Rejection Ratio | $\mathrm{f}_{\text {IN }}=125 \mathrm{kHz}$ |  |  | 86 |  | dB |

COחVERTER CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

| SYMBOL | PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Resolution |  | $\bullet$ | 20 |  |  | Bits |
|  | No Missing Codes |  | - | 20 |  |  | Bits |
|  | Transition Noise |  |  |  | 2.3 |  | ppm ${ }_{\text {RMS }}$ |
| INL | Integral Linearity Error | $\begin{aligned} & (\text { Note 6) } \\ & \text { REF/DGC = GND, (Note 6) } \end{aligned}$ | $\bullet$ | $\begin{aligned} & -2 \\ & -2 \end{aligned}$ | $\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ | ppm |
| DNL | Differential Linearity Error | (Note 10) | $\bullet$ | -0.5 | $\pm 0.2$ | 0.5 | ppm |
| BZE | Bipolar Zero-Scale Error | (Note 7) | $\bullet$ | -13 | 0 | 13 | ppm |
|  | Bipolar Zero-Scale Error Drift |  |  |  | $\pm 7$ |  | $\mathrm{ppb} /{ }^{\circ} \mathrm{C}$ |
| FSE | Bipolar Full-Scale Error | (Note 7) | $\bullet$ | -100 | $\pm 10$ | 100 | ppm |
|  | Bipolar Full-Scale Error Drift |  |  |  | $\pm 0.05$ |  | ppm/ ${ }^{\circ} \mathrm{C}$ |

DY AAMIC ACCURACY The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{A}_{I N}=-1 \mathrm{dBFS}$. (Notes 4,8 )

| SYMBOL | PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SINAD | Signal-to-(Noise + Distortion) Ratio | $\mathrm{f}_{\mathrm{IN}}=2 \mathrm{kHz}, \mathrm{V}_{\text {REF }}=5 \mathrm{~V}$ | $\bullet$ | 101 | 104 |  | dB |
| SNR | Signal-to-Noise Ratio | $\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=2 \mathrm{kHz}, V_{\text {REF }}=5 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{IN}}=2 \mathrm{kHz}, V_{\text {REF }}=5 \mathrm{~V}, \mathrm{REF} / \overline{\mathrm{DGC}}=\mathrm{GND} \\ & \mathrm{f}_{\mathrm{IN}}=2 \mathrm{kHz}, V_{\text {REF }}=2.5 \mathrm{~V} \end{aligned}$ | $\stackrel{\bullet}{\bullet}$ | $\begin{gathered} \hline 101 \\ 99 \\ 95.5 \end{gathered}$ | $\begin{gathered} \hline 104 \\ 102 \\ 98 \end{gathered}$ |  | dB $d B$ $d B$ |
| THD | Total Harmonic Distortion | $\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=2 \mathrm{kHz}, V_{\text {REF }}=5 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{IN}}=2 \mathrm{kHz}, V_{\text {REF }}=5 \mathrm{~V}, \mathrm{REF} / \overline{\mathrm{DGC}}=\mathrm{GND} \\ & \mathrm{f}_{\mathrm{IN}}=2 \mathrm{kHz}, V_{\text {REF }}=2.5 \mathrm{~V} \end{aligned}$ | $\stackrel{\bullet}{\bullet}$ |  | $\begin{aligned} & \hline-125 \\ & -125 \\ & -123 \end{aligned}$ | $\begin{aligned} & \hline-115 \\ & -114 \\ & -113 \end{aligned}$ | dB $d B$ $d B$ |
| SFDR | Spurious Free Dynamic Range | $\mathrm{f}_{\text {IN }}=2 \mathrm{kHz}, \mathrm{V}_{\text {REF }}=5 \mathrm{~V}$ | $\bullet$ | 115 | 128 |  | dB |
|  | -3dB Input Bandwidth |  |  |  | 34 |  | MHz |
|  | Aperture Delay |  |  |  | 500 |  | ps |
|  | Aperture Jitter |  |  |  | 4 |  | ps |
|  | Transient Response | Full-Scale Step |  |  | 1 |  | $\mu \mathrm{S}$ |

REFEREПCE IMPUT The $\bullet$ denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

| SYMBOL | PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {REF }}$ | Reference Voltage | (Note 5) | $\bullet$ | 2.5 |  | 5.1 | V |
| $\mathrm{I}_{\text {REF }}$ | Reference Input Current | (Note 9) | $\bullet$ |  | 0.24 | 0.3 | mA |
| $\mathrm{V}_{\text {IHDGGC }}$ | High Level Input Voltage REF/ $\overline{\mathrm{DGC}}$ Pin |  | $\bullet$ | $0.8 \mathrm{~V}_{\text {REF }}$ |  |  | V |
| $\mathrm{V}_{\text {ILDGC }}$ | Low Level Input Voltage REF/DGC Pin |  | $\bullet$ |  |  | $0.2 \mathrm{~V}_{\text {REF }}$ | V |

DIGITAL INPUTS AND DIGITAL OUTPUTS The $\bullet$ denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

| SYMBOL | PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IH }}$ | High Level Input Voltage |  | $\bullet$ | $0.8 \cdot 0 \mathrm{~V}_{\mathrm{DD}}$ |  |  | V |
| VIL | Low Level Input Voltage |  | $\bullet$ |  |  | $0.2 \cdot 0 \mathrm{~V}_{\mathrm{DD}}$ | V |
| $\mathrm{I}_{1}$ | Digital Input Current | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $0 \mathrm{~V}_{\mathrm{DD}}$ | $\bullet$ | -10 |  | 10 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{\text {IN }}$ | Digital Input Capacitance |  |  |  | 5 |  | pF |
| $\mathrm{V}_{\text {OH }}$ | High Level Output Voltage | $\mathrm{I}_{0}=-500 \mu \mathrm{~A}$ | $\bullet$ | $\mathrm{OV}_{\mathrm{DD}}-0.2$ |  |  | V |
| $\mathrm{V}_{0 \mathrm{~L}}$ | Low Level Output Voltage | $\mathrm{I}_{0}=500 \mu \mathrm{~A}$ | $\bullet$ |  |  | 0.2 | V |
| 102 | Hi-Z Output Leakage Current | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to OV $\mathrm{V}_{\text {D }}$ | $\bullet$ | -10 |  | 10 | $\mu \mathrm{A}$ |
| ISOURCE | Output Source Current | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |  |  | -10 |  | mA |
| $\underline{\text { I SINK }}$ | Output Sink Current | $V_{\text {OUT }}=0 V_{\text {DD }}$ |  |  | 10 |  | mA |

POUGR REQU|REME円TS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

| SYMBOL | PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DD }}$ | Supply Voltage |  | $\bullet$ | 2.375 | 2.5 | 2.625 | V |
| $\underline{O V_{D D}}$ | Supply Voltage |  | $\bullet$ | 1.71 |  | 5.25 | V |
| $\begin{aligned} & \overline{I_{V D D}} \\ & I_{\text {OVDD }} \\ & I_{P D} \end{aligned}$ | Supply Current Supply Current Power Down Mode | 250ksps Sample Rate <br> 250 ksps Sample Rate ( $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ ) <br> Conversion Done (lvDD $+I_{\text {OVDD }}+I_{\text {REF }}$ ) | $\bullet$ |  | $\begin{gathered} 2.1 \\ 0.1 \\ 1 \end{gathered}$ | $\begin{aligned} & 2.5 \\ & 90 \end{aligned}$ | mA $m A$ $\mu \mathrm{~A}$ |
| $\mathrm{P}_{\mathrm{D}}$ | Power Dissipation Power Down Mode | 250ksps Sample Rate Conversion Done (IVDD $+I_{\text {OVDD }}+I_{\text {REF }}$ ) |  |  | $\begin{gathered} 5.25 \\ 2.5 \end{gathered}$ | $\begin{aligned} & 6.25 \\ & 225 \end{aligned}$ | $\begin{gathered} \mathrm{mW} \\ \mu \mathrm{~W} \end{gathered}$ |

## ADC TIMInG CHARACTERISTICS The $\bullet$ denotes the specifications which apply over the full operating

temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

| SYMBOL | PARAMETER | CONDITIONS |  | MIN | TYP MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {SMPL }}$ | Maximum Sampling Frequency |  | $\bullet$ |  | 250 | ksps |
| $\mathrm{t}_{\text {CONV }}$ | Conversion Time |  | $\bullet$ | 2 | 3 | $\mu \mathrm{S}$ |
| ${ }^{\text {taco }}$ | Acquisition Time | $\mathrm{t}_{\text {ACQ }}=\mathrm{t}_{\text {CYC }}-\mathrm{t}_{\text {HOLD }}($ Note 10) | $\bullet$ | 3.312 |  | $\mu \mathrm{S}$ |
| thoLD | Maximum Time Between Acquisitions |  | $\bullet$ |  | 688 | ns |
| $\mathrm{t}_{\mathrm{CYC}}$ | Time Between Conversions |  | $\bullet$ | 4 |  | $\mu \mathrm{S}$ |
| $\mathrm{t}_{\text {CNVH }}$ | CNV High Time |  | $\bullet$ | 20 |  | ns |
| $\mathrm{t}_{\text {BUSYLH }}$ | CNV® to BUSY Delay | $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ | $\bullet$ |  | 13 | ns |
| $\mathrm{t}_{\text {CNVL }}$ | Minimum Low Time for CNV | (Note 11) | $\bullet$ | 20 |  | ns |
| $\mathrm{t}_{\text {QUIET }}$ | SCK Quiet Time from CNV® | (Note 10) | $\bullet$ | 20 |  | ns |
| ${ }_{\text {tsck }}$ | SCK Period | (Notes 11, 12) | $\bullet$ | 10 |  | ns |

ADC TIMIIG CHARACTERISTICS The e denotes the speciifictions which apply over the tull operating
temperature range，otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．（Note 4）

| SYMBOL | PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tsCKH | SCK High Time |  | $\bullet$ | 4 |  |  | ns |
| tsCKL | SCK Low Time |  | $\bullet$ | 4 |  |  | ns |
| tssdisck | SDI Setup Time From SCKX | （Note 11） | $\bullet$ | 4 |  |  | ns |
| thSDISCK | SDI Hold Time From SCK区 | （Note 11） | $\bullet$ | 1 |  |  | ns |
| tsckch | SCK Period in Chain Mode | $\mathrm{t}_{\text {SCKCH }}=\mathrm{t}_{\text {SSDISCK }}+\mathrm{t}_{\text {DSDO }}$（Note 11） | $\bullet$ | 13.5 |  |  | ns |
| t DSDO | SDO Data Valid Delay from SCK区 | $\begin{aligned} & C_{L}=20 \mathrm{pF}, 0 \mathrm{~V}_{D D}=5.25 \mathrm{~V} \\ & C_{L}=20 \mathrm{pF}, 0 \mathrm{~V}_{D D}=2.5 \mathrm{~V} \\ & C_{L}=20 \mathrm{pF}, 0 \mathrm{~V}_{\mathrm{DD}}=1.71 \mathrm{~V} \\ & \hline \end{aligned}$ | $\bullet$ |  |  | $\begin{gathered} \hline 7.5 \\ 8 \\ 9.5 \\ \hline \end{gathered}$ | ns <br> ns <br> ns |
| $t_{\text {HSDO }}$ | SDO Data Remains Valid Delay from SCK® | $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$（Note 10） | $\bullet$ | 1 |  |  | ns |
| $t_{\text {DSDOBUSYL }}$ | SDO Data Valid Delay from BUSY区 | $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$（Note 10） | $\bullet$ |  |  | 5 | ns |
| ten | Bus Enable Time After RDL® | （Note 11） | $\bullet$ |  |  | 16 | ns |
| $t_{\text {DIS }}$ | Bus Relinquish Time After RDL® | （Note 11） | $\bullet$ |  |  | 13 | ns |

Note 1：Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device．Exposure to any Absolute Maximum Rating condition for extended periods may effect device reliability and lifetime．
Note 2：All voltage values are with respect to ground．
Note 3：When these pin voltages are taken below ground or above REF or $O V_{D D}$ ，they will be clamped by internal diodes．This product can handle input currents up to 100 mA below ground or above REF or $\mathrm{OV}_{D D}$ without latch－up．
Note 4： $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, 0 \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V}, R E F=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{SMPL}}=250 \mathrm{kHz}$ ， REF／DGC $=V_{\text {REF }}$ ．
Note 5：Recommended operating conditions．
Note 6：Integral nonlinearity is defined as the deviation of a code from a straight line passing through the actual endpoints of the transfer curve．
The deviation is measured from the center of the quantization band．

Note 7：Bipolar zero－scale error is the offset voltage measured from -0.5 LSB when the output code flickers between 00000000000000000000 and 11111111111111111111 ．Full－scale bipolar error is the worst－case of－FS or＋FS untrimmed deviation from ideal first and last code transitions and includes the effect of offset error．
Note 8：All specifications in dB are referred to a full－scale $\pm 5 \mathrm{~V}$ input with a 5 V reference voltage．
Note 9 ：$f_{\text {SMPL }}=250 \mathrm{kHz}, \mathrm{I}_{\mathrm{REF}}$ varies proportionately with sample rate．
Note 10：Guaranteed by design，not subject to test．
Note 11：Parameter tested and guaranteed at $\mathrm{OV}_{\mathrm{DD}}=1.71 \mathrm{~V}, \mathrm{O}_{\mathrm{DD}}=2.5 \mathrm{~V}$ and $O V_{D D}=5.25 \mathrm{~V}$ ．
Note 12：tsck of 10ns maximum allows a shift clock frequency up to 100 MHz for rising capture．


Figure 1．Voltage Levels for Timing Specifications

TYPICAL PGRFORMAOCE CHARACTGRISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{D 0}=2.5 \mathrm{~V}, \mathrm{~V}_{00}=2.5 \mathrm{~V}, \mathrm{v}_{c m}=2.5 \mathrm{~V}$,
REF $=5 \mathrm{~V}, \mathrm{f}_{\mathrm{SMPL}}=250 \mathrm{ksps}$, unless otherwise noted.






SNR, SINAD vs Input Frequency


SNR, SINAD vs Reference
Voltage, $\mathrm{f}_{\mathrm{IN}}=2 \mathrm{kHz}$


DC Histogram

THD, Harmonics vs Input Frequency


THD, Harmonics vs Reference Voltage, $\mathrm{f}_{\mathrm{IN}}=2 \mathrm{kHz}$


$R E F=5 V, \mathrm{f}_{\text {SMPL }}=250 \mathrm{ksps}$, unless otherwise noted.



INL vs Temperature





Reference Current vs Reference Voltage



## PIn fUnCTIONS

CHAIN (Pin 1): Chain Mode Selector Pin. When low, the LTC2376-20 operates in normal mode and the RDL/SDI input pin functions to enable or disable SDO. When high, the LTC2376-20 operates in chain mode and the RDL/SDI pin functions as SDI, the daisy-chain serial data input. Logic levels are determined by $\mathrm{OV}_{\mathrm{DD}}$.
$V_{D D}$ (Pin 2): 2.5V Power Supply. The range of $V_{D D}$ is 2.375 V to 2.625 V . Bypass $\mathrm{V}_{\mathrm{DD}}$ to GND with a $10 \mu \mathrm{~F}$ ceramic capacitor.

## GND (Pins 3, 6, 10 and 16): Ground.

$\mathbf{I N}^{+}$, $\mathbf{I N}^{-}$(Pins 4, 5): Positive and Negative Differential Analog Inputs.

REF (Pin 7): Reference Input. The range of REF is 2.5 V to 5.1 V . This pin is referred to the GND pin and should be decoupled closely to the pin with a $47 \mu \mathrm{~F}$ ceramic capacitor (X7R, 1210 size, 10V Rating).
REF/DGC (Pin 8): When tied to REF, digital gain compression is disabled and the LTC2376-20 defines full-scale according to the $\pm V_{\text {REF }}$ analog input range. Whentied to GND, digital gain compression is enabled and the LTC2376-20 defines full-scale with inputs that swing between $10 \%$ and $90 \%$ of the $\pm V_{\text {REF }}$ analog input range.

CNV (Pin 9): Convert Input. A rising edge on this input powers up the part and initiates a new conversion. Logic levels are determined by $0 V_{D D}$.

BUSY (Pin 11): BUSY Indicator. Goes high at the start of a new conversion and returns low when the conversion has finished. Logic levels are determined by $\mathrm{OV}_{\mathrm{DD}}$.

RDL/SDI (Pin 12): When CHAIN is low, the part is in normal mode and the pin is treated as a bus enabling input. When CHAIN is high, the part is in chain mode and the pin is treated as a serial data input pin where data from another ADC in the daisy chain is input. Logic levels are determined by $\mathrm{OV}_{\mathrm{DD}}$.
SCK (Pin 13): Serial DataClock Input. When SDO is enabled, the conversion result or daisy-chain data from another ADC is shifted out on the rising edges of this clock MSB first. Logic levels are determined by $\mathrm{OV}_{\mathrm{DD}}$.
SDO (Pin 14): Serial Data Output. The conversion result or daisy-chain data is output on this pin on each rising edge of SCK MSB first. The output data is in 2's complement format. Logic levels are determined by $\mathrm{OV}_{\mathrm{DD}}$.

OV ${ }_{\text {DD }}$ (Pin 15): I/O Interface Digital Power. The range of $0 \mathrm{~V}_{\mathrm{DD}}$ is 1.71 V to 5.25 V . This supply is nominally set to the same supply as the host interface $(1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$, or 5 V ). Bypass $0 V_{D D}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
GND (Exposed Pad Pin 17 - DFN Package Only): Ground. Exposed pad must be soldered directly to the ground plane.
fUnCTIONAL BLOCK DIAGRAM


Conversion Timing Using the Serial Interface


## APPLICATIONS INFORMATION

## OVERVIEW

The LTC2376-20 is a low noise, low power, high speed 20-bit successive approximation register (SAR) ADC. Operating from a single 2.5 V supply, the LTC2376-20 supports a large and flexible $\pm \mathrm{V}_{\text {REF }}$ fully differential input range with $\mathrm{V}_{\text {REF }}$ ranging from 2.5 V to 5.1 V , making it ideal for high performance applications which require a wide dynamic range. The LTC2376-20 achieves $\pm 2 p p m$ INL maximum, no missing codes at 20 bits and 104dB SNR.

Fast 250ksps throughput with no cycle latency makes the LTC2376-20 ideally suited for a wide variety of high speed applications. An internal oscillator sets the conversion time, easing external timing considerations. The LTC2376-20 dissipates only 5.3 mW at 250ksps, while an auto power-down feature is provided to further reduce power dissipation during inactive periods.
The LTC2376-20 features a unique digital gain compression (DGC) function, which eliminates the driver amplifier's negative supply while preserving the full resolution of the ADC. When enabled, the ADC performs a digital scaling function that maps zero-scale code from OV to $0.1 \cdot \mathrm{~V}_{\text {REF }}$ and full-scale code from $\mathrm{V}_{\text {REF }}$ to 0.9 • $\mathrm{V}_{\text {REF }}$. For a typical reference voltage of 5 V , the full-scale input range is now 0.5 V to 4.5 V , which provides adequate headroom for powering the driving amplifier from a single 5.5 V supply.

## CONVERTER OPERATION

The LTC2376-20 operates in two phases. During the acquisition phase, the charge redistribution capacitor D/A converter (CDAC) is connected to the $\mathrm{IN}^{+}$and $\mathrm{IN}^{-}$pins to sample the differential analog input voltage. A rising edge on the CNV pin initiates a conversion. During the conversion phase, the 20-bit CDAC is sequenced through a successive approximation algorithm, effectively comparing the sampled input with binary-weighted fractions of the reference voltage (e.g. $\mathrm{V}_{\text {REF }} / 2, \mathrm{~V}_{\text {REF }} / 4 \ldots \mathrm{~V}_{\text {REF }} / 1048576$ ) using the differential comparator. At the end of conversion, the CDAC output approximates the sampled analog input. The ADC control logic then prepares the 20-bit digital output code for serial transfer.

## TRANSFER FUNCTION

The LTC2376-20 digitizes the full-scale voltage of $2 \times$ REF into $2^{20}$ levels, resulting in an LSB size of $9.5 \mu \mathrm{~V}$ with REF $=5 \mathrm{~V}$. Note that 1 LSB at 20 bits is approximately 1 ppm . The ideal transfer function is shown in Figure 2. The output data is in 2's complement format.

## ANALOG INPUT

The analog inputs of the LTC2376-20 are fully differential in order to maximize the signal swing that can be digitized. The analog inputs can be modeled by the equivalent circuit

## APPLICATIONS INFORMATION



Figure 2. LTC2376-20 Transfer Function
shown in Figure 3. The diodes at the input provide ESD protection. In the acquisition phase, each input sees approximately $45 \mathrm{pF}\left(\mathrm{C}_{\mathrm{IN}}\right)$ from the sampling CDAC in series with $40 \Omega\left(\mathrm{R}_{\mathrm{ON}}\right)$ from the on-resistance of the sampling switch. Any unwanted signal that is common to both inputs will be reduced by the common mode rejection of the ADC. The inputs draw a current spike while charging the $\mathrm{C}_{\text {IN }}$ capacitors during acquisition. During conversion, the analog inputs draw only a small leakage current.

## INPUT DRIVE CIRCUITS

A low impedance source can directly drive the high impedance inputs of the LTC2376-20 without gain error. A high impedance source should be buffered to minimize settling time during acquisition and to optimize ADC linearity. Forbest performance, a buffer amplifier should be used to drive the analog inputs of the LTC2376-20. The amplifier provides low outputimpedance, which produces fast settling of the analog


Figure 3. The Equivalent Circuit for the Differential Analog Input of the LTC2376-20
signal during the acquisition phase. It also provides isolation between the signal source and the ADC input currents.

## Noise and Distortion

The noise and distortion of the buffer amplifier and signal source must be considered since they add to the ADC noise and distortion. Noisy input signals should be filtered prior to the buffer amplifier input with an appropriate filter to minimize noise. The simple 1-pole RC lowpass filter (LPF1) shown in Figure 4 is sufficient for many applications.


Figure 4. Input Signal Chain
A coupling filter network (LPF2) should be used between the buffer and ADC input to minimize disturbances reflected into the buffer from sampling transients. Long RC time constants at the analog inputs will slow down the settling of the analog inputs. Therefore, LPF2 typically requires a wider bandwidth than LPF1. This filter also helps minimize the noise contribution from the buffer. A buffer amplifier with a low noise density must be selected to minimize degradation of the SNR.

High quality capacitors and resistors should be used in the RC filters since these components can add distortion. NPO and silver mica type dielectric capacitors have excellent linearity. Carbon surface mount resistors can generate distortion from self heating and from damage that may occur during soldering. Metal film surface mount resistors are much less susceptible to both problems.

## Input Currents

One of the biggest challenges in coupling an amplifier to the LTC2376-20 is in dealing with current spikes drawn by the ADC inputs at the start of each acquisition phase.

## APPLICATIONS InFORMATION

The ADC inputs may be modeled as a switched capacitor load of the drive circuit. A drive circuit may rely partially on attenuating switched-capacitor current spikes with small filter capacitors ( $\mathrm{C}_{\text {FILT }}$ ) placed directly at the ADC inputs, and partially on the driver amplifier having sufficient bandwidth to recover from the residual disturbance. Amplifiers optimized for DC performance may not have sufficient bandwidth to fully recover at the ADC's maximum conversion rate, which can produce nonlinearity and other errors. Coupling filter circuits may be classified in three broad categories:

Fully Settled - This case is characterized by filter time constants and an overall settling time that is considerably shorter than the sample period. When acquisition begins, the coupling filter is disturbed. For a typical first order RC filter, the disturbance will look like an initial step with an exponential decay. The amplifier will have its own response to the disturbance, which may include ringing. If the input settles completely (to within the accuracy of the LTC2376-20), the disturbance will not contribute any error.

Partially Settled-In this case, the beginning of acquisition causes a disturbance of the coupling filter, which then begins to settle out towards the nominal input voltage. However, acquisition ends (and the conversion begins) before the input settles to its final value. This generally produces a gain error, but as long as the settling is linear, no distortion is produced. The coupling filter's response is affected by the amplifier's output impedance and other parameters. A linear settling response to fast switchedcapacitor current spikes can NOT always be assumed for precision, low bandwidth amplifiers. The coupling filter serves to attenuate the current spikes' high-frequency energy before it reaches the amplifier.

Fully Averaged-Ifthe coupling filter capacitors ( $\mathrm{C}_{\text {FIIT }}$ ) at the ADC inputs are much largerthanthe ADC's sample capacitors (45pF), then the sampling glitch is greatly attenuated. The driving amplifier effectively only sees the average sampling current, which is quite small. At250ksps, the equivalent input resistance is approximately 89 k (as shown in Figure 5), a benign resistive load for most precisionamplifiers. However, resistive voltage division will occur between the coupling filter's DC resistance and the ADC's equivalent (switchedcapacitor) input resistance, thus producing a gain error.

The input leakage currents of the LTC2376-20 should also be considered when designing the input drive circuit, because source impedances will convert input leakage currents to an added input voltage error. The input leakage currents, both common mode and differential, are typically extremely small over the entire operating temperature range. Figure 6 shows input leakage currents over temperature for a typical part.


Figure 5. Equivalent Circuit for the Differential Analog Input of the LTC2376-20 at 250ksps.


Figure 6. Common Mode and Differential Input Leakage Current Over Temperature

Let $R_{S 1}$ and $R_{S 2}$ be the source impedances of the differential input drive circuit shown in Figure 7, and let $\mathrm{I}_{\mathrm{L} 1}$ and $\mathrm{I}_{\mathrm{L} 2}$ be the leakage currents flowing out of the ADC's analog inputs. The voltage error, $\mathrm{V}_{\mathrm{E}}$, due to the leakage currents can be expressed as:

$$
V_{E}=\frac{R_{S 1}+R_{S 2}}{2} \cdot\left(\mathrm{~L}_{\mathrm{L} 1}-\mathrm{I}_{\mathrm{L} 2}\right)+\left(\mathrm{R}_{\mathrm{S} 1}-\mathrm{R}_{\mathrm{S} 2}\right) \cdot \frac{\mathrm{L}_{1}+\mathrm{I}_{\mathrm{L} 2}}{2}
$$

## APPLICATIONS InFORMATION



Figure 7. Source Impedances of a Driver and Input Leakage Currents of the LTC2376-20

The common mode input leakage current, $\left(l_{\mathrm{L} 1}+\mathrm{I}_{\mathrm{L} 2}\right) / 2$, is typically extremely small (Figure 6) over the entire operating temperature range and common mode input voltage range. Thus, any reasonable mismatch (below 5\%) of the source impedances $\mathrm{R}_{\mathrm{S} 1}$ and $\mathrm{R}_{\mathrm{S} 2}$ will cause only a negligible error. The differential input leakage current, ( $\left.l_{L 1}-l_{L 2}\right)$, depends on temperature and is maximum when $\mathrm{V}_{I N}=\mathrm{V}_{\text {REF }}$, as shown in Figure 6. The differential leakage current is also typically very small, and its nonlinear component is even smaller. Only the nonlinear component will impact the ADC's linearity.
For optimal performance, it is recommended that the source impedances, $\mathrm{R}_{\mathrm{S} 1}$ and $\mathrm{R}_{\mathrm{S} 2}$, be between $10 \Omega$ and $50 \Omega$ and with $1 \%$ tolerance. For source impedances in this range, the voltage and temperature coefficients of $R_{S 1}$ and $R_{S 2}$ are usually not critical. The guaranteed AC and DC specifications are tested with $10 \Omega$ source impedances, and the specifications will gradually degrade with increased source impedances due to incomplete settling of the inputs.

## Fully Differential Inputs

A low distortion fully differential signal source driven through the LT6203 configured as two unity gain buffers


Figure 8. LT6203 Buffering a Fully Differential Signal Source
as shown in Figure 8 can be used to get the full data sheet distortion performance of -125 dB .

## Single-Ended-to-Differential Conversion

For single-ended input signals, a single-ended-todifferential conversion circuit must be used to produce a differential signal at the inputs of the LTC2376-20. The LT6203 ADC driver is recommended for performing single-ended-to-differential conversions. The LT6203 is flexible and may be configured to convert single-ended signals of various amplitudes to the $\pm 5 \mathrm{~V}$ differential input range of the LTC2376-20.

Figure 9a shows the LT6203 being used to convert a OV to 5 V single-ended input signal. Inthis case, the first amplifier is configured as a unity gain buffer and the single-ended


Figure 9a. LT6203 Converting a OV to 5V SingleEnded Signal to a $\pm 5 \mathrm{~V}$ Differential Input Signal


Figure 9b. 128k Point FFT Plot with $\mathrm{f}_{\mathrm{IN}}=\mathbf{2 k H z}$ for Circuit Shown in Figure 9a

## APPLICATIONS INFORMATION

input signal directly drives the high-impedance input of the amplifier. As shown in the FFT of Figure 9b, the LT6203 drives the LTC2376-20 to near full data sheet performance.

## Digital Gain Compression

The LTC2376-20 offers a digital gain compression ( $\overline{\mathrm{DGC}}$ ) feature which defines the full-scale input swing to be between $10 \%$ and $90 \%$ of the $\pm V_{\text {REF }}$ analog input range. To enable digital gain compression, bring the REF/DGC pin low. This feature allows the SAR ADC driver to be powered off of a single positive supply since each input swings between 0.5 V and 4.5 V as shown in Figure 10. Needing only one positive supply to power the SAR ADC driver results in additional power savings for the entire system.

With $\overline{\text { DGC }}$ enabled, the LTC2376-20 can be driven by the low power LTC6362 differential driver which is powered from a single 5 V supply. Figure 11a shows how to configure the LTC6362 to accept a $\pm 3.28 \mathrm{~V}$ true bipolar single-ended input signal and level shift the signal to the reduced input


Figure 10. Input Swing of the LTC2376 with Gain Compression Enabled
range of the LTC2376-20 when digital gain compression is enabled. When paired with the LTC6655-4.096 for the reference, the entire signal chain solution can be powered from a single 5 V supply, minimizing power consumption and reducing complexity. As shown in the FFT of Figure 11b, the single 5 V supply solution can achieve up to 100 dB of SNR.

## DC Accuracy

Many driver circuits presented in this data sheet emphasize AC performance (distortion and signal-to-noise ratio), and the amplifiers are chosen accordingly. The very low level of distortion is a direct consequence of the excellent INL of the LTC2376-20, and this property can be exploited in DC applications as well. Note that while the LTC6362 and LT6203 are characterized by excellent AC specifications, their DC specifications do not match those of the LTC2376-20. The offset of these amplifiers, for example, is more than $500 \mu \mathrm{~V}$ under certain conditions. In contrast, the LTC2376-20 has a guaranteed maximum offset error of $130 \mu \mathrm{~V}$ (typical drift $\pm 0.007 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ), and a guaranteed maximum full-scale error of 100ppm (typical drift $\pm 0.05 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ). Low drift is important to maintain accuracy over wide temperature ranges in a calibrated system.

Amplifiers have to be selected very carefully to provide a 20-bit accurate DC signal chain. A large-signal open-loop gain of at least 126dB may be required to ensure 1ppm linearity for amplifiers configured for a gain of negative


Figure 11a. LTC6362 Configured to Accept a $\pm 3.28 \mathrm{~V}$ Input Signal While Running from a Single 5V Supply When Digital Gain Compression Is Enabled in the LTC2376-20


Figure 11b. 64k Point FFT Plot with $\mathrm{f}_{\mathrm{IN}}=2 \mathrm{kHz}$ for Circuit Shown in Figure 11a

## APPLICATIONS INFORMATION

1. However, less gain is sufficient if the amplifier's gain characteristic is known to be (mostly) linear. An amplifier's offset versus signal level must be considered for amplifiers configured as unity gain buffers. For example, 1 ppm linearity may require that the offset is known to vary less than $5 \mu \mathrm{~V}$ for a 5 V swing. However, greater offset variations may be acceptable if the relationship is known to be (mostly) linear. Unity-gain buffer amplifiers typically require substantial headroom to the power supply rails for best performance. Inverting amplifier circuits configured to minimize swing at the amplifier input terminals may perform better with only little headroom than unity-gain buffer amplifiers. The linearity and thermal properties of an inverting amplifier's feedback network should be considered carefully to ensure DC accuracy.

## ADC REFERENCE

The LTC2376-20 requires an external reference to define its input range. A low noise, low temperature drift reference is critical to achieving the full data sheet performance of the ADC. Linear Technology offers a portfolio of high performance references designed to meet the needs of many applications. With its small size, low power and high accuracy, the LTC6655-5 is particularly well suited for use with the LTC2376-20. The LTC6655-5 offers 0.025\% (max) initial accuracy and $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (max) temperature coefficient for high precision applications.

When choosing a bypass capacitor for the LTC6655-5, the capacitor's voltage rating, temperature rating, and package size should be carefully considered. Physically larger capacitors with highervoltage and temperature ratings tend to provide a larger effective capacitance, better filtering the noise of the LTC6655-5, and consequently producing a higher SNR. Therefore, we recommend bypassing the LTC6655-5 with a $47 \mu \mathrm{~F}$ ceramic capacitor (X7R, 1210 size, 10 V rating) close to the REF pin.

The REF pin of the LTC2376-20 draws charge ( $Q_{\text {CONV }}$ ) from the $47 \mu \mathrm{~F}$ bypass capacitor during each conversion cycle. The reference replenishes this charge with a DC current, $I_{\text {REF }}=Q_{\text {CONV }} / t_{\text {CYc. }}$. The DC current draw of the REF pin, $I_{\text {REF }}$, depends on the sampling rate and output code. If the LTC2376-20 is used to continuously sample a signal at a constant rate, the LTC6655-5 will keep the deviation of the reference voltage over the entire code span to less than 0.5LSBs.

When idling, the REF pin on the LTC2376-20 draws only a small leakage current (<1 1 A). In applications where a burst of samples is taken after idling for long periods as shown in Figure 12, I REF quickly goes from approximately $0 \mu \mathrm{~A}$ to a maximum of 0.3 mA at 250 ksps . This step in DC current draw triggers a transient response in the reference that must be considered since any deviation in the reference output voltage will affect the accuracy of the output code. In applications where the transient response of the reference is important, the fast settling LTC6655-5 reference is also recommended.

## DYNAMIC PERFORMANCE

Fast Fourier Transform (FFT) techniques are used to test the ADC's frequency response, distortion and noise at the rated throughput. By applying a low distortion sine wave and analyzing the digital output using an FFT algorithm,the ADC's spectral content can beexamined for frequencies outside the fundamental. The LTC2376-20 provides guaranteed tested limits for both AC distortion and noise measurements.

## Signal-to-Noise and Distortion Ratio (SINAD)

The signal-to-noise and distortion ratio (SINAD) is the ratio between the RMS amplitude of the fundamental input frequency and the RMS amplitude of all other frequency components at the A/D output. The output is band-limited to frequencies from above DC and below half the sampling


Figure 12. CNV Waveform Showing Burst Sampling

## APPLICATIONS INFORMATION

frequency. Figure 13 shows that the LTC2376-20 achieves a typical SINAD of 104 dB at a 250 kHz sampling rate with a 2 kHz input.

## Signal-to-Noise Ratio (SNR)

The signal-to-noise ratio (SNR) is the ratio between the RMS amplitude of the fundamental input frequency and


Figure 13. 128k Point FFT Plot with $\mathrm{f}_{\mathrm{I}}=2 \mathrm{kHz}$ of the LTC2376-20
the RMS amplitude of all other frequency components except the first five harmonics and DC. Figure 13 shows that the LTC2376-20 achieves a typical SNR of 104dB at a 250 kHz sampling rate with a 2 kHz input.

## Total Harmonic Distortion (THD)

Total Harmonic Distortion (THD) isthe ratio of the RMS sum of all harmonics of the input signal to the fundamental itself. The out-of-band harmonics alias into the frequency band between DC and half the sampling frequency ( $\mathrm{f}_{\mathrm{SMPL}} / 2$ ). THD is expressed as:

$$
\mathrm{THD}=20 \log \frac{\sqrt{\mathrm{~V} 2^{2}+\mathrm{V} 3^{2}+V 4^{2}+\ldots+\mathrm{V}_{N}^{2}}}{\mathrm{~V} 1}
$$

where V 1 is the RMS amplitude of the fundamental frequency and $V$ 2 through $V_{N}$ are the amplitudes of the second through Nth harmonics.

## POWER CONSIDERATIONS

The LTC2376-20 provides two power supply pins: the 2.5 V power supply ( $\mathrm{V}_{\mathrm{DD}}$ ), and the digital input/output interface power supply ( $0 V_{D D}$ ). The flexible $\mathrm{OV}_{\mathrm{DD}}$ supply allows the LTC2376-20 to communicate with any digital logic operating between 1.8 V and 5 V , including 2.5 V and 3.3 V systems.

## Power Supply Sequencing

The LTC2376-20 does not have any specific power supply sequencing requirements. Care should be taken to adhere to the maximum voltage relationships described in the Absolute Maximum Ratings section. The LTC2376-20 has a power-on-reset (POR) circuit that will reset the LTC2376-20 at initial power-up or whenever the power supply voltage drops below 1 V . Once the supply voltage re-enters the nominal supply voltage range, the POR will reinitialize the ADC. No conversions should be initiated until $200 \mu \mathrm{~s}$ after a POR event to ensure the reinitialization period has ended. Any conversions initiated before this time will produce invalid results.

## TIMING AND CONTROL

## CNV Timing

The LTC2376-20 conversion is controlled by CNV. A rising edge on CNV will start a conversion and power up the LTC2376-20. Once a conversion has been initiated, it cannot be restarted until the conversion is complete. For optimum performance, CNV should be driven by a clean low jitter signal. Converter status is indicated by the BUSY output which remains high while the conversion is in progress. To ensure that no errors occur in the digitized results, any additional transitions on CNV should occur within 40 ns from the start of the conversion or after the conversion has been completed.

## Acquisition

A proprietary sampling architecture allows the LTC2376-20 to begin acquiring the input signal for the next conversion 675 ns after the start of the current conversion. This

## APPLICATIONS INFORMATION

extends the acquisition time to $3.312 \mu \mathrm{~s}$, easing settling requirements and allowing the use of extremely low power ADC drivers. (Refer to the Timing Diagram.)

## Internal Conversion Clock

The LTC2376-20 has an internal clock that is trimmed to achieve a maximum conversion time of $3 \mu \mathrm{~s}$.

## Auto Power-Down

The LTC2376-20 automatically powers down after a conversion has been completed and powers up once a new conversion is initiated on the rising edge of CNV. During power down, data from the last conversion can be clocked out. To minimize power dissipation during


Figure 14. Power Supply Current of the LTC2376-20 Versus Sampling Rate
power down, disable SDO and turn off SCK. The auto power-down feature will reduce the power dissipation of the LTC2376-20 as the sampling frequency is reduced. Since power is consumed only during a conversion, the LTC2376-20 remains powered-down for alarger fraction of the conversion cycle ( $\mathrm{t}_{\mathrm{CYC}}$ ) at lower sample rates, thereby reducing the average power dissipation which scales with the sampling rate as shown in Figure 14.

## DIGITAL INTERFACE

The LTC2376-20 has a serial digital interface. The flexible $O V_{D D}$ supply allows the LTC2376-20 to communicate with any digital logic operating between 1.8 V and 5 V , including 2.5 V and 3.3 V systems.

The serial output data is clocked out on the SDO pin when an external clock is applied to the SCK pin if SDO is enabled. Clocking out the data after the conversion will yield the best performance. With a shift clock frequency of at least 20 MHz , a 250 ksps throughput is still achieved. The serial output data changes state on the rising edge of SCK and can be captured on the falling edge or next rising edge of SCK. D19 remains valid until the first rising edge of SCK.

The serial interface on the LTC2376-20 is simple and straightforward to use. The following sections describe the operation of the LTC2376-20. Several modes are provided depending on whether a single or multiple ADCs share the SPI bus or are daisy chained.

## LTC2376-20

## APPLICATIONS INFORMATION

Normal Mode, Single Device
When CHAIN $=0$, the LTC2376-20 operates in normal mode. In normal mode, RDL/SDI enables or disables the serial data output pin SDO. If RDL/SDI is high, SDO is in high impedance. If RDL/SDI is low, SDO is driven.

Figure 15 shows a single LTC2376-20 operated in normal mode with CHAIN and RDL/SDI tied to ground. With RDL/ SDI grounded, SDO is enabled and the MSB(D19) of the new conversion data is available at the falling edge of BUSY. This is the simplestway to operate the LTC2376-20.


Figure 15. Using a Single LTC2376-20 in Normal Mode

## APPLICATIONS Information

Normal Mode, Multiple Devices
Figure 16 shows multiple LTC2376-20 devices operating in normal mode (CHAIN = 0) sharing CNV, SCK and SDO. By sharing CNV, SCK and SDO, the number of required signals to operate multiple ADCs in parallel is reduced.

Since SDO is shared, the RDL/SDI input of each ADC must be used to allow only one LTC2376-20 to drive SDO at a time in order to avoid bus conflicts. As shown in Figure 16, the RDL/SDI inputs idle high and are individually brought low to read data out of each device between conversions. When RDL/SDI is brought low, the MSB of the selected device is output onto SDO.


Figure 16. Normal Mode With Multiple Devices Sharing CNV, SCK and SDO

## APPLICATIONS InFORMATION

Chain Mode, Multiple Devices
When CHAIN $=0 V_{D D}$, the LTC2376-20 operates in chain mode. In chain mode, SDO is always enabled and RDL/SDI serves as the serial data input pin (SDI) where daisy-chain data output from another ADC can be input.

This is useful for applications where hardware constraints may limit the number of lines needed to interface to a large number of converters. Figure 17 shows an example with two daisy-chained devices. The MSB of converter A will appear at SDO of converter B after 20 SCK cycles. The MSB of converter $A$ is clocked in at the SDI/RDL pin of converter B on the rising edge of the first SCK.


237620 F17a


Figure 17. Chain Mode Timing Diagram

## BOARD LAYOUT

To obtain the best performance from the LTC2376-20 a printed circuit board is recommended. Layout for the printed circuit board (PCB) should ensure the digital and analog signal lines are separated as much as possible. In particular, care should be taken not to run any digital clocks or signals alongside analog signals or underneath the ADC.

## Recommended Layout

The following is an example of a recommended PCB layout. A single solid ground plane is used. Bypass capacitors to the supplies are placed as close as possible to the supply pins. Low impedance common returns for these bypass capacitors are essential to the low noise operation of the ADC. The analog input traces are screened by ground. For more details and information refer to DC1925A, the evaluation kit for the LTC2376-20.

Top Silkscreen


## BOARD LAYOUT

Layer 1 Component Side


## BOARD LAYOUT

Layer 2 Ground Plane


## BOARD LAYOUT

Layer 3 PWR Plane


## BOARD LAYOUT

Layer 4 Bottom Layer


Partial Schematic of Demoboard


## PACKAGE DESCRIPTION

Please refer to http://www.linear.com/product/LTC2376-20\#packaging for the most recent package drawings.

## DE Package

16-Lead Plastic DFN ( $4 \mathrm{~mm} \times 3 \mathrm{~mm}$ )
(Reference LTC DWG \# 05-08-1732 Rev Ø)


RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED



BOTTOM VIEW-EXPOSED PAD

NOTE:

1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WGED-3) IN JEDEC PACKAGE OUTLINE MO-229
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

## PACKAGE DESCRIPTION

Please refer to http://www.linear.com/product/LTC2376-20\#packaging for the most recent package drawings.

## MS Package

16-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1669 Rev A)


## revision history

| REV | DATE | DESCRIPTION | PAGE NUMBER |
| :---: | :---: | :--- | :---: |
| A | $03 / 15$ | Corrected a typo in the schematic of Figure 11a and Typical Application | 14 and 30 |
| B | $08 / 16$ | Updated graphs TA02, G01, GO2, and G03 | 1 and 6 |

## TYPICAL APPLICATION

## LTC6362 Configured to Accept a $\pm 3.28 \mathrm{~V}$ Input Signal While Running from a Single 5V Supply with Digital Gain Compression Enabled in the LTC2376-20



## RELATED PARTS

| PART NUMBER | DESCRIPTION | COMMENTS |
| :---: | :---: | :---: |
| ADCs |  |  |
| LTC2378-20 | 20-Bit, 1Msps, $\pm 0.5 \mathrm{ppm}$ INL Serial, Low Power ADC | 2.5V Supply, $\pm 5 \mathrm{~V}$ Fully Differential Input, 104dB SNR, MSOP-16 and $4 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-16 Packages |
| LTC2379-18/LTC2378-18 | 18-Bit, 1.6Msps/1Msps/500ksps/250ksps Serial, Low Power ADC | 2.5V Supply, Differential Input, 101.2dB SNR, $\pm 5 \mathrm{~V}$ Input Range, DGC, Pin Compatible Family in MSOP-16 and $4 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-16 Packages |
| LTC2380-16/LTC2378-16 LTC2377-16/LTC2376-16 | 16-Bit, 2Msps/1Msps/500ksps/250ksps Serial, Low Power ADC | 2.5V Supply, Differential Input, 96.2 dB SNR, $\pm 5 \mathrm{~V}$ Input Range, DGC, Pin Compatible Family in MSOP-16 and $4 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-16 Packages |
| $\begin{aligned} & \text { LTC2369-18/LTC2368-18/ } \\ & \text { LTC2367-18/LTC2364-18 } \end{aligned}$ | $18-\mathrm{Bit}, 1.6 \mathrm{Msps} / 1 \mathrm{Msps} / 500 \mathrm{ksps} / 250 \mathrm{ksps}$ Serial, Low Power ADC | 2.5V Supply, Pseudo-Differential Unipolar Input, 96.5dB SNR, OV to 5V Input Range, Pin Compatible Family in MSOP-16 and $4 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-16 Packages |
| $\begin{aligned} & \text { LTC2370-16/LTC2368-16 } \\ & \text { LTC2367-16/LTC2364-16 } \end{aligned}$ | 16-Bit, 2Msps/1Msps/500ksps/250ksps Serial, Low Power ADC | 2.5V Supply, Pseudo-Differential Unipolar Input, 94dB SNR, OV to 5V Input Range, Pin Compatible Family in MSOP-16 and $4 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-16 Packages |
| LTC2383-16/LTC2382-16/ LTC2381-16 | 16-Bit, 1Msps/500ksps/250ksps, Low Power ADC | 2.5V Supply, Differential Input, 92dB SNR, $\pm 2.5 \mathrm{~V}$ Input Range, Pin Compatible Family in MSOP-16 and $4 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-16 Packages |
| DACS |  |  |
| LTC2756/LTC2757 | 18-Bit, Single Serial/Parallel I IoUT SoftSpan ${ }^{\text {TM }}$ DAC | $\pm 1$ LSB INL/DNL, SSOP-28 and $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ LQFP-48 Packages |
| LTC2641 | 16-/14-/12-Bit Single Serial $\mathrm{V}_{\text {OUT }}$ DAC | $\pm 1 \mathrm{SSB}$ INL/DNL, MSOP-8 Package, OV to 5V Output |
| LTC2630 | 12-/10-/8-Bit Single V Out $^{\text {daCs }}$ | SC70 6-Pin Package, Internal Reference, $\pm 1$ LSB INL (12 Bits) |
| REFERENCES |  |  |
| LTC6655 | Precision Low Drift Low Noise Buffered Reference | 5V/2.5V, 5ppm/ ${ }^{\circ} \mathrm{C}, 0.25 \mathrm{ppm}$ Peak-to-Peak Noise, MSOP-8 Package |
| LTC6652 | Precision Low Drift Low Noise Buffered Reference | 5V/2.5V, 5ppm/ ${ }^{\circ} \mathrm{C}$, 2.1ppm Peak-to-Peak Noise, MSOP-8 Package |
| AMPLIFIERS |  |  |
| LTC6362 | Low Power Rail-to-Rail Input/0utput Differential Output Amplifier/ADC Driver | Single 2.8V to 5.25 V Supply, 1 mA Supply Current, MSOP-8 and $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-8 Packages |
| $\begin{aligned} & \text { LT6200/LT6200-5/ } \\ & \text { LT6200-10 } \end{aligned}$ | 165MHz/800MHz/1.6GHz Op Amp with Unity Gain/AV = 5/AV = 10 | Low Noise Voltage: $0.95 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (100kHz), Low Distortion: -80 dB at 1MHz, TSOT23-6 Package |
| LT6202/LT6203 | Single/Dual 100MHz Rail-to-Rail Input/Output Noise Low Power Amplifiers | $1.9 \mathrm{nV} \sqrt{\mathrm{Hz}}, 3 \mathrm{~mA}$ Maximum, 100MHz Gain Bandwidth, TSOT23-5, SO-8 , MSOP-8 and $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-8 Packages |

# Mouser Electronics 

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
LTC2376CMS-20\#TRPBF LTC2376IDE-20\#TRPBF LTC2376CDE-20\#TRPBF LTC2376IMS-20\#PBF LTC2376CDE-
20\#PBF LTC2376IDE-20\#PBF LTC2376CMS-20\#PBF LTC2376IMS-20\#TRPBF DC1925A-C

