

RoHS

COMPLIANT

Vishay Siliconix

High-Speed Quad SPST CMOS Analog Switch

DESCRIPTION

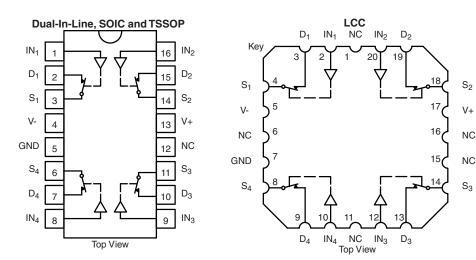
The DG201HS is an improved monolithic device containing four independent analog switches. It is designed to provide high speed, low error switching of analog signals. Combining low on-resistance (25 Ω) with high speed (t_{ON}: 38 ns), the DG201HS is ideally suited for high speed data acquisition requirements.

To achieve high voltage ratings and superior switching performance, the DG201HS is built on a proprietary high-voltage silicon-gate process. An epitaxial layer prevents latchup.

Each switch conducts equally well in both directions when on, and blocks input voltages to the supply values, when off.

FEATURES

- Fast Switching-t_{ON}: 38 ns
- Low On-Resistance: 25 Ω
- Low Leakage: 100 pA
- Low Charge Injection
- TTL/CMOS Logic Compatible
- Single Supply Compatibility
- High Current Rating: 30 mA


BENEFITS

- · Faster Throughput
- Higher Accuracy
- Reduced Pedestal Error
- Upgrades Existing Designs
- Simple Interfacing
- Replaces HI201HS, ADG201HS
- Space Savings (TSSOP)

APPLICATIONS

- Data Acquisition
- Hi-Rel Systems
- Sample-and-Hold Circuits
- · Communication Systems
- Automatic Test Equipment
- Integrator Reset Circuits
- Choppers
- Gain Switching
- Avionics

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE				
Logic	Switch			
0	ON			
1	OFF			

Logic "1" ≥ 2.4 V

* Pb containing terminations are not RoHS compliant, exemptions may apply

DG201HS

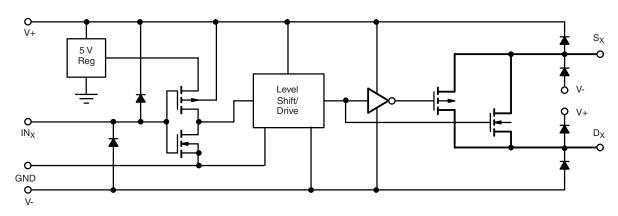
Vishay Siliconix

DERING INFORMATION				
Temp Range	Package	Part Number		
- 40 to 85 °C	16-Pin Plastic DIP	DG201HSDJ DG201HSDJ-E3		
	16-Pin Narrow SOIC	DG201HSDY DG201HSDY-E3 DG201HSDY-T1 DG201HSDY-T1-E3		
	16-Pin TSSOP	DG201HSDQ DG201HSDQ-E3 DG201HSDQ-T1 DG201HSDQ-T1-E3		

Parameter		Limit	Unit	
V+ to V-		44		
GND to V-		25	v	
Digital Inputs ^a , V _S , V _D		(V-) - 4 to (V+) + 4 or 30 mA, whichever occurs first		
Continuous Current (Any Terminal)		30		
Current, S or D (Pulsed at 1 ms, 10 % duty cycle)		100	mA	
Storage Temperature	(A Suffix)	- 65 to 150	°C	
	(D Suffix)	- 65 to 125		
Power Dissipation (Package) ^b	16-Pin Plastic DIP ^c	470		
	16-Pin CerDIP ^d	900	mW	
	16-Pin Narrow Body SOIC and TSSOP ^e	600		
	LCC-20 ^d	900		

Notes:

a. Signals on S_X , D_X , or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.


b. All leads welded or soldered to PC board.

c. Derate 6 mW/°C above 75 °C.

d. Derate 12 mW/°C above 75 °C.

e. Derate 7.6 mW/°C above 75 °C.

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

Vishay Siliconix

Parameter		Test Conditions Unless Specified V+ = 15 V, V- = - 15 V V _{IN} = 3 V, 0.8 V ^f	Temp ^b	Typ ^c	A Suffix - 55 to 125 °C		D Suffix - 40 to 85 °C		-
	Symbol				Min ^d	Max ^d	Min ^d	Max ^d	Uni
Analog Switch								-	-
Analog Signal Range ^e	V _{ANALOG}		Full		V-	V+	V-	V+	V
Drain-Source On-Resistance	r _{DS(on)}	I _S = - 10 mA, V _D = ± 8.5 V V+ = 13.5 V, V- = - 13.5 V	Room Full	25		50 75		50 75	Ω
r _{DS(on)} Match			Room	3					%
Switch Off Leakage Current	I _{S(off)}	V+ = 16.5 V, V- = - 16.5 V V _D = ± 15.5 V	Room Full	0.1	- 1 - 60	1 60	- 1 - 20	1 20	
Switch On Leakage Surrent	I _{D(off)}	V _S = ± 15.5 V	Room Full	0.1	- 1 - 60	1 60	- 1 - 20	1 20	nA
Channel On Leakage Current	I _{D(on)}	V+ = 16.5 V, V- = -16.5 V $V_S = V_D = \pm 15.5 V$	Room Full	0.1	- 1 - 60	1 60	- 1 - 20	1 20	
Digital Control									
Input, High Voltage	V _{INH}		Full		2.4		2.4		v
Input, Low Voltage	V _{INL}		Full			0.8		0.8	v
Input Capacitance	C _{IN}		Full	5					pF
Input Current	I _{INH} or I _{INL}	V_{IN} under test = 0.8 V, 3 V	Full		- 1	1	- 1	1	μA
Dynamic Characteristics									
Turn-On Time	t _{ON}	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$	Room Full	48		60 75		60 75	
Turn-Off Time	t _{OFF1}	$V_{S} = \pm 10 V$, $V_{INH} = 3 V$ See Figure 2	Room Full	30		50 70		50 70	ns
	t _{OFF2}		Room	150					
Output Settling Time to 0.1 %	t _s		Room	180					
Charge Injection	Q	$C_L = 1 \text{ nF}, V_S = 0 \text{ V}$ $V_{gen} = 0 \text{ V}, R_{gen} = 0 \Omega$	Room	- 5					pC
Off Isolation	OIRR	$R_L = 1 k\Omega, C_L = 10 pF$ f = 100 kHz	Room	85					
Crosstalk (Channel-to-Channel)	X _{TALK}	Any Other Channel Switches $R_L = 1 \ k\Omega, C_L = 10 \ pF$ $f = 100 \ kHz$	Room	100					dB
Source Off Capacitance	C _{S(off)}		Room	8					
Drain Off Capacitance	C _{D(off)}		Room	8					
Channel On Capacitance	C _{D(on)}	V_{S} , V_{D} = 0 V, f = 1 MHz	Room	30					pF
Drain-to-Source Capacitance	C _{DS(off)}		Room	0.5					
Power Supplies									
Positive Supply Current	l+	V+ = 15 V, V- = - 15 V	Room Full	4.5		10		10	m/
Negative Supply Current	I-	$V_{\rm IN} = 0 \text{ or } 5 \text{ V}$	Room Full	3.5	- 6		- 6		
Power Consumption ^c	P _C		Full			240		240	mV

Notes:

a.Refer to PROCESS OPTION FLOWCHART.

b.Room = 25 $^{\circ}$ C, Full = as determined by the operating temperature suffix.

c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

e.Guaranteed by design, not subject to production test.

f. V_{IN} = input voltage to perform proper function.

Vishay Siliconix

			1	AS	uffix	D Suffix		T	
		Test Conditions Unless Specified			- 55 to 125 °C		- 40 to 85 °C		
		V+ = 10.8 V to 16.5 V,							-
Parameter	Symbol	$V- = GND = 0 V, V_{IN} = 3 V, 0.8 V^{f}$	Temp ^b	Тур ^с	Min ^d	Max ^d	Min ^d	Max ^d	Unit
Analog Switch			•		•	•		•	
Analog Signal Range ^e	V _{ANALOG}		Full		0	V+	0	V+	V
Drain-Source	r _{DS(on)}	I _S = - 10 mA, V _D = 8.5 V	Room	65		90		90	Ω
On-Resistance	'DS(on)	V+ = 10.8 V	Full	00		120		120	32
	I _{S(off)}	V+ = 16.5 V	Room	0.1	- 1	1	- 1	1	nA
Switch Off Leakage Current	0(01)	V _S = 0.5 V, 10 V	Full		- 60	60 1	- 20 - 1	20 1	
	I _{D(off)}	V _D = 10 V, 0.5 V	Room Full	0.1	- 1 - 60	60	- 1	20	
Channel On Leakage	1	V+ = 16.5 V	Room	0.1	- 1	1	- 1	1	
Current	$I_{D(on)} + I_{S(on)}$	V _D = 0.5 V, 10 V	Full	0.1	- 60	60	- 20	20	
Digital Control									
Input, High Voltage	V _{INH}		Full		2.4		2.4		v
Input, Low Voltage	V _{INL}		Full			0.8		0.8	v
Input Capacitance	C _{IN}		Full	5					pF
Input Current	I _{INH} or I _{INL}	V+ = 16.5 V V _{IN} under test = 0.8 V, 3 V	Full		- 1	1	- 1	1	μA
Dynamic Characteristics					1	1		1	1
Turn-On Time	t _{ON}		Room			50		50	
	^V ON	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$	Full			70		70	
Turn-Off Time	t _{OFF1}	$V_{S} = 2 V, V = 10.8 V$	Room			50		50	ns
	_	See Figure 2	Full	450		70		70	- 110
	t _{OFF2}		Room	150					-
Output Settling Time to 0.1 %	t _s	C ₁ = 1 nF, V _S = 0 V	Room	180					<u> </u>
Charge Injection	Q	2 0	Room	10					рС
		$V_{gen} = 0 \text{ V}, \text{ R}_{gen} = 0 \Omega$ $\text{R}_{I} = 1 \text{ k}\Omega, \text{ C}_{I} = 10 \text{ pF}$							
Off Isolation	OIRR	$H_L = 1 \text{ Ks2}, C_L = 10 \text{ pm}$ f = 100 kHz	Room	85					
		Any Other Channel Switches							dB
Crosstalk	Х _{таі к}	$R_L = 1 k\Omega$, $C_L = 10 pF$	Room	100					
(Channel-to-Channel)	in Lerc	f = 100 kHz							
Source Off Capacitance	C _{S(off)}	f = 1 MHz	Room	10					
Drain Off Capacitance	C _{D(off)}	t = 1 MHz	Room	10					pF
Channel On Capacitance	C _{D(on)}	V _{ANALOG} = 0 V	Room	30					1
Power Supply									
Positive Supply Current	l+		Full			10		10	mA
Power Consumption ^c	P _C	V + = 15 V, V_{IN} = 0 or 5 V	Full			150		150	mW

Notes:

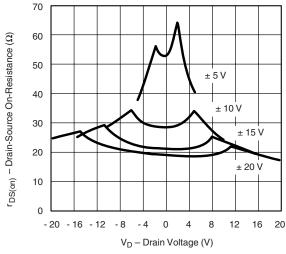
a.Refer to PROCESS OPTION FLOWCHART.

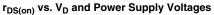
b.Room = 25 °C, Full = as determined by the operating temperature suffix.

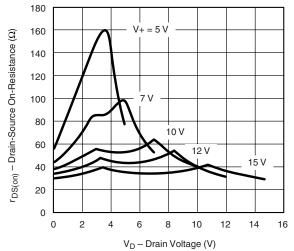
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

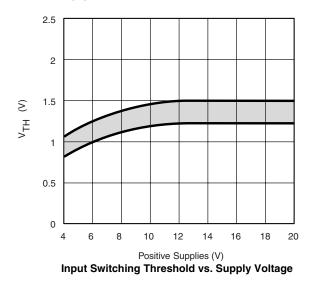
e.Guaranteed by design, not subject to production test.

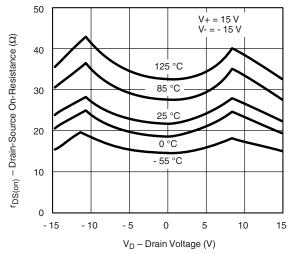

f. V_{IN} = input voltage to perform proper function.

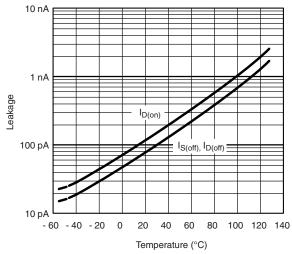

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



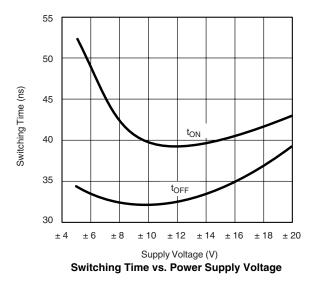
DG201HS Vishay Siliconix


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



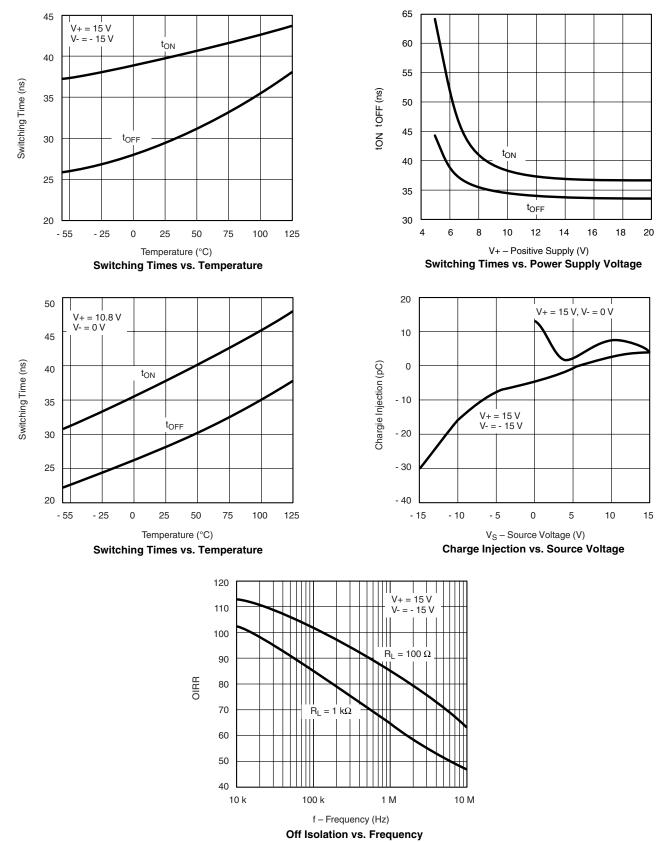


 $r_{\text{DS(on)}}$ vs. V_{D} and Single Power Supply Voltages



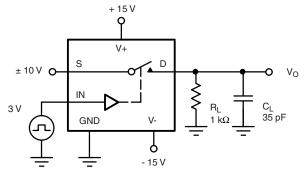
r_{DS(on)} vs. V_D and Temperature

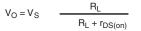
Leakage Currents vs. Temperature



DG201HS

Vishay Siliconix

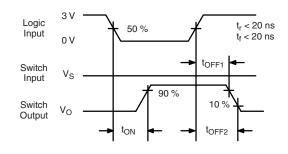
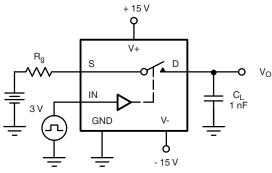
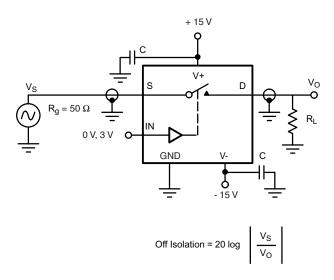

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

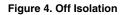


DG201HS Vishay Siliconix

TEST CIRCUITS

C_L (includes fixture and stray capacitance)


Figure 2. Switching Time

 v_{O} \downarrow ΔV_{O} \uparrow IN_{X} SW_{ON} OFF

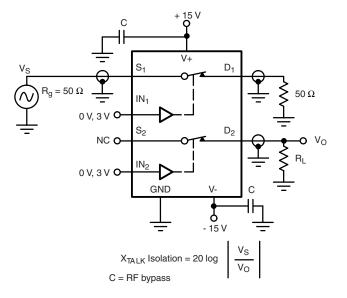
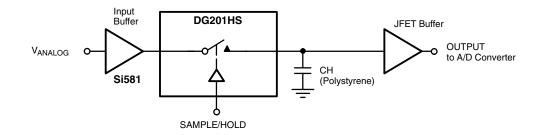


Figure 5. Crosstalk


 $Q = \Delta V_O \times C_L$

Vishay Siliconix

APPLICATIONS

A high-speed, low-glitch analog switch such as Vishay Siliconix's DG201HS improves the accuracy and shortens the acquisition and settling times of a sample-and-hold circuit.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?70038.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

DG201HSDJ DG201HSDY DG201HSDY-E3 DG201HSDY-T1-E3 DG201HSDJ-E3 DG201HSDQ-T1 DG201HSDY-T1 DG201HSDQ-T1-E3