Evaluates: MAX14690

General Description

The MAX14690 evaluation kit (EV kit) is a fully assembled and tested circuit for evaluating the MAX14690 wearable charge-management solution with I²C capability for lowpower wearable application. The device includes a linear battery charger, Smart Power Selector[™], two ultra-low quiescent current buck regulators, and three low-dropout (LDO) linear regulators.

Refer to the MAX14690 IC data sheet for detailed information regarding the operation and features of the devices.

Features

- RoHS Compliant
- Proven PCB Layout
- Full Assembled and Tested
- I²C Serial Interface

Quick Start

Required Equipment

- Adjustable power supply with 0V to 5V capability
- Digital multimeter (DMM)
- I²C controller device
- GPIO controller device
- Cables with grabber connections

Optional Equipment

• Second power supply for LDOs

Procedure

The EV kit is fully assembled and tested. Follow the steps below to verify basic board operation.

Caution: Do not turn on the power supply and external devices until all connections are completed.

 Connect PFN1 (J2 pin 11) to the GPIO controller output. Alternatively, PFN1 can be connected to a 3V IO supply through a 10k pullup resistor. This procedure assumes that a GPIO controller is used.

Smart Power Selector is a trademark of Maxim Integrated Products, Inc.

- Connect the I²C Controller device to GND, SDA (J1 pin 6), and SCL (J1 pin 7).
- 3) Set the power supply voltage to 3.7V and turn off the supply.
- 4) Connect the positive terminal of the 3.7V power supply to BAT (J1 pin 4) and the negative terminal to GND (J3 pin 1).
- 5) Turn on the 3.7V power supply.
- 6) Turn on the GPIO controller device and I²C controller device.
- 7) Set GPIO controller to output logic-high to PFN1 to power on the MAX14690.
- 8) Measure the voltage on SYS (J1 pin 3) and confirm that it equals the battery voltage.
- To enable the Buck1 output, use the I²C controller to set Buck1En[1:0] to "01" by writing value "0xE8" to register 0x0D. Measure B1OUT (J2 pin 6) and confirms that it equals 1.8V.
- 10) To enable Buck2 output, use the I²C controller to set Buck2En[1:0] to "01" by writing value "0xE8" to register 0x0F. Measure B2OUT (J2 pin 5) and confirm that it equals 3.3V.
- 11) Optional: To test any one of the LDOs, set the second power supply voltage to the desired LDO input voltage. Turn it off and then connect the positive terminal to the LDO input and the negative terminal to GND. Turn it on. To enable the LDO output, use the l²C controller to write value "0xE2" to the register LDO1Cfg, LDO2Cfg, or LDO3Cfg corresponding to the LDO output and confirm that it matches the default setting: 0.8V (LDO1), 0.8V (LDO2), and 0.8V (LDO3).
- 12) The EV kit is ready for additional evaluation.

Ordering Information appears at end of data sheet.

Evaluates: MAX14690

Detailed Description of Hardware

The MAX14690 evaluation kit (EV Kit) evaluates the MAX14690 wearable charge-management solution.

See <u>Table 1</u> through <u>Table 3</u> for pin descriptions of the three connectors (J1–J3).

Table 1. Connector J1

PIN	MAX14690	DESCRIPTION	
1	GND	Ground	
2	MON	Voltage Monitor Output	
3	N.C.	Not Connected	
4	ĪNT	Open-Drain, Active-Low Interrupt Outpu	
5	RST Power-On Reset Output.		
6	SDA	I ² C Serial Data Input/Output	
7	SCL	I ² C Serial Clock Input	
8	MPC1	Multipurpose Configuration Input 1	
9	MPC0	Multipurpose Configuration Input 0	
10	PFN2	Power Function Control Input/Output	
11	PFN1	Power Function Control Input	
12	GND	Ground	

Table 2. Connector J2

PIN	SIGNAL	DESCRIPTION
1	L3IN	LDO3 Input
2	L3OUT	LDO3 Output
3	L2OUT	LDO2 Output
4	L10UT	LDO1 Output
5	B2OUT	Buck Regulator 2 Output
6	B1OUT	Buck Regulator 1 Output
7	L2IN	LDO2 Input
8	L1IN	LDO1 Input

Table 3. Connector J3

PIN	SIGNAL	DESCRIPTION	
1	GND	Ground	
2	CHRGIN	Charger Input	
3	SYS	System Load Connection	
4	BAT	Battery	
5	THM	Battery Temperature Thermistor Connection	
6	CAP	Bypass for Internal LDO	
7	SET	External Resistor Connection for Configuring Battery Charge Current	
8	LED	LED Current Sink Input	
9	N.C.	Not Connected	
10	N.C.	Not Connected	
11	N.C.	Not Connected	
12	GND Ground		

Ordering Information

PART	ТҮРЕ
MAX14690EVKIT#	EV Kit

#Denotes a RoHS-compliant device that may include lead that is exempt under the RoHS requirements.

Evaluates: MAX14690

ITEM	REF_DES	DNI/DNP	QTY	MFG PART #	MANUFACTURER	VALUE
1	C1-C9	-	9	C1005X5R1V225M050BC	TDK	2.2UF
2	C10-C12	-	3	C1608X5R0J226M080AC	TDK	22UF
3	J1, J3	-	2	PBC12SAAN	SULLINS ELECTRONICS CORP.	PBC12SAAN
4	J2	-	1	PBC08SAAN	SULLINS ELECTRONICS CORP.	PBC08SAAN
5	L1, L2	-	2	DFE201610E-2R2M	ТОКО	2.2UH
6	R3	-	1	ERA-2AED221	PANASONIC	220
7	U1	-	1	MAX14690BEWX+	MAXIM	MAX14690BEWX+
8	Q1	DNP	0	SI8439DB-T1-E1	N/A	SI8439DB-T1-E1
9	R1	DNP	0	RG1005P-102-D	SUSUMU CO LTD.	1K
10	R2	DNP	0	CRCW040210K0FK; RC0402FR-0710K	VISHAY DALE; YAGEO PHICOMP	10K
11	PCB	-	1	MAX	MAXIM	PCB
TOTAL	-		20			

MAX14690 EV Kit Bill of Materials

MAX14690 EV Kit Schematic

Evaluates: MAX14690

MAX14690 EV Kit PCB Layout Diagrams

MAX14690 EV Kit—Top Silkscreen

MAX14690 EV Kit—Layer 2

Evaluates: MAX14690

MAX14690 EV Kit PCB Layout Diagrams (continued)

MAX14690 EV Kit-Bottom

MAX14690 EV Kit-Layer 3

MAX14690 EV Kit—Bottom Silkscreen

Evaluates: MAX14690

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	12/16	Initial release	—
1	2/19	Added Quick Start section	1

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated: MAX14690EVKIT#