

TAS5717

10-W/15-W Digital Audio Power Amplifier with Integrated Cap-Free HP Amplifier

Check for Samples: TAS5717, TAS5719

FEATURES

- Audio Input/Output
 - TAS5717 Supports 2×10 W and TAS5719 Supports 2×15 W Output
 - Wide PVDD Range, From 4.5 V to 26 V
 - Efficient Class-D Operation Eliminates **Need for Heatsinks**
 - Requires Only 3.3 V and PVDD
 - One Serial Audio Input (Two Audio Channels)
 - I²C Address Selection via PIN (Chip Select)
 - Supports 8-kHz to 48-kHz Sample Rate $(LJ/RJ/I^2S)$
 - External Headphone-Amplifier Shutdown Signal
 - Integrated CAP-Free Headphone Amplifier
 - Stereo Headphone (Stereo 2-V RMS Line **Driver) Outputs**
- Audio/PWM Processing
 - Independent Channel Volume Controls With 24-dB to Mute
 - Programmable Two-Band Dynamic Range Control
 - 14 Programmable Biguads for Speaker EQ
 - Programmable Coefficients for DRC Filters
 - DC Blocking Filters
 - 0.125-dB Fine Volume Support
- **General Features**
 - Serial Control Interface Operational Without MCLK
 - Factory-Trimmed Internal Oscillator for **Automatic Rate Detection**
 - Surface Mount, 48-Pin, 7-mm × 7-mm **HTQFP** Package
 - AD, BD, and Ternary PWM-Mode Support
 - **Thermal and Short-Circuit Protection**

- **Benefits**
 - EQ: Speaker Equalization Improves Audio Performance
 - DRC: Dynamic Range Compression. Can Be Used As Power Limiter. Enables Speaker Protection, Easy Listening, Night-Mode Listening
 - **DirectPath Technology: Eliminates Bulky DC Blocking Capacitors**
 - Stereo Headphone/Stereo Line Drivers: Adjust Gain via External Resistors, **Dedicated Active Headpone Mute Pin, High** Signal-to-Noise Ratio
 - **Two-Band DRC: Set Two Different** Thresholds for Low- and High-Frequency Content

DESCRIPTION

The TAS5717/TAS5719 is a 10-W/15-W, efficient, digital audio-power amplifier for driving stereo bridge-tied speakers. One serial data input allows processing of up to two discrete audio channels and seamless integration to most digital audio processors and MPEG decoders. The device accepts a wide range of input data and data rates. A fully programmable data path routes these channels to the internal speaker drivers.

The TAS5717/9 is a slave-only device receiving all clocks from external sources. The TAS5717/TAS5719 operates with a PWM carrier between a 384-kHz switching rate and a 352-KHz switching rate, depending on the input sample rate. Oversampling combined with a fourth-order noise shaper provides a flat noise floor and excellent dynamic range from 20 Hz to 20 kHz.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. FilterPro is a trademark of Texas Instruments.

TEXAS INSTRUMENTS

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

SIMPLIFIED APPLICATION DIAGRAM

⁽¹⁾See the TAS5717/9 User's Guide for loop-filter values.

FUNCTIONAL VIEW

TAS5717 TAS5719 SLOS655A-NOVEMBER 2010-REVISED FEBRUARY 2011

DAP PROCESS STRUCTURE

۲

4

PIN ASSIGNMENT AND DESCRIPTIONS

P0075-11

PIN FUNCTIONS

PIN			5-V		DESCRIPTION
NAME	NO.	ITFE''	TOLERANT	TERMINATION	DESCRIPTION
AGND	30	Р			Analog ground for power stage
A_SEL	14	DIO			This pin is monitored on the rising edge of $\overline{\text{RESET}}$. A value of 0 makes the I ² C dev address 0x54, and a value of 1 makes it 0x56.
AVDD	13	Р			3.3-V analog power supply
AVSS	9	Р			Analog 3.3-V supply ground
BST_A	45	Р			High-side bootstrap supply for half-bridge A
BST_B	41	Р			High-side bootstrap supply for half-bridge B
BST_C	40	Р			High-side bootstrap supply for half-bridge C
BST_D	36	Р			High-side bootstrap supply for half-bridge D
CPN	6	Ю			Charge-pump flying-capacitor negative connection
CPP	7	Ю			Charge-pump flying-capacitor positive connection
DVDD	27	Р			3.3-V digital power supply
DVSS	28	Р			Digital ground
DVSSO	17	Р			Oscillator ground
GND	29	Р			Analog ground for power stage

(1) TYPE: A = analog; D = 3.3-V digital; P = power/ground/decoupling; I = input; O = output

(2) All pullups are weak pullups and all pulldowns are weak pulldowns. The pullups and pulldowns are included to assure proper input logic levels if the pins are left unconnected (pullups → logic 1 input; pulldowns → logic 0 input).

© 2010–2011, Texas Instruments Incorporated

TAS5717 TAS5719

SLOS655A - NOVEMBER 2010-REVISED FEBRUARY 2011

www.ti.com

Texas Instruments

PIN FUNCTIONS (continued)

PIN			5-V	TERMINATION ⁽²⁾			
NAME	NO.	ITPE."	TOLERANT	TERMINATION (=)	DESCRIPTION		
GVDD_OUT	34	Р			Gate drive internal regulator output		
HPL_IN	1	AI			Headphone left IN (single-ended, analog IN)		
HPL_OUT	2	AO			Headphone left OUT (single-ended, analog OUT)		
HP_PWML	48	DO			PWM left-channel headphone out		
HP_PWMR	47	DO			PWM right-channel headphone out		
HPR_IN	4	AI			Headphone right IN (single-ended, analog IN)		
HPR_OUT	3	AO			Headphone right OUT (single-ended, analog OUT)		
HP_SD	33	AI			Headphone shutdown (active-low)		
HPVDD	8	Р			Headphone supply		
HPVSS	5	Р			Headphone ground		
LRCLK	20	DI	5-V	Pulldown	Input serial audio data left/right clock (sample rate clock)		
MCLK	15	DI	5-V	Pulldown	Master clock input		
OSC_RES	16	AO			Oscillator trim resistor. Connect an 18-k Ω 1% resistor to DVSSO.		
OUT_A	44	0			Output, half-bridge A		
OUT_B	42	0			Output, half-bridge B		
OUT_C	39	0			Output, half-bridge C		
OUT_D	37	0			Output, half-bridge D		
PDN	19	DI	5-V	Pullup	Power down, active-low. PDN prepares the device for loss of power supplies by shutting down the noise shaper and initiating the PWM stop sequence.		
PGND_AB	43	Р			Power ground for half-bridges A and B		
PGND_CD	38	Р			Power ground for half-bridges C and D		
PLL_FLTM	10	AO			PLL negative loop-filter terminal		
PLL_FLTP	11	AO			PLL positive loop-filter terminal		
PVDD_AB	46	Р			Power-supply input for half-bridge output A		
PVDD_CD	35	Р			Power-supply input for half-bridge output C		
RESET	25	DI	5-V	Pullup	Reset, active-low. A system reset is generated by applying a logic low to this pin. RESET is an asynchronous control signal that restores the DAP to its default conditions, and places the PWM in the hard-mute (high-impedance) state.		
SCL	24	DI	5-V		I ² C serial control clock input		
SCLK	21	DI	5-V	Pulldown	Serial audio data clock (shift clock). SCLK is the serial audio port input data bit clock.		
SDA	23	DIO	5-V		I ² C serial control data interface input/output		
SDIN	22	DI	5-V	Pulldown	Serial audio data input. SDIN supports three discrete (stereo) data formats.		
SSTIMER	32	AI			Controls ramp time of OUT_X to minimize pop. Leave this pin floating for BD mode. Requires capacitor of 2.2 nF to GND in AD mode. The capacitor determines the ramp time.		
STEST	26	DI			Factory test pin. Connect directly to DVSS.		
VR_ANA	12	Р			Internally regulated 1.8-V analog supply voltage. This pin must not be used to power external devices.		
VR_DIG	18	Р			Internally regulated 1.8-V digital supply voltage. This pin must not be used to power external devices.		
VREG	31	Р			Digital regulator output. Not to be used for powering external circuitry.		

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		VALUE	UNIT
Cupply voltogo	DVDD, AVDD, HPVDD	VALUE -0.3 to 3.6 -0.3 to 30 -0.3 to 4.2 -0.5 to DVDD + 0.5 -0.5 to DVDD + $2.5^{(3)}$ -0.5 to AVDD + $2.5^{(3)}$ $22^{(4)}$ $32^{(4)}$ ± 20 ± 20 0 to 85 0 to 150 -40 to 125	V
Supply voltage	PVDD_X	-0.3 to 30	V
	HPL_IN, HPR_IN	-0.3 to 4.2	V
Innut voltogo	3.3-V digital input	-0.5 to DVDD + 0.5	V
input voltage	5-V tolerant ⁽²⁾ digital input (except MCLK)	-0.5 to DVDD + 2.5 ⁽³⁾	V
	5-V tolerant MCLK input	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V
OUT_x to PGND_x	K	22 ⁽⁴⁾	V
BST_x to PGND_x	4	32 ⁽⁴⁾	V
Input clamp curren	t, I _{IK}	±20	mA
Output clamp curre	ent, I _{OK}	±20	mA
Operating free-air	temperature	0 to 85	°C
Operating junction	temperature range	0 to 150	°C
Storage temperatu	re range, T _{stg}	-40 to 125	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions are not implied. Exposure to absolute-maximum conditions for extended periods may affect device reliability.

(2) 5-V tolerant inputs are PDN, RESET, SCLK, LRCLK, MCLK, SDIN, SDA, and SCL.

(3) Maximum pin voltage should not exceed 6 V.

(4) DC voltage + peak ac waveform measured at the pin should be below the allowed limit for all conditions.

THERMAL INFORMATION

		TAS5717	
	THERMAL METRIC ⁽¹⁾	PHP	UNIT
		48 PINS	
θ_{JA}	Junction-to-ambient thermal resistance ⁽²⁾	35.2	°C/W
θ_{JB}	Junction-to-board thermal resistance ⁽³⁾	10.9	°C/W
θ _{JC(bottom)}	Junction-to-case (bottom) thermal resistance ⁽⁴⁾	1.6	°C/W
θ _{JC(top)}	Junction-to-case (top) thermal resistance ⁽⁵⁾	19.7	°C/W
Ψ_{JT}	Junction-to-top characterization parameter ⁽⁶⁾	3.4	°C/W
Ψ _{JB}	Junction-to-board characterization parameter ⁽⁷⁾	10.1	°C/W

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.

(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

(4) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(5) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(6) The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(7) The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM	MAX	UNIT
	Digital/analog supply voltage	DVDD, AVDD	3	3.3	3.6	V
	Half-bridge supply voltage	PVDD_X	4.5			V
V _{IH}	High-level input voltage	5-V tolerant	2			V
V _{IL}	Low-level input voltage	5-V tolerant			0.8	V
T _A	Operating ambient temperature range		0		85	°C
$T_{J}^{(1)}$	Operating junction temperature range		0		125	°C
R _L (BTL)	Load impedance	Output filter: L = 15 μ H, C = 680 nF	4	8		Ω
L _O (BTL)	Output-filter inductance	Minimum output inductance under short-circuit condition	4.7			μH

(1) Continuous operation above the recommended junction temperature may result in reduced reliability and/or lifetime of the device.

RECOMMENDED OPERATING CONDITIONS FOR HEADPHONE/LINE DRIVER

			MIN	NOM	MAX	UNIT
	Digital/analog supply voltage	HPVDD	3	3.3	3.6	V
R_hp_L	Headphone-mode load imedance (HPL/HPR)		16	32		Ω
R_ln_L	Line-diver-mode load impedance (HPL/HPR)		0.6	10		kΩ

PWM OPERATION AT RECOMMENDED OPERATING CONDITIONS

PARAMETER	TEST CONDITIONS	VALUE	UNIT
	11.025/22.05/44.1-kHz data rate ±2%	352.8	kHz
Output sample rate	48/24/12/8/16/32-kHz data rate ±2%	384	

PLL INPUT PARAMETERS AND EXTERNAL FILTER COMPONENTS

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{MCLKI}	MCLK Frequency		2.8224		24.576	MHz
	MCLK duty cycle		40%	50%	60%	
tr / tf _(MCLK)	Rise/fall time for MCLK				5	ns
	LRCLK allowable drift before LRCLK reset				4	MCLKs
	External PLL filter capacitor C1	SMD 0603 Y5V		47		nF
	External PLL filter capacitor C2	SMD 0603 Y5V		4.7		nF
	External PLL filter resistor R	SMD 0603, metal film		470		Ω
Fcp	Charge Pump Switching Frequency		500		700	KHz

ELECTRICAL CHARACTERISTICS

DC Characteristics

TA = 25°, PVCC_X = 13 V, DVDD = AVDD = 3.3 V, R_L= 8 Ω , BTL AD Mode, f_S = 48 KHz (unless otherwise noted)

	PARAMETEI	R	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level output voltage	FAULTZ and SDA	I _{OH} = -4 mA DVDD = 3 V	2.4			V
V _{OL}	Low-level output voltage	FAULTZ and SDA	I _{OL} = 4 mA DVDD = 3 V			0.5	V
IIL	Low-level input current		$V_{I} < V_{IL}$; DVDD = AVDD = 3.6V			75	μA
I _{IH}	High-level input current		$V_I > V_{IH}$; DVDD = AVDD = 3.6V			75	μA
		2.2.)/ europhy voltage (D)/DD	Normal mode		48	70	
I _{DD}	3.3 V supply current	AVDD)	$\frac{\text{Reset}}{\text{PDN}} = \text{high})$		21	32	mA
			Normal mode		20	34	
I _{PVDD}	Half-bridge supply current	No load (PVDD_X)	Reset (RESET = low, PDN = high)		5	13	mA
	Drain-to-source resistance, LS $T_J = 25^{\circ}$ C, includes metallization resistance			200			
r _{DS(on)} ⁽¹⁾	Drain-to-source resistance, HS	$T_J = 25^{\circ}C$, includes metallization	n resistance		200		mΩ
I/O Protectio	on						
V _{uvp}	Undervoltage protection limit	PVDD falling			3.5		V
V _{uvp,hyst}	Undervoltage protection limit	PVDD rising			4.5		V
OTE ⁽²⁾	Overtemperature error				150		°C
OTE _{HYST} (2)	Extra temperature drop required to recover from error				30		°C
loc	Overcurrent limit protection				4.5		А
I _{OCT}	Overcurrent response time				150		ns
R _{PD}	Internal pulldown resistor at the output of each half-bridge	Connected when drivers are tris capacitor charge.	tated to provide bootstrap		3		kΩ

(1) This does not include bond-wire or pin resistance.

(2) Specified by design

TAS5717 TAS5719

SLOS655A - NOVEMBER 2010 - REVISED FEBRUARY 2011

www.ti.com

AC Characteristics (BTL)

 $PVDD_X = 12 V$, BTL AD mode, $f_S = 48 KHz$, $R_L = 8 \Omega$, audio frequency = 1 kHz, (unless otherwise noted). All performance is in accordance with recommended operating conditions, unless otherwise specified.

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
		PVDD = 13 V, 10% THD, 1-kHz input signal	10		
Po	Power output per channel	PVDD = 8 V, 10% THD, 1-kHz input signal	4.1		W
Po THD+N Vn SNR		PVDD = 18 V, 10% THD, 1-kHz input signal	15 ⁽¹⁾		
	Total harmonic distortion , poiss	PVDD = 13 V; P _O = 1 W	0.13%		
I HD+N	Total harmonic distortion + hoise	PVDD = 8 V; P _O = 1 W	0.2%		
Vn	Output integrated noise (rms)	A-weighted	56		μV
	Createlly	P _O = 0.25 W, f = 1 kHz (BD mode)	-82		٩D
	CIOSSIAIK	$P_O = 0.25$ W, f = 1 kHz (AD mode)	-69		uБ
SNR	Signal-to-noise ratio ⁽²⁾	A-weighted, f = 1 kHz, maximum power at THD < 1%	-105		dB

(1) 15 W is supported only in the TAS5719.

(2) SNR is calculated relative to 0-dBFS input level.

AC Characteristics (Headphone/Line Driver)

PVDD_X = 12 V, BTL AD mode, $f_s = 48$ KHz, $R_L = 8 \Omega$, audio frequency = 1 kHz, (unless otherwise noted). All performance is in accordance with recommended operating conditions, unless otherwise specified.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Po(hp)	Headphone power output per channel	HP_VDD = 3.3 V (Rhp = 32 Ω; THD 1%)		25		mW
HP_gain	Headphone gain	Adjustable via Rin and Rfb				
SNR_hp	Sgnal-to-noise ratio (headphone mode)	Rhp = 32 Ω		101		dB
SNR_In	Sgnal-to-noise ratio (line driver mode)	2-V rms output		105		dB

SERIAL AUDIO PORTS SLAVE MODE

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	МАХ	UNIT
f _{SCLKIN}	Frequency, SCLK 32 × f _S , 48 × f _S , 64 × f _S	C _L = 30 pF	1.024		12.288	MHz
t _{su1}	Setup time, LRCLK to SCLK rising edge		10			ns
t _{h1}	Hold time, LRCLK from SCLK rising edge		10			ns
t _{su2}	Setup time, SDIN to SCLK rising edge		10			ns
t _{h2}	Hold time, SDIN from SCLK rising edge		10			ns
	LRCLK frequency		8	48	48	kHz
	SCLK duty cycle		40%	50%	60%	
	LRCLK duty cycle		40%	50%	60%	
	SCLK rising edges between LRCLK rising edges		32		64	SCLK edges
t _(edge)	LRCLK clock edge with respect to the falling edge of SCLK		-1/4		1/4	SCLK period
t _r / t _{f(SCLK/LRCLK)}	Rise/fall time for SCLK/LRCLK				8	ns

Figure 1. Slave Mode Serial Data Interface Timing

I²C SERIAL CONTROL PORT OPERATION

Timing characteristics for I²C Interface signals over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
f _{SCL}	Frequency, SCL	No wait states		400	kHz
t _{w(H)}	Pulse duration, SCL high		0.6		μs
t _{w(L)}	Pulse duration, SCL low		1.3		μs
t _r	Rise time, SCL and SDA			300	ns
t _f	Fall time, SCL and SDA			300	ns
t _{su1}	Setup time, SDA to SCL		100		ns
t _{h1}	Hold time, SCL to SDA		0		ns
t _(buf)	Bus free time between stop and start condition		1.3		μs
t _{su2}	Setup time, SCL to start condition		0.6		μs
t _{h2}	Hold time, start condition to SCL		0.6		μs
t _{su3}	Setup time, SCL to stop condition		0.6		μs
CL	Load capacitance for each bus line			400	pF

Figure 2. SCL and SDA Timing

RESET TIMING (RESET)

Control signal parameters over recommended operating conditions (unless otherwise noted). Please refer to Recommended Use Model section on usage of all terminals.

	PARAMETER	MIN	TYP	MAX	UNIT
t _{w(RESET)}	Pulse duration, RESET active	100			μs
t _{d(I2C_ready)}	Time to enable I ² C			12	ms

System Initialization. Enable via I²C.

T0421-01

NOTES: 1. On power up, it is recommended that the TAS5717/9 RESET be held LOW for at least 100 µs after DVDD has reached 3 V.

2. If RESET is asserted LOW while PDN is LOW, then the RESET must continue to be held LOW for at least 100 µs after PDN is deasserted (HIGH).

Figure 4. Reset Timing

TYPICAL CHARACTERISTICS, BTL CONFIGURATION, 8 Ω

TOTAL HARMONIC DISTORTION + NOISE

Figure 6.

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

TYPICAL CHARACTERISTICS, BTL CONFIGURATION, 8 Ω (continued)

Figure 9.

TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT POWER

35

35

TYPICAL CHARACTERISTICS, BTL CONFIGURATION, 8 Ω (continued)

TYPICAL CHARACTERISTICS, HEADPHONE TESTS, SE CONFIGURATION, 32 Ω

TYPICAL CHARACTERISTICS, LINE DRIVER TESTS, SE CONFIGURATION, $5k\Omega$

ANALOG IN CROSSTALK vs FREQUENCY 0 V_o = 1Vrms Right to Left $PV_{DD} = 3.3V$ Left to Right -10 $R_L = 5k\Omega$ $T_A = 25^{\circ}C$ -20 -30 -40 Crosstalk (dB) -50 -60 -70 -80 -90 -100 20 100 1k 10k 20k Frequency (Hz) Figure 25.

TAS5717 TAS5719 SLOS655A – NOVEMBER 2010–REVISED FEBRUARY 2011 TEXAS INSTRUMENTS

www.ti.com

DETAILED DESCRIPTION

POWER SUPPLY

To facilitate system design, the TAS5717/9 needs only a 3.3-V supply in addition to the (typical) 13-V power-stage supply. An internal voltage regulator provides suitable voltage levels for the gate drive circuitry. Additionally, all circuitry requiring a floating voltage supply, e.g., the high-side gate drive, is accommodated by built-in bootstrap circuitry requiring only a few external capacitors.

In order to provide good electrical and acoustical characteristics, the PWM signal path for the output stage is designed as identical, independent half-bridges. For this reason, each half-bridge has separate bootstrap pins (BST_X) and power-stage supply pins (PVDD_X). The gate drive voltages (GVDD_AB and GVDD_CD) are derived from the PVDD voltage. Special attention should be paid to placing all decoupling capacitors as close to their associated pins as possible. In general, inductance between the power-supply pins and decoupling capacitors must be avoided.

For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin (BST_X) to the power-stage output pin (OUT_X). When the power-stage output is low, the bootstrap capacitor is charged through an internal diode connected between the gate-drive regulator output pin (GVDD_X) and the bootstrap pin. When the power-stage output is high, the bootstrap capacitor potential is shifted above the output potential and thus provides a suitable voltage supply for the high-side gate driver. In an application with PWM switching frequencies in the range from 352 kHz to 384 kHz, it is recommended to use 33-nF ceramic capacitors, size 0603 or 0805, for the bootstrap supply. These 33-nF capacitors ensure sufficient energy storage, even during minimal PWM duty cycles, to keep the high-side power stage FET (LDMOS) fully turned on during the remaining part of the PWM cycle.

Special attention should be paid to the power-stage power supply; this includes component selection, PCB placement, and routing. As indicated, each half-bridge has independent power-stage supply pins (PVDD_X). For optimal electrical performance, EMI compliance, and system reliability, it is important that each PVDD_X pin is decoupled with a 100-nF ceramic capacitor placed as close as possible to each supply pin.

The TAS5717/9 is fully protected against erroneous power-stage turnon due to parasitic gate charging.

I²C CHIP SELECT/HP_SHUTDOWN

A_SEL/HP_SD is an input pin during power up. It can be pulled high or low. HIGH indicates an I²C subaddress of 0x56, and LOW a subaddress of 0x54.

DEVICE PROTECTION SYSTEM

Overcurrent (OC) Protection With Current Limiting

The device has independent, fast-reacting current detectors on all high-side and low-side power-stage FETs. The detector outputs are closely monitored a protection system. If the high-current condition situation persists, i.e., the power stage is being overloaded, a protection system triggers a latching shutdown, resulting in the power stage being set in the high-impedance (Hi-Z) state. The device returns to normal operation once the fault condition (i.e., a short circuit on the output) is removed. Current limiting and overcurrent protection are not independent for half-bridges. That is, if the bridge-tied load between half-bridges A and B causes an overcurrent fault, half-bridges A, B, C, and D are shut down.

Overtemperature Protection

The TAS5717/9 has an overtemperature-protection system. If the device junction temperature exceeds 150°C (nominal), the device is put into thermal shutdown, resulting in all half-bridge outputs being set in the high-impedance (Hi-Z) state and FAULT being asserted low. The TAS5717/9 recovers automatically once the temperature drops approximately 30°.

Undervoltage Protection (UVP) and Power-On Reset (POR)

The UVP and POR circuits of the TAS5717/9 fully protect the device in any power-up/down and brownout situation. While powering up, the POR circuit resets the overload circuit (OLP) and ensures that all circuits are fully operational when the PVDD and AVDD supply voltages reach 4.5 V and 2.7 V, respectively. Although PVDD and AVDD are independently monitored, a supply voltage drop below the UVP threshold on AVDD or on either PVDD pin results in all half-bridge outputs immediately being set in the high-impedance (Hi-Z) state and FAULT being asserted low.

CLOCK, AUTO DETECTION, AND PLL

The TAS5717/9 is a slave device. It accepts MCLK, SCLK, and LRCLK. The digital audio processor (DAP) supports all the sample rates and MCLK rates that are defined in the clock control register

The TAS5717/9 checks to verify that SCLK is a specific value of 32 f_S , 48 f_S , or 64 f_S . The DAP only supports a 1 × f_S LRCLK. The timing relationship of these clocks to SDIN is shown in subsequent sections. The clock section uses MCLK or the internal oscillator clock (when MCLK is unstable, out of range, or absent) to produce the internal clock (DCLK) running at 512 times the PWM switching frequency.

The DAP can autodetect and set the internal clock-control logic to the appropriate settings for all supported clock rates as defined in the clock control register.

TAS5717/9 has robust clock error handling that uses the bulit-in trimmed oscillator clock to quickly detect changes/errors. Once the system detects a clock change/error, it mutes the audio (through a single-step mute) and then forces PLL to limp using the internal oscillator as a reference clock. Once the clocks are stable, the system autodetects the new rate and reverts to normal operation. During this process, the default volume is restored in a single step (also called hard unmute). The ramp process can be programmed to ramp back slowly (also called soft unmute) as defined in volume register (0x0E).

SERIAL DATA INTERFACE

Serial data is input on SDIN. The PWM outputs are derived from SDIN. The TAS5717/9 DAP accepts serial data in 16-, 20-, or 24-bit left-justified, right-justified, or I²S serial data format.

PWM Section

The TAS5717/9 DAP device uses noise-shaping and sophisticated nonlinear correction algorithms to achieve high power efficiency and high-performance digital audio reproduction. The DAP uses a fourth-order noise shaper to increase dynamic range and SNR in the audio band. The PWM section accepts 24-bit PCM data from the DAP and outputs two BTL PWM audio output channels.

The PWM section has individual-channel dc-blocking filters that can be enabled and disabled. The filter cutoff frequency is less than 1 Hz. Individual-channel de-emphasis filters for 44.1- and 48-kHz are included and can be enabled and disabled.

Finally, the PWM section has an adjustable maximum modulation limit of 93.8% to 99.2%.

For detailed description of using audio processing features like DRC and EQ, see the User's Guide and TAS570X GDE software development tool documentation. Also see the GDE software development tool for the device data path.

I²C COMPATIBLE SERIAL CONTROL INTERFACE

The TAS5717/9 DAP has an I²C serial control slave interface to receive commands from a system controller. The serial control interface supports both normal-speed (100-kHz) and high-speed (400-kHz) operations without wait states. As an added feature, this interface operates even if MCLK is absent.

The serial control interface supports both single-byte and multiple-byte read and write operations for status registers and the general control registers associated with the PWM.

SERIAL INTERFACE CONTROL AND TIMING

I²S Timing

 I^2S timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the right channel. LRCLK is low for the left channel and high for the right channel. A bit clock running at 32, 48, or $64 \times f_S$ is used to clock in the data. There is a delay of one bit clock from the time the LRCLK signal changes state to the first bit of data on the data lines. The data is written MSB-first and is valid on the rising edge of bit clock. The DAP masks unused trailing data-bit positions.

2-Channel I²S (Philips Format) Stereo Input

NOTE: All data presented in 2s-complement form with MSB first.

Figure 26. I²S 64-f_S Format

2-Channel I²S (Philips Format) Stereo Input/Output (24-Bit Transfer Word Size)

NOTE: All data presented in 2s-complement form with MSB first.

Figure 27. I²S 48-f_S Format

2-Channel I²S (Philips Format) Stereo Input

NOTE: All data presented in 2s-complement form with MSB first.

Left-Justified

Left-justified (LJ) timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at 32, 48, or $64 \times f_S$ is used to clock in the data. The first bit of data appears on the data lines at the same time LRCLK toggles. The data is written MSB-first and is valid on the rising edge of the bit clock. The DAP masks unused trailing data-bit positions.

© 2010–2011, Texas Instruments Incorporated

TAS5717 TAS5719 SLOS655A – NOVEMBER 2010 – REVISED FEBRUARY 2011 Texas Instruments

www.ti.com

2-Channel Left-Justified Stereo Input

NOTE: All data presented in 2s-complement form with MSB first.

Figure 29. Left-Justified 64-f_S Format

2-Channel Left-Justified Stereo Input (24-Bit Transfer Word Size)

NOTE: All data presented in 2s-complement form with MSB first.

Figure 30. Left-Justified 48-f_S Format

2-Channel Left-Justified Stereo Input

NOTE: All data presented in 2s-complement form with MSB first.

Right-Justified

Right-justified (RJ) timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at 32, 48, or $64 \times f_S$ is used to clock in the data. The first bit of data appears on the data 8 bit-clock periods (for 24-bit data) after LRCLK toggles. In RJ mode the LSB of data is always clocked by the last bit clock before LRCLK transitions. The data is written MSB-first and is valid on the rising edge of bit clock. The DAP masks unused leading data-bit positions.

2-Channel Right-Justified (Sony Format) Stereo Input

TEXAS INSTRUMENTS

www.ti.com

2-Channel Right-Justified Stereo Input (24-Bit Transfer Word Size)

2-Channel Right-Justified (Sony Format) Stereo Input

Figure 34. Right-Justified 32-f_S Format

I²C SERIAL CONTROL INTERFACE

The TAS5717/9 DAP has a bidirectional I^2C interface that is compatible with the Inter IC (I^2C) bus protocol and supports both 100-kHz and 400-kHz data transfer rates for single- and multiple-yte write and read operations. This is a slave-only device that does not support a multimaster bus environment or wait-state insertion. The control interface is used to program the registers of the device and to read device status.

The DAP supports the standard-mode I^2C bus operation (100 kHz maximum) and the fast I^2C bus operation (400 kHz maximum). The DAP performs all I^2C operations without I^2C wait cycles.

General I²C Operation

The I²C bus employs two signals; SDA (data) and SCL (clock), to communicate between integrated circuits in a system. Data is transferred on the bus serially, one bit at a time. The address and data can be transferred in byte (8-bit) format, with the most significant bit (MSB) transferred first. In addition, each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master device driving a start condition on the bus and ends with the master device driving a stop condition on the bus. The bus uses transitions on the data pin (SDA) while the clock is high to indicate start and stop conditions. A high-to-low transition on SDA indicates a start and a low-to-high transition indicates a stop. Normal data-bit transitions must occur within the low time of the clock period. These conditions are shown in Figure 35. The master generates the 7-bit slave address and the read/write (R/W) bit to open communication with another device and then waits for an acknowledge condition. The TAS5717/9 holds SDA low during the acknowledge clock period to indicate an acknowledgment. When this occurs, the master transmits the next byte of the sequence. Each device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a wired-AND connection. An external pullup resistor must be used for the SDA and SCL signals to set the high level for the bus.

Figure 35. Typical I²C Sequence

There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last word transfers, the master generates a stop condition to release the bus. A generic data transfer sequence is shown in Figure 35.

The 7-bit address for TAS5717/9 is 0101 010 (0x54) or 0101 011 (0x56) defined by A_SEL (external pulldown for 0x54 and pullup for 0x56). Stero device with Headphone should use 0x54 as its device address.

Single- and Multiple-Byte Transfers

The serial control interface supports both single-byte and multiple-byte read/write operations for subaddresses 0x00 to 0x1F. However, for the subaddresses 0x20 to 0xFF, the serial control interface supports only multiple-byte read/write operations (in multiples of 4 bytes).

During multiple-byte read operations, the DAP responds with data, a byte at a time, starting at the subaddress assigned, as long as the master device continues to respond with acknowledges. If a particular subaddress does not contain 32 bits, the unused bits are read as logic 0.

During multiple-byte write operations, the DAP compares the number of bytes transmitted to the number of bytes that are required for each specific subaddress. For example, if a write command is received for a biquad subaddress, the DAP expects to receive five 32-bit words. If fewer than five 32-bit data words have been received when a stop command (or another start command) is received, the data received is discarded.

© 2010–2011, Texas Instruments Incorporated

TAS5717 TAS5719 SLOS655A – NOVEMBER 2010–REVISED FEBRUARY 2011

www.ti.com

Supplying a subaddress for each subaddress transaction is referred to as random I²C addressing. The TAS5717/9 also supports sequential I²C addressing. For write transactions, if a subaddress is issued followed by data for that subaddress and the 15 subaddresses that follow, a sequential I²C write transaction has taken place, and the data for all 16 subaddresses is successfully received by the TAS5717/9. For I²C sequential write transactions, the subaddress then serves as the start address, and the amount of data subsequently transmitted, before a stop or start is transmitted, determines how many subaddresses are written. As was true for random addressing, sequential addressing requires that a complete set of data be transmitted. If only a partial set of data is written to the last subaddress, the data for the last subaddress is discarded. However, all other data written is accepted; only the incomplete data is discarded.

Single-Byte Write

As shown in Figure 36, a single-byte data-write transfer begins with the master device transmitting a start condition followed by the I²C device address and the read/write bit. The read/write bit determines the direction of the data transfer. For a data-write transfer, the read/write bit is 0. After receiving the correct I²C device address and the read/write bit. Next, the master transmits the address byte or bytes corresponding to the TAS5717/9 internal memory address being accessed. After receiving the data byte, the TAS5717/9 again responds with an acknowledge bit. Next, the master device transmits the data byte to be written to the memory address being accessed. After receiving the data byte to be written to the memory address being accessed. After receiving the data byte, the TAS5717/9 again responds with an acknowledge bit. Next, the master device transmits the data byte to be written to the memory address being accessed. After receiving the data byte, the TAS5717/9 again responds with an acknowledge bit. Next, the master device transmits the data byte to be written to the memory address being accessed. After receiving the data byte, the TAS5717/9 again responds with an acknowledge bit. Finally, the master device transmits a stop condition to complete the single-byte data-write transfer.

Figure 36. Single-Byte Write Transfer

Multiple-Byte Write

A multiple-byte data-write transfer is identical to a single-byte data write transfer except that multiple data bytes are transmitted by the master device to the DAP as shown in Figure 37. After receiving each data byte, the TAS5717/9 responds with an acknowledge bit.

Figure 37. Multiple-Byte Write Transfer

Single-Byte Read

As shown in Figure 38, a single-byte data-read transfer begins with the master device transmitting a start condition followed by the I²C device address and the read/write bit. For the data-read transfer, both a write followed by a read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal memory address to be read. As a result, the read/write bit becomes a 0. After receiving the TAS5717/9 address and the read/write bit, TAS5717/9 responds with an acknowledge bit. In addition, after sending the internal memory address byte or bytes, the master device transmits another start condition followed by the TAS5717/9 address and the read/write bit again. This time the read/write bit becomes a 1, indicating a read transfer. After receiving the address and the read/write bit, the TAS5717/9 again responds with an acknowledge bit. Next, the TAS5717/9 transmits the data byte from the memory address being read. After receiving the data byte, the master device transmits a not-acknowledge followed by a stop condition to complete the single-byte data-read transfer.

Figure 38. Single-Byte Read Transfer

Multiple-Byte Read

A multiple-byte data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes are transmitted by the TAS5717/9 to the master device as shown in Figure 39. Except for the last data byte, the master device responds with an acknowledge bit after receiving each data byte.

Figure 39. Multiple-Byte Read Transfer

Dynamic Range Control (DRC)

The DRC scheme has a single threshold, offset, and slope (all programmable). There is one ganged DRC for the high-band left/right channels and one DRC for the low-band left/right channels.

The DRC input/output diagram is shown in Figure 40.

See the GDE software tool for more description on the T, K, and O parameters.

Professional-quality dynamic range compression automatically adjusts volume to flatten volume level.

- · Each DRC has adjustable threshold levels.
- · Programmable energy, attack, and decay time constants
- Transparent compression: compressors can attack fast enough to avoid apparent clipping before engaging, and decay times can be set slow enough to avoid pumping.

B0265-04

T = 9.23 format, all other DRC coefficients are 3.23 format

Figure 41. DRC Structure

PWM LEVEL METER

The structure in Figure 42 shows the PWM level meter that can be used to study the power profile.

Figure 42. PWM Level Meter Structure

26-Bit 3.23 Number Format

All mixer gain coefficients are 26-bit coefficients using a 3.23 number format. Numbers formatted as 3.23 numbers means that there are 3 bits to the left of the binary point and 23 bits to the right of the binary point. This is shown in Figure 43.

Figure 43. 3.23 Format

The decimal value of a 3.23 format number can be found by following the weighting shown in Figure 43. If the most significant bit is logic 0, the number is a positive number, and the weighting shown yields the correct number. If the most significant bit is a logic 1, then the number is a negative number. In this case every bit must be inverted, a 1 added to the result, and then the weighting shown in Figure 44 applied to obtain the magnitude of the negative number.

Figure 44. Conversion Weighting Factors—3.23 Format to Floating Point

ISTRUMENTS

EXAS

M0127-01

Gain coefficients, entered via the I²C bus, must be entered as 32-bit binary numbers. The format of the 32-bit number (4-byte or 8-digit hexadecimal number) is shown in Figure 45

Figure 45. Alignment of 3.23 Coefficient in 32-Bit I²C Word

	-		
db	Linear	Decimal	Hex (3.23 Format)
0	1	8,388,608	80 0000
5	1.77	14,917,288	00E3 9EA8
-5	0.56	4,717,260	0047 FACC
Х	$L = 10^{(X/20)}$	D = 8388608 × L	H = dec2hex (D, 8)

Table 1. Sample Calculation for 3.23 Format

db	Linear	Decimal	Hex (9.17 Format)
0	1	131,072	20 000
5	1.77	231,997	38 A3D
-5	0.56	73,400	11 EB8
Х	$L = 10^{(X/20)}$	D = 131,072 × L	H = dec2hex (D, 8)

Table 2. Sample Calculation for 9.17 Format

Table 3. Serial Control Interface Register Summary

SUBADDRESS	REGISTER NAME	NO. OF BYTES	CONTENTS	INITIALIZATION VALUE
			A u indicates unused bits.	
0x00	Clock control register	1	Description shown in subsequent section	0x6C
0x01	Device ID register	1	Description shown in subsequent section	0xC1
0x02	Error status register	1	Description shown in subsequent section	0x00
0x03	System control register 1	1	Description shown in subsequent section	0xA0
0x04	Serial data interface register	1	Description shown in subsequent section	0x05
0x05	System control register 2	1	Description shown in subsequent section	0x40
0x06	Soft mute register	1	Description shown in subsequent section	0x00
0x07	Master volume	2	Description shown in subsequent section	0x03FF (mute)
0x08	Channel 1 vol	2	Description shown in subsequent section	0x00C0 (0 dB)
0x09	Channel 2 vol	2	Description shown in subsequent section	0x00C0 (0 dB)
0x0A	Channel 3 vol	2	Description shown in subsequent section	0x00C0 (0 dB)
0x0B-0x0D		1	Reserved ⁽¹⁾	
0x0E	Volume configuration register	1	Description shown in subsequent section	0xF0
0x0F		1	Reserved ⁽¹⁾	
0x10	Modulation limit register	1	Description shown in subsequent section	0x01
0x11	IC delay channel 1	1	Description shown in subsequent section	0xAC
0x12	IC delay channel 2	1	Description shown in subsequent section	0x54
0x13	IC delay channel 3	1	Description shown in subsequent section	0xAC
0x14	IC delay channel 4	1	Description shown in subsequent section	0x54
0x15–0x19		1	Reserved ⁽¹⁾	
0x1A	Start/stop period register	1		0x68
0x1B	Oscillator trim register	1		0x82
0x1C	BKND_ERR register	1		0x57
0x1D-0x1F		1	Reserved ⁽¹⁾	
0x20	Input MUX register	4	Description shown in subsequent section	0x0001 7772
0x21	Ch 4 source select register	4	Description shown in subsequent section	0x0000 4303
0x22-0x24		4	Reserved ⁽¹⁾	
0x25	PWM MUX register	4	Description shown in subsequent section	0x0102 1345
0x26		20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x27	ch1 bg[1]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x28	ch1 bg[2]	20	u[31:26], b0[25:0]	0x0080 0000
_		-	u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
L			-[0], -[-0.0]	0.0000 0000

(1) Reserved registers should not be accessed.

SLOS655A - NOVEMBER 2010-REVISED FEBRUARY 2011

TAS5717

TAS5719

SUBADDRESS	REGISTER NAME	NO. OF BYTES	CONTENTS	INITIALIZATION VALUE
0x29	ch1_bq[3]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x2A	ch1_bq[4]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x2B	ch1_bq[5]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x2C	ch1_bq[6]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x2D	ch1_bq[7]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x2E	ch1_bq[8]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x2F	ch1_bq[9]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x30	ch2_bq[0]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x31	ch2_bq[1]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000

Table 3. Serial Control Interface Register Summary (continued)

www.ti.com

EXAS STRUMENTS

www.ti.com

Table 3. Serial Control Interface Register Summary (continued)

SUBADDRESS	REGISTER NAME	NO. OF BYTES	CONTENTS	INITIALIZATION VALUE
0x32	ch2_bq[2]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x33	ch2_bq[3]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x34	ch2_bq[4]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x35	ch2_bq[5]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x36	ch2_bq[6]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x37	ch2_bq[7]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x38	ch2_bq[8]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x39	ch2_bq[9]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x3A		4		0.0000.0000
0x3B	DRC1 softening filter alpha	8	u[31:26], ae[25:0]	0x0008 0000
	DRC1 softening filter omega		u[31:26], oe[25:0]	0x0078 0000
0x3C	DRC1 attack rate	8		0x0000 0100
	DRC1 release rate			0xFFFF FF00

(2) Reserved registers should not be accessed.

Table 3. Serial Control Interface Register Summary (continued)

SUBADDRESS	REGISTER NAME	NO. OF BYTES	CONTENTS	INITIALIZATION VALUE
0x3D		8	Reserved ⁽³⁾	
0x3E	DRC2 softening filter alpha	8	u[31:26], ae[25:0]	0x0008 0000
	DRC2 softening filter omega		u[31:26], oe[25:0]	0xFFF8 0000
0x3F	DRC2 attack rate	8	u[31:26], at[25:0]	0x0008 0000
	DRC2 release rate		u[31:26], rt[25:0]	0xFFF8 0000
0x40	DRC1 attack threshold	4	T1[31:0] (9.23 format)	0x0800 0000
0x41–0x42		4	Reserved ⁽³⁾	
0x43	DRC2 attack threshold	4	T2[31:0] (9.23 format)	0x0074 0000
0x44–0x45		4	Reserved ⁽³⁾	
0x46	DRC control	4	Description shown in subsequent section	0x0002 0000
0x47–0x4E		4	Reserved ⁽³⁾	
0x4F	PWM switching rate control	4	u[31:4], src[3:0]	0x0000 0008
0x50	EQ control	4	Description shown in subsequent section	0x0F70 8000
0x51	Ch 1 output mixer	8	Ch 1 output mix1[1]	0x0080 0000
			Ch 1 output mix1[0]	0x0000 0000
0x52	Ch 2 output mixer	8	Ch 2 output mix2[1]	0x0080 0000
			Ch 2 output mix2[0]	0x0000 0000
0x53		16	Reserved ⁽³⁾	
0x54		16	Reserved ⁽³⁾	
0x56	Output post-scale	4	u[31:26], post[25:0]	0x0080 0000
0x57	Output pre-scale	4	u[31:26], pre[25:0] (9.17 format)	0x0002 0000
0x58	ch1_bq[10]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x59	ch1_bq[11]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x5A	ch4_bq[0]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x5B	ch4_bq[1]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000

(3) Reserved registers should not be accessed.

TEXAS INSTRUMENTS

www.ti.com

Table 3. Serial Control Interface Register Summary (continued)

SUBADDRESS	REGISTER NAME	NO. OF BYTES	CONTENTS	INITIALIZATION VALUE
0x5C	ch2_bq[10]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x5D	ch2_bq[11]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x5E	ch3_bq[0]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x5F	ch3_bq[1]	20	u[31:26], b0[25:0]	0x0080 0000
			u[31:26], b1[25:0]	0x0000 0000
			u[31:26], b2[25:0]	0x0000 0000
			u[31:26], a1[25:0]	0x0000 0000
			u[31:26], a2[25:0]	0x0000 0000
0x60–0x61		4	Reserved ⁽⁴⁾	
0x62	IDF post scale	4		0x0000 0080
0x63–0x6A			Reserved ⁽⁴⁾	
0x6B	Left channel PWM level meter	4	Data[31:0]	0x0000 0000
0x6C	Right channel PWM level meter	4	Data[31:0]	0x0000 0000
0x6D-0x6F			Reserved ⁽⁴⁾	
0x70	ch1 inline mixer	4	u[31:26], in_mix1[25:0]	0x0080 0000
0x71	inline_DRC_en_mixer_ch1	4	u[31:26], in_mixdrc_1[25:0]	0x0000 0000
0x72	ch1 right_channel mixer	4	u[31:26], right_mix1[25:0]	0x0000 0000
0x73	ch1 left_channel_mixer	4	u[31:26], left_mix_1[25:0]	0x0080 0000
0x74	ch2 inline mixer	4	u[31:26], in_mix2[25:0]	0x0080 0000
0x75	inline_DRC_en_mixer_ch2	4	u[31:26], in_mixdrc_2[25:0]	0x0000 0000
0x76	ch2 left_chanel mixer	4	u[31:26], left_mix1[25:0]	0x0000 0000
0x77	ch2 right_channel_mixer	4	u[31:26], right_mix_1[25:0]	0x0080 0000
0x78–0xF7			Reserved ⁽⁴⁾	
0xF8	Update dev address key	4	Dev ld Update Key[31:0] (Key = 0xF9A5A5A5)	0x0000 0000
0xF9	Update dev address reg	4	u[31:8],New Dev Id[7:0] (New Dev Id = 0x38 for TAS5717/9)	0x0000 0054
0xFA-0xFF		4	Reserved ⁽⁴⁾	

(4) Reserved registers should not be accessed.

All DAP coefficients are 3.23 format unless specified otherwise.

Registers 0x3B through 0x46 should be altered only during the initialization phase.

CLOCK CONTROL REGISTER (0x00)

The clocks and data rates are automatically determined by the TAS5717/9. The clock control register contains the autodetected clock status. Bits D7-D5 reflect the sample rate. Bits D4-D2 reflect the MCLK frequency.

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	0	0	-	-	-	-	-	f _S = 32-kHz sample rate
0	0	1	-	-	1	-	1	Reserved
0	1	0	-	-	1	-	1	Reserved
0	1	1	-	-	Ι	-	1	f _S = 44.1/48-kHz sample rate ⁽¹⁾
1	0	0	_	-	-	-	-	f _S = 16-kHz sample rate
1	0	1	-	-	-	-	-	f _S = 22.05/24-kHz sample rate
1	1	0	-	-	1	-	1	f _S = 8-kHz sample rate
1	1	1	-	-	1	-	1	f _S = 11.025/12-kHz sample rate
-	-	-	0	0	0	-	-	MCLK frequency = $64 \times f_S^{(2)}$
-	-	-	0	0	1	-	-	MCLK frequency = $128 \times f_{S}^{(2)}$
-	-	-	0	1	0	-	-	MCLK frequency = $192 \times f_{S}^{(3)}$
-	-	-	0	1	1	-	-	MCLK frequency = $256 \times f_{S}^{(1)(4)}$
-	Ι	-	1	0	0	-	1	MCLK frequency = $384 \times f_S$
-	-	-	1	0	1	-	-	MCLK frequency = $512 \times f_S$
-	-	-	1	1	0	-	-	Reserved
-	-	-	1	1	1	-	-	Reserved
-	_	-	-	-	_	0	_	Reserved ⁽¹⁾
-	-	-	-	-	-	-	0	Reserved ⁽¹⁾

Table 4. Clock Control Register (0x00)

(1) Default values are in **bold**.

(2)Only available for 44.1-kHz and 48-kHz rates

(3) (4) Rate only available for 32/44.1/48-KHz sample rates

Not available at 8 kHz

DEVICE ID REGISTER (0x01)

The device ID register contains the ID code for the firmware revision.

Table 5. General Status Register (0x01)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	0	0	0	0	0	0	0	Identification code ⁽¹⁾

ERROR STATUS REGISTER (0x02)

The error bits are sticky and are not cleared by the hardware. This means that the software must clear the register (write zeroes) and then read them to determine if they are persistent errors.

Error definitions:

- MCLK error: MCLK frequency is changing. The number of MCLKs per LRCLK is changing.
- SCLK error: The number of SCLKs per LRCLK is changing.
- LRCLK error: LRCLK frequency is changing.
- Frame slip: LRCLK phase is drifting with respect to internal frame sync.

Table 6. Error Status Register (0x02)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
1	-	-	-	-	_	-	_	MCLK error
-	1	-	-	-	_	-	_	PLL autolock error
_	-	1	-	-	_	-	_	SCLK error
_	-	-	1	-	_	-	_	LRCLK error
-	-	-	_	1	_	-	_	Frame slip
_	-	-	_	_	1	_	-	Clip indicator
-	-	-	-	-	_	1	_	Overcurrent, overtemperature, overvoltage, or undervoltage error
0	0	0	0	0	0	0	0	Reserved
0	0	0	0	0	0	0	0	No errors ⁽¹⁾

(1) Default values are in **bold**.

SYSTEM CONTROL REGISTER 1 (0x03)

System control register 1 has several functions:

Bit D7: If 0, the dc-blocking filter for each channel is disabled.

If 1, the dc-blocking filter (-3 dB cutoff <1 Hz) for each channel is enabled.

Bit D5: If 0, use soft unmute on recovery from a clock error. This is a slow recovery. Unmute takes the same time as the volume ramp defined in register 0x0E.

If 1, use hard unmute on recovery from clock error. This is a fast recovery, a single-step volume ramp.

Bits D1–D0: Select de-emphasis

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	-	-	-	-	-	_	-	PWM high-pass (dc blocking) disabled
1	-	-	-	-	_	-	_	PWM high-pass (dc blocking) enabled ⁽¹⁾
-	0	-	Ι	Ι	-	-	Ι	Reserved ⁽¹⁾
-	Ι	0	Ι	Ι	-	-	Ι	Soft unmute on recovery from clock error ⁽¹⁾
-	Ι	1	Ι	Ι	1	-	1	Hard unmute on recovery from clock error
-	Ι	-	1	Ι	1	-	1	Reserved ⁽¹⁾
-	Ι	-	Ι	0		-	Ι	Reserved ⁽¹⁾
-	Ι	-	Ι	Ι	0	-	Ι	Reserved ⁽¹⁾
-	Ι	-	Ι	Ι	-	0	0	No de-emphasis ⁽¹⁾
-	Ι	-	Ι	Ι	1	0	1	De-emphasis for $f_S = 32 \text{ kHz}$
_	-	_	-	-		1	0	De-emphasis for $f_S = 44.1 \text{ kHz}$
-	-	_	-	-	_	1	1	De-emphasis for $f_S = 48 \text{ kHz}$

Table 7. System Control Register 1 (0x03)

(1) Default values are in **bold**.

© 2010–2011, Texas Instruments Incorporated

39

STRUMENTS

XAS

SERIAL DATA INTERFACE REGISTER (0x04)

As shown in Table 8, the TAS5717/9 supports nine serial data modes. The default is 24-bit, I²S mode.

Table 8. Serial Data Interface Control Register (0x04) Format

RECEIVE SERIAL DATA INTERFACE FORMAT	WORD LENGTH	D7–D4	D3	D2	D1	D0
Right-justified	16	0000	0	0	0	0
Right-justified	20	0000	0	0	0	1
Right-justified	24	0000	0	0	1	0
l ² S	16	000	0	0	1	1
l ² S	20	0000	0	1	0	0
I²S ⁽¹⁾	24	0000	0	1	0	1
Left-justified	16	0000	0	1	1	0
Left-justified	20	0000	0	1	1	1
Left-justified	24	0000	1	0	0	0
Reserved		0000	1	0	0	1
Reserved		0000	1	0	1	0
Reserved		0000	1	0	1	1
Reserved		0000	1	1	0	0
Reserved		0000	1	1	0	1
Reserved		0000	1	1	1	0
Reserved		0000	1	1	1	1

SYSTEM CONTROL REGISTER 2 (0x05)

When bit D6 is set low, the system exits all-channel shutdown and starts playing audio; otherwise, the outputs are shut down (hard mute).

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	-	_	_	_	_	-	_	Reserved ⁽¹⁾
_	0	-	_	-	_	-	-	Exit all-channel shutdown (normal operation) ⁽²⁾
_	1	-	_	-	_	-	-	Enter all-channel shutdown (hard mute) ⁽¹⁾
-	-	0	-	-	_	-	-	Reserved ⁽¹⁾
-	-	-	1	-	_	-	-	Headphone Mode
-	-	_	0	-	_	-	-	Speaker Mode
_	-	_	_	1	_	_	_	 In speaker mode, a value of 1 means device is in ternary modulation. In headphone mode, a value of 1 means channel volume in headphone mode = 0x08/0x09 (same as speaker channel volume).
_	_	_	-	0	-	_	_	 In speaker mode, a value of 0 means device is in not in ternary modulation (AD or BD as defined in register 0x25). In headphone mode, 0 means channel volume in headphone mode = 0x0C (headphone volume register). ⁽¹⁾
_	Ι	_	_	_	0	-	-	Reserved ⁽¹⁾
-	-	_	_	_	_	0	_	A_SEL/HP_SD configured as input
_	Ι	_	_	_	_	1	_	A_SEL/HP_SD configured configured as output to use as external HP amplifier shutdown signal
-	-	-	_	-	_	-	0	Internal power stage FAULT signal is the source of A_SEL/HP_SD pin
-	_	-	_	-	_	_	1	HPSDZ is the source of A_SEL/HP_SD pin (set this before switching to headphone mode)

Table 9. System Control Register 2 (0x05	Table 9.	System	Control	Register 2	(0x05
--	----------	--------	---------	-------------------	-------

(1) Default values are in **bold**.

(2) When exiting all-channel shutdown, soft unmute is might not occur unless register 0x03, bit 5 is set to 1.

SOFT MUTE REGISTER (0x06)

Writing a 1 to any of the following bits sets the output of the respective channel to 50% duty cycle (soft mute).

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	0	0	0	0	-	Ι	Ι	Reserved ⁽¹⁾
-	-	Ι	Ι	Ι	1	Ι	Ι	Soft mute channel 3
-	_	Ι	Ι	Ι	0	Ι	Ι	Soft unmute channel 3 ⁽¹⁾
-	_	Ι	Ι	Ι	-	1	Ι	Soft mute channel 2
_	_	-	-	-	-	0	-	Soft unmute channel 2 ⁽¹⁾
_	_	-	-	-	-	-	1	Soft mute channel 1
_	-	-	I	-	-	-	0	Soft unmute channel 1 ⁽¹⁾

Table 10. Soft Mute Register (0x06)

SLOS655A - NOVEMBER 2010-REVISED FEBRUARY 2011

www.ti.com

VOLUME REGISTERS (0x07, 0x08, 0x09)

Step size is 0.125 dB and volume registers are 2 bytes.

Master volume	- 0x07 (default is mute)
Channel-1 volume	- 0x08 (default is 0 dB)
Channel-2 volume	- 0x09 (default is 0 dB)
Headphone volume	- 0x0B (default is 0 dB)

Table 11. Master Volume Table

Value	Level	Value	Level	Value	Level	Value	Level	Value	Level	Value	Level
0x0000	24.000	0x0027	19.250	0x004E	14.250	0x0075	9.375	0x009C	4.500	0x00C3	-0.375
0x0001	23.875	0x0028	19.000	0x004F	14.125	0x0076	9.250	0x009D	4.375	0x00C4	-0.500
0x0002	23.750	0x0029	18.875	0x0050	14.000	0x0077	9.125	0x009E	4.250	0x00C5	-0.625
0x0003	23.625	0x002A	18.750	0x0051	13.875	0x0078	9.000	0x009F	4.125	0x00C6	-0.750
0x0004	23.500	0x002B	18.625	0x0052	13.750	0x0079	8.875	0x00A0	4.000	0x00C7	-0.875
0x0005	23.375	0x002C	18.500	0x0053	13.625	0x007A	8.750	0x00A1	3.875	0x00C8	-1.000
0x0006	23.250	0x002D	18.375	0x0054	13.500	0x007B	8.625	0x00A2	3.750	0x00C9	-1.125
0x0007	23.125	0x002E	18.250	0x0055	13.375	0x007C	8.500	0x00A3	3.625	0x00CA	-1.250
0x0008	23.000	0x002F	18.125	0x0056	13.250	0x007D	8.375	0x00A4	3.500	0x00CB	-1.375
0x0009	22.875	0x0030	18.000	0x0057	13.125	0x007E	8.250	0x00A5	3.375	0x00CC	-1.500
0x000A	22.750	0x0031	17.875	0x0058	13.000	0x007F	8.125	0x00A6	3.250	0x00CD	-1.625
0x000B	22.625	0x0032	17.750	0x0059	12.875	0x0080	8.000	0x00A7	3.125	0x00CE	-1.750
0x000C	22.500	0x0033	17.625	0x005A	12.750	0x0081	7.875	0x00A8	3.000	0x00CF	-1.875
0x000D	22.375	0x0034	17.500	0x005B	12.625	0x0082	7.750	0x00A9	2.875	0x00D0	-2.000
0x000E	22.250	0x0035	17.375	0x005C	12.500	0x0083	7.625	0x00AA	2.750	0x00D1	-2.125
0x000F	22.125	0x0036	17.250	0x005D	12.375	0x0084	7.500	0x00AB	2.625	0x00D2	-2.250
0x0010	22.000	0x0037	17.125	0x005E	12.250	0x0085	7.375	0x00AC	2.500	0x00D3	-2.375
0x0011	21.875	0x0038	17.000	0x005F	12.125	0x0086	7.250	0x00AD	2.375	0x00D4	-2.500
0x0012	21.750	0x0039	16.875	0x0060	12.000	0x0087	7.125	0x00AE	2.250	0x00D5	-2.625
0x0013	21.625	0x003A	16.750	0x0061	11.875	0x0088	7.000	0x00AF	2.125	0x00D6	-2.750
0x0014	21.500	0x003B	16.625	0x0062	11.750	0x0089	6.875	0x00B0	2.000	0x00D7	-2.875
0x0015	21.375	0x003C	16.500	0x0063	11.625	0x008A	6.750	0x00B1	1.875	0x00D8	-3.000
0x0016	21.250	0x003D	16.375	0x0064	11.500	0x008B	6.625	0x00B2	1.750	0x00D9	-3.125
0x0017	21.125	0x003E	16.250	0x0065	11.375	0x008C	6.500	0x00B3	1.625	0x00DA	-3.250
0x0018	21.000	0x003F	16.125	0x0066	11.250	0x008D	6.375	0x00B4	1.500	0x00DB	-3.375
0x0019	20.875	0x0040	16.000	0x0067	11.125	0x008E	6.250	0x00B5	1.375	0x00DC	-3.500
0x001A	20.750	0x0041	15.875	0x0068	11.000	0x008F	6.125	0x00B6	1.250	0x00DD	-3.625
0x001B	20.625	0x0042	15.750	0x0069	10.875	0x0090	6.000	0x00B7	1.125	0x00DE	-3.750
0x001C	20.500	0x0043	15.625	0x006A	10.750	0x0091	5.875	0x00B8	1.000	0x00DF	-3.875
0x001D	20.375	0x0044	15.500	0x006B	10.625	0x0092	5.750	0x00B9	0.875	0x00E0	-4.000
0x001E	20.250	0x0045	15.375	0x006C	10.500	0x0093	5.625	0x00BA	0.750	0x00E1	-4.125
0x001F	20.125	0x0046	15.250	0x006D	10.375	0x0094	5.500	0x00BB	0.625	0x00E2	-4.250
0x0020	20.000	0x0047	15.125	0x006E	10.250	0x0095	5.375	0x00BC	0.500	0x00E3	-4.375
0x0021	19.875	0x0048	15.000	0x006F	10.125	0x0096	5.250	0x00BD	0.375	0x00E4	-4.500
0x0022	19.750	0x0049	14.875	0x0070	10.000	0x0097	5.125	0x00BE	0.250	0x00E5	-4.625
0x0023	19.625	0x004A	14.750	0x0071	9.875	0x0098	5.000	0x00BF	0.125	0x00E6	-4.750
0x0024	19.500	0x004B	14.625	0x0072	9.750	0x0099	4.875	0x00C0	0.000	0x00E7	-4.875
0x0025	19.375	0x004C	14.500	0x0073	9.625	0x009A	4.750	0x00C1	-0.125	0x00E8	-5.000

TAS5717 TAS5719 SLOS655A – NOVEMBER 2010 – REVISED FEBRUARY 2011

www.ti.com

 Table 11. Master Volume Table (continued)

Value	Loval	Value	Loval	Value	Loval	Value		Value	Loval	Value	
Value	Levei	Value		value	Level	Value	Level	value	Levei	Value	Level
0x0026	19.125	0x004D	14.375	0x0074	9.500	0x009B	4.625	0x00C2	-0.250	0x00E9	-5.125
0X00EA	-5.250	0x0119	-11.125	0x0148	-17.000	0x0177	-22.875	00146	-28.750	0x01D5	-34.625
0x00EB	-5.375	0x011A	-11.250	0x0149	-17.125	0x0178	-23.000	0x01A7	-28.875	0x01D6	-34.750
0x00EC	-5.500	0x011B	-11.375	0x014A	-17.250	0x0179	-23.125	0x01A8	-29.000	0x01D7	-34.875
0x00ED	-5.625	0x011C	-11.500	0x014B	-17.375	0x017A	-23.250	0x01A9	-29.125	0x01D8	-35.000
0x00EE	-5.750	0x011D	-11.625	0x014C	-17.500	0x017B	-23.375	0x01AA	-29.250	0x01D9	-35.125
0x00EF	-5.875	0x011E	-11.750	0x014D	-17.625	0x017C	-23.500	0x01AB	-29.375	0x01DA	-35.250
0x00F0	-6.000	0x011F	-11.875	0x014E	-17.750	0x017D	-23.625	0x01AC	-29.500	0x01DB	-35.375
0x00F1	-6.125	0x0120	-12.000	0x014F	-17.875	0x017E	-23.750	0x01AD	-29.625	0x01DC	-35.500
0x00F2	-6.250	0x0121	-12.125	0x0150	-18.000	0x017F	-23.875	0x01AE	-29.750	0x01DD	-35.625
0x00F3	-6.375	0x0122	-12.250	0x0151	-18.125	0x0180	-24.000	0x01AF	-29.875	0x01DE	-35.750
0x00F4	-6.500	0x0123	-12.375	0x0152	-18.250	0x0181	-24.125	0x01B0	-30.000	0x01DF	-35.875
0x00F5	-6.625	0x0124	-12.500	0x0153	-18.375	0x0182	-24.250	0x01B1	-30.125	0x01E0	-36.000
0x00F6	-6.750	0x0125	-12.625	0x0154	-18.500	0x0183	-24.375	0x01B2	-30.250	0x01E1	-36.125
0x00F7	-6.875	0x0126	-12.750	0x0155	-18.625	0x0184	-24.500	0x01B3	-30.375	0x01E2	-36.250
0x00F8	-7.000	0x0127	-12.875	0x0156	-18.750	0x0185	-24.625	0x01B4	-30.500	0x01E3	-36.375
0x00F9	-7.125	0x0128	-13.000	0x0157	-18.875	0x0186	-24.750	0x01B5	-30.625	0x01E4	-36.500
0x00FA	-7.250	0x0129	-13.125	0x0158	-19.000	0x0187	-24.875	0x01B6	-30.750	0x01E5	-36.625
0x00FB	-7.375	0x012A	-13.250	0x0159	-19.125	0x0188	-25.000	0x01B7	-30.875	0x01E6	-36.750
0x00FC	-7.500	0x012B	-13.375	0x015A	-19.250	0x0189	-25.125	0x01B8	-31.000	0x01E7	-36.875
0x00FD	-7.625	0x012C	-13.500	0x015B	-19.375	0x018A	-25.250	0x01B9	-31.125	0x01E8	-37.000
0x00FE	-7.750	0x012D	-13.625	0x015C	-19.500	0x018B	-25.375	0x01BA	-31.250	0x01E9	-37.125
0x00FF	-7.875	0x012F	-13,750	0x015D	-19.625	0x018C	-25.500	0x01BB	-31.375	0x01FA	-37,250
0x0100	-8.000	0x012F	-13.875	0x015E	-19.750	0x018D	-25.625	0x01BC	-31.500	0x01FB	-37.375
0x0101	-8 125	0x0130	-14 000	0x015E	-20.875	0x018E	-25 750	0x01BD	-31 625	0x01EC	-37 500
0x0102	-8.250	0x0131	-14,125	0x0160	-20.000	0x018F	-25.875	0x01BF	-31.750	0x01FD	-37.625
0x0103	-8.375	0x0132	-14 250	0x0161	-20 125	0x0190	-26,000	0x01BE	-31 875	0x01EE	-37 750
0x0104	-8 500	0x0133	_14 375	0x0162	_20.250	0x0101	_26 125	0x01C0	_32.000		_37.875
0x0104	-0.000	0x0134	-14.500	0x0163	-20.230	0x0102	-26.250	0x01C1	_32 125	0x01E0	_38.000
0x0105	9 750	0x0134	14.625	0x0164	20.575	0x0102	-20.230	0x01C1	22.125	0x01E1	-30.000
0x0100	-0.750	0x0135	-14.025	0x0165	-20.500	0x0193	-20.373	0x01C2	-32.230	0x01E2	-30.123
0x0107	-0.075	0x0130	-14.750	0x0166	-20.025	0x0194	-20.500	0x01C3	-32.373	0x01F2	-30.230
0.0100	-9.000	0x0137	-14.075	00100	-20.750	0x0195	-20.025	0x0104	-32.500	0.01F3	-30.575
0x0109	-9.125	0x0138	-15.000	0x0167	-20.875	0x0196	-26.750	0x0105	-32.625	0x01F4	-38.500
0x010A	-9.250	0x0139	-15.125	0x0168	-21.000	0x0197	-26.875	0x01C6	-32.750	0x01F5	-38.625
0X010B	-9.375	0X013A	-15.250	0x0169	-21.125	0x0198	-27.000	0x01C7	-32.875	0X01F6	-38.750
0x010C	-9.500	0x013B	-15.375	0x016A	-21.250	0x0199	-27.125	0x01C8	-33.000	0x01F7	-38.875
0x010D	-9.625	0x013C	-15.500	0x016B	-21.375	0x019A	-27.250	0x01C9	-33.125	0x01F8	-39.000
0x010E	-9.750	0x013D	-15.625	0x016C	-21.500	0x019B	-27.375	0x01CA	-33.250	0x01F9	-39.125
0x010F	-9.875	0x013E	-15.750	0x016D	-21.625	0x019C	-27.500	0x01CB	-33.375	0x01FA	-39.250
0x0110	-10.000	0x013F	-15.875	0x016E	-21.750	0x019D	-27.625	0x01CC	-33.500	0x01FB	-39.375
0x0111	-10.125	0x0140	-16.000	0x016F	-21.875	0x019E	-27.750	0x01CD	-33.625	0x01FC	-39.500
0x0112	-10.250	0x0141	-16.125	0x0170	-22.000	0x019F	-27.875	0x01CE	-33.750	0x01FD	-39.625
0x0113	-10.375	0x0142	-16.250	0x0171	-22.125	0x01A0	-28.000	0x01CF	-33.875	0x01FE	-39.750
0x0114	-10.500	0x0143	-16.375	0x0172	-22.250	0x01A1	-28.125	0x01D0	-34.000	0x01FF	-39.875
0x0115	-10.625	0x0144	-16.500	0x0173	-22.375	0x01A2	-28.250	0x01D1	-34.125	0x0200	-40.000
0x0116	-10.750	0x0145	-16.625	0x0174	-22.500	0x01A3	-28.375	0x01D2	-34.250	0x0201	-40.125
0x0117	-10.875	0x0146	-16.750	0x0175	-22.625	0x01A4	-28.500	0x01D3	-34.375	0x0202	-40.250

© 2010–2011, Texas Instruments Incorporated

Submit Documentation Feedback 43

TEXAS INSTRUMENTS

www.ti.com

Table 11. Master	Volume Table	(continued)
------------------	--------------	-------------

Value	Level	Value	Level	Value	Level	Value	Level	Value	Level	Value	Level
0x0118	-11.000	0x0147	–16.875	0x0176	-22.750	0x01A5	-28.625	0x01D4	-34.500	0x0203	-40.375
0x0204	-40.500	0x0233	-46.375	0x0262	-52.250	0x0291	-58.250	0x02C0	-64.000	0x02EF	-69.875
0x0205	-40.625	0x0234	-46.500	0x0263	-52.375	0x0292	-58.125	0x02C1	-64.125	0x02F0	-70.000
0x0206	-40.750	0x0235	-46.625	0x0264	-52.500	0x0293	-58.375	0x02C2	-64.250	0x02F1	-70.125
0x0207	-40.875	0x0236	-46.750	0x0265	-52.625	0x0294	-58.500	0x02C3	-64.375	0x02F2	-70.250
0x0208	-41.000	0x0237	-46.875	0x0266	-52.750	0x0295	-58.625	0x02C4	-64.500	0x02F3	-70.375
0x0209	-41.125	0x0238	-47.000	0x0267	-52.875	0x0296	-58.750	0x02C5	-64.625	0x02F4	-70.500
0x020A	-41.250	0x0239	-47.125	0x0268	-53.000	0x0297	-58.875	0x02C6	-64.750	0x02F5	-70.625
0x020B	-41.375	0x023A	-47.250	0x0269	-53.125	0x0298	-59.000	0x02C7	-64.875	0x02F6	-70.750
0x020C	-41.500	0x023B	-47.375	0x026A	-53.250	0x0299	-59.125	0x02C8	-65.000	0x02F7	-70.875
0x020D	-41.625	0x023C	-47.500	0x026B	-53.375	0x029A	-59.250	0x02C9	-65.125	0x02F8	-71.000
0x020E	-41.750	0x023D	-47.625	0x026C	-53.500	0x029B	-59.375	0x02CA	-65.250	0x02F9	-71.125
0x020F	-41.875	0x023E	-47,750	0x026D	-53.625	0x029C	-59.500	0x02CB	-65.375	0x02FA	-71.250
0x0210	-42 000	0x023E	-47 875	0x026E	-53 750	0x029D	-59 625	0x02CC	-65 500	0x02FB	-71 375
0x0210	-42 125	0x0240	-48 000	0x026E	-53 875	0x029E	-59 750	0x02CD	-65.625	0x02FC	-71 500
0x0211	-42 250	0x0240	-48 125	0x0201	_54 000	0x020E	_59.875	0x02CE	-65 750	0x02FD	_71.625
0x0212	-42.200	0x0241	-48 250	0x0270	-54 125	0x0201	-60.000	0x020E	-65 875		_71.750
0x0213	42.575	0x0242	40.230	0x0271	-J4.12J	0x02A0	-00.000	0x0201	-03.073		71.075
0x0214	-42.500	0x0243	-40.375	0x0272	-04.200	0x02A1	-00.125	0x02D0	-00.000	0x02FF	72,000
0x0215	-42.020	0x0244	-46.000	0x0273	-04.370	0x02A2	-60.250	0x02D1	-00.125	0x0300	-72.000
0x0216	-42.750	0x0245	-48.625	0x0274	-54.500	0x02A3	-60.375	0x02D2	-66.250	0x0301	-72.125
0x0217	-42.875	0x0246	-48.750	0x0275	-54.625	0x02A4	-60.500	0x02D3	-66.375	0x0302	-72.250
0x0218	-43.000	0x0247	-48.875	0x0276	-54.750	0x02A5	-60.625	0x02D4	-66.500	0x0303	-72.375
0x0219	-43.125	0x0248	-49.000	0x0277	-54.875	0x02A6	-60.750	0x02D5	-66.625	0x0304	-72.500
0x021A	-43.250	0x0249	-49.125	0x0278	-55.000	0x02A7	-60.875	0x02D6	-66.750	0x0305	-72.625
0x021B	-43.375	0x024A	-49.250	0x0279	-55.125	0x02A8	-61.000	0x02D7	-66.875	0x0306	-72.750
0x021C	-43.500	0x024B	-49.375	0x027A	-55.250	0x02A9	-61.125	0x02D8	-67.000	0x0307	-72.875
0x021D	-43.625	0x024C	-49.500	0x027B	-55.375	0x02AA	-61.250	0x02D9	-67.125	0x0308	-73.000
0x021E	-43.750	0x024D	-49.625	0x027C	-55.500	0x02AB	-61.375	0x02DA	-67.250	0x0309	-73.125
0x021F	-43.875	0x024E	-49.750	0x027D	-55.625	0x02AC	-61.500	0x02DB	-67.375	0x030A	-73.250
0x0220	-44.000	0x024F	-49.875	0x027E	-55.750	0x02AD	-61.625	0x02DC	-67.500	0x030B	-73.375
0x0221	-44.125	0x0250	-50.000	0x027F	-55.875	0x02AE	-61.750	0x02DD	-67.625	0x030C	-73.500
0x0222	-44.250	0x0251	-50.125	0x0280	-56.000	0x02AF	-61.875	0x02DE	-67.750	0x030D	-73.625
0x0223	-44.375	0x0252	-50.250	0x0281	-56.250	0x02B0	-62.000	0x02DF	-67.875	0x030E	-73.750
0x0224	-44.500	0x0253	-50.375	0x0282	-56.125	0x02B1	-62.125	0x02E0	-68.000	0x030F	-73.875
0x0225	-44.625	0x0254	-50.500	0x0283	-56.375	0x02B2	-62.250	0x02E1	-68.125	0x0310	-74.000
0x0226	-44.750	0x0255	-50.625	0x0284	-56.500	0x02B3	-62.375	0x02E2	-68.250	0x0311	-74.250
0x0227	-44.875	0x0256	-50.750	0x0285	-56.625	0x02B4	-62.500	0x02E3	-68.375	0x0312	-74.125
0x0228	-45.000	0x0257	-50.875	0x0286	-56.750	0x02B5	-62.625	0x02E4	-68.500	0x0313	-74.375
0x0229	-45.125	0x0258	-51.000	0x0287	-56.875	0x02B6	-62.750	0x02E5	-68.625	0x0314	-74.500
0x022A	-45.250	0x0259	-51.125	0x0288	-57.000	0x02B7	-62.875	0x02E6	-68.750	0x0315	-74.625
0x022B	-45.375	0x025A	-51.250	0x0289	-57.125	0x02B8	-63.000	0x02E7	-68.875	0x0316	-74.750
0x022C	-45,500	0x025B	-51,375	0x028A	-57,250	0x02B9	-63,125	0x02E8	-69,000	0x0317	-74.875
0x0220	-45 625	0x025C	-51.500	0x028B	_57.375	0x02BA	-63 250	0x02E9	-69 125	0x0318	-75 000
0x022D	_45 750	0x0250	_51 625	0x020D	_57 500		_62 275		_60.720	0x0310	_75 125
	_45 875		_51 750	0x0200	_57 625	0x0200	-63 500		_60 375	0x0314	_75 250
0x0220	_46.000	0x025E	-51.750	0x020D	-57 750		-03.000		-60 500	0x031A	-75 275
0x0230	-40.000	0x020F	-01.070		-31.130 E7 075		-03.020 62.750		-03.000	0x0310	75 500
UXU231	-40.125	UXU260	–∋∠.000	UXUZØF	-51.875	UXU2BE	-03.750	UXU2ED	-09.025	0x031C	-10.000

TAS5717 TAS5719 SLOS655A – NOVEMBER 2010 – REVISED FEBRUARY 2011

www.ti.com

 Table 11. Master Volume Table (continued)

r								,			
Value	Level										
0x0232	-46.250	0x0261	-52.125	0x0290	-58.000	0x02BF	-63.875	0x02EE	-69.750	0x031D	-75.625
0x031E	-75.750	0x0344	-80.500	0x036A	-85.250	0x0390	-90.000	0x03B6	-94.750	0x03DC	-99.500
0x031F	-75.875	0x0345	-80.625	0x036B	-85.375	0x0391	-90.125	0x03B7	-94.875	0x03DD	-99.625
0x0320	-76.000	0x0346	-80.750	0x036C	-85.500	0x0392	-90.250	0x03B8	-95.000	0x03DE	-99.750
0x0321	-76.125	0x0347	-80.875	0x036D	-85.625	0x0393	-90.375	0x03B9	-95.125	0x03DF	-99.875
0x0322	-76.250	0x0348	-81.000	0x036E	-85.750	0x0394	-90.500	0x03BA	-95.250	0x03E0	-100.000
0x0323	-76.375	0x0349	-81.125	0x036F	-85.875	0x0395	-90.625	0x03BB	-95.375	0x03E1	-100.125
0x0324	-76.500	0x034A	-81.250	0x0370	-86.000	0x0396	-90.750	0x03BC	-95.500	0x03E2	-100.250
0x0325	-76.625	0x034B	-81.375	0x0371	-86.125	0x0397	-90.875	0x03BD	-95.625	0x03E3	-100.375
0x0326	-76.750	0x034C	-81.500	0x0372	-86.250	0x0398	-91.000	0x03BE	-95.750	0x03E4	-100.500
0x0327	-76.875	0x034D	-81.625	0x0373	-86.375	0x0399	-91.125	0x03BF	-95.875	0x03E5	-100.625
0x0328	-77.000	0x034E	-81.750	0x0374	-86.500	0x039A	-91.250	0x03C0	-96.000	0x03E6	-100.750
0x0329	-77.125	0x034F	-81.875	0x0375	-86.625	0x039B	-91.375	0x03C1	-96.125	0x03E7	-100.875
0x032A	-77.250	0x0350	-82.000	0x0376	-86.750	0x039C	-91.500	0x03C2	-96.250	0x03E8	-101.000
0x032B	-77.375	0x0351	-82.125	0x0377	-86.875	0x039D	-91.625	0x03C3	-96.375	0x03E9	-101.125
0x032C	-77.500	0x0352	-82.250	0x0378	-87.000	0x039E	-91.750	0x03C4	-96.500	0x03EA	-101.250
0x032D	-77.625	0x0353	-82.375	0x0379	-87.125	0x039F	-91.875	0x03C5	-96.625	0x03EB	-101.375
0x032E	-77.750	0x0354	-82.500	0x037A	-87.250	0x03A0	-92.000	0x03C6	-96.750	0x03EC	-101.500
0x032F	-77.875	0x0355	-82.625	0x037B	-87.375	0x03A1	-92.125	0x03C7	-96.875	0x03ED	-101.625
0x0330	-78.000	0x0356	-82.750	0x037C	-87.500	0x03A2	-92.250	0x03C8	-97.000	0x03EE	-101.750
0x0331	-78.125	0x0357	-82.875	0x037D	-87.625	0x03A3	-92.375	0x03C9	-97.125	0x03EF	-101.875
0x0332	-78.250	0x0358	-83.000	0x037E	-87.750	0x03A4	-92.500	0x03CA	-97.250	0x03F0	-102.000
0x0333	-78.375	0x0359	-83.125	0x037F	-87.875	0x03A5	-92.625	0x03CB	-97.375	0x03F1	-102.125
0x0334	-78.500	0x035A	-83.250	0x0380	-88.000	0x03A6	-92.750	0x03CC	-97.500	0x03F2	-102.250
0x0335	-78.625	0x035B	-83.375	0x0381	-88.125	0x03A7	-92.875	0x03CD	-97.625	0x03F3	-102.375
0x0336	-78.750	0x035C	-83.500	0x0382	-88.250	0x03A8	-93.000	0x03CE	-97.750	0x03F4	-102.500
0x0337	-78.875	0x035D	-83.625	0x0383	-88.375	0x03A9	-93.125	0x03CF	-97.875	0x03F5	-102.625
0x0338	-79.000	0x035E	-83.750	0x0384	-88.500	0x03AA	-93.250	0x03D0	-98.000	0x03F6	-102.750
0x0339	-79.125	0x035F	-83.875	0x0385	-88.625	0x03AB	-93.375	0x03D1	-98.125	0x03F7	-102.875
0x033A	-79.250	0x0360	-84.000	0x0386	-88.750	0x03AC	-93.500	0x03D2	-98.250	0x03F8	-103.000
0x033B	-79.375	0x0361	-84.125	0x0387	-88.875	0x03AD	-93.625	0x03D3	-98.375	0x03F9	-103.125
0x033C	-79.500	0x0362	-84.250	0x0388	-89.000	0x03AE	-93.750	0x03D4	-98.500	0x03FA	-103.250
0x033D	-79.625	0x0363	-84.375	0x0389	-89.125	0x03AF	-93.875	0x03D5	-98.625	0x03FB	-103.375
0x033E	-79.750	0x0364	-84.500	0x038A	-89.250	0x03B0	-94.000	0x03D6	-98.750	0x03FC	-103.500
0x033F	-79.875	0x0365	-84.625	0x038B	-89.375	0x03B1	-94.125	0x03D7	-98.875	0x03FD	-103.625
0x0340	-80.000	0x0366	-84.750	0x038C	-89.500	0x03B2	-94.250	0x03D8	-99.000	0x03FE	-103.750
0x0341	-80.250	0x0367	-84.875	0x038D	-89.625	0x03B3	-94.375	0x03D9	-99.125	0x03FF	Mute
0x0341	-80.250	0x0368	-85.000	0x038E	-89.750	0x03B4	-94.500	0x03DA	-99.250		
0x0343	-80.375	0x0369	-85.125	0x038F	-89.875	0x03B5	-94.625	0x03DB	-99.375		

VOLUME CONFIGURATION REGISTER (0x0E)

Bits Volume slew rate (used to control volume change and MUTE ramp rates). These bits control the

D2–D0: number of steps in a volume ramp. Volume steps occur at a rate that depends on the sample rate of the I²S data as follows:

Sample rate (kHz)	Approximate ramp rate
8/16/32	125 µs/step
11.025/22.05/44.1	90.7 µs/step
12/24/48	83.3 µs/step

Table 12. Volume Configuration Register (0x0E)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
1	0	0	1	0	-	-	-	Reserved ⁽¹⁾
-	-	-	Ι	-	0	0	0	Volume slew 512 steps (43 ms volume ramp time at 48 kHz) ⁽¹⁾
-	-	-	Ι	-	0	0	1	Volume slew 1024 steps (85-ms volume ramp time at 48 kHz)
-	-	-	Ι	-	0	1	0	Volume slew 2048 steps (171-ms volume ramp time at 48 kHz)
-	-	-	Ι	-	0	1	1	Volume slew 256 steps (21-ms volume ramp time at 48 kHz)
_	_	_	-	_	1	Х	Х	Reserved

(1) Default values are in **bold**.

MODULATION LIMIT REGISTER (0x10)

Table 13. Modulation Limit Register (0x10)

D7	D6	D5	D4	D3	D2	D1	D0	MODULATION LIMIT
0	0	0	0	0	_	_	_	Reserved
-	-	_	-	-	0	0	0	99.2%
_	Ι	_	-	_	0	0	1	98.4%
_	-	_	_	_	0	1	0	97.7% ⁽¹⁾
_	Ι	_	-	_	0	1	1	96.9%
_	Ι	_	-	_	1	0	0	96.1%
-	-	_	-	-	1	0	1	95.3%
-	-	_	-	-	1	1	0	94.5%
_	Ι	_	-	_	1	1	1	93.8%

INTERCHANNEL DELAY REGISTERS (0x11, 0x12, 0x13, and 0x14)

Internal PWM channels 1, 2, $\overline{1}$, and $\overline{2}$ are mapped into registers 0x11, 0x12, 0x13, and 0x14.

BITS DEFINITION	D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
	0	0	0	0	0	0	_	_	Minimum absolute delay, 0 DCLK cycles
	0	1	1	1	1	1	_	_	Maximum positive delay, 31 × 4 DCLK cycles
	1	0	0	0	0	0	-	-	Maximum negative delay, -32 × 4 DCLK cycles
							0	0	Reserved
SUBADDRESS	D7	D6	D5	D4	D3	D2	D1	D0	Delay = (value) × 4 DCLKs
0x11	1	0	1	0	1	1	-	-	Default value for channel 1 ⁽¹⁾
0x12	0	1	0	1	0	1	_	_	Default value for channel 2 ⁽¹⁾
0x13	1	0	1	0	1	1	_	_	Default value for channel 1 ⁽¹⁾
0x14	0	1	0	1	0	1	_	_	Default value for channel 2 ⁽¹⁾

Table 14. Channel Interchannel Delay Register Format

(1) Default values are in **bold**.

ICD settings have high impact on audio performance (e.g., dynamic range, THD, crosstalk, etc.) Therefore, appropriate ICD settings must be used. By default, the device has ICD settings for the AD mode. If used in BD mode, then update these registers before coming out of all-channel shutdown.

MODE	AD MODE	BD MODE
0x11	AC	B8
0x12	54	60
0x13	AC	A0
0x14	54	48

PWM SHUTDOWN GROUP REGISTER (0x19)

Settings of this register determine which PWM channels are active. The value should be 0x30 for BTL mode and 0x3A for PBTL mode. The default value of this register is 0x30. The functionality of this register is tied to the state of bit D5 in the system control register.

This register defines which channels belong to the shutdown group (SDG). If a 1 is set in the shutdown group register, that particular channel is **not** started following an exit *out of all-channel shutdown* command (if bit D5 is set to 0 in system control register 2, 0x05).

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	-	Ι	-	_	_	-	-	Reserved ⁽¹⁾
-	0	-	-	_	_	-	-	Reserved ⁽¹⁾
-	-	1	-	_	-	-	-	Reserved ⁽¹⁾
-	-	-	1	_	-	-	-	Reserved ⁽¹⁾
_	-	-	-	0	_	-	-	PWM channel 4 does not belong to shutdown group. ⁽¹⁾
-	Ι	Ι	Ι	1	-	-	-	PWM channel 4 belongs to shutdown group.
-	Ι	Ι	Ι	-	0	-	-	PWM channel 3 does not belong to shutdown group. ⁽¹⁾
-	-	-	-	_	1	-	-	PWM channel 3 belongs to shutdown group.
-	-	Ι	-	_	-	0	-	PWM channel 2 does not belong to shutdown group. ⁽¹⁾
-	_	_	_	_	-	1	-	PWM channel 2 belongs to shutdown group.
-	_	_	_	_	-	-	0	PWM channel 1 does not belong to shutdown group. ⁽¹⁾
_	_	_	_	_	_	_	1	PWM channel 1 belongs to shutdown group.

Table 15. PWM Shutdown	Group	Register	(0x19)
------------------------	-------	----------	--------

START/STOP PERIOD REGISTER (0x1A)

This register is used to control the soft-start and soft-stop period following an enter/exit all-channel shutdown command or change in the PDN state. This helps reduce pops and clicks at start-up and shutdown. The times are only approximate and vary depending on device activity level and l²S clock stability.

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	-	-	-	_	Ι	-	-	SSTIMER enabled ⁽¹⁾
1	-	-	-	_	Ι	-	-	SSTIMER disabled
-	0	0	-	_	Ι	-	-	Reserved ⁽¹⁾
-	-	-	0	0	Ι	-	-	No 50% duty cycle start/stop period
-	_	-	0	1	0	0	0	16.5-ms 50% duty cycle start/stop period
-	_	-	0	1	0	0	1	23.9-ms 50% duty cycle start/stop period
-	-	-	0	1	0	1	0	31.4-ms 50% duty cycle start/stop period
-	-	-	0	1	0	1	1	40.4-ms 50% duty cycle start/stop period
—	_	-	0	1	1	0	0	53.9-ms 50% duty cycle start/stop period
-	_	-	0	1	1	0	1	70.3-ms 50% duty cycle start/stop period
-	_	-	0	1	1	1	0	94.2-ms 50% duty cycle start/stop period
-	-	-	0	1	1	1	1	125.7-ms 50% duty cycle start/stop period ⁽¹⁾
-	-	-	1	0	0	0	0	164.6-ms 50% duty cycle start/stop period
—	_	-	1	0	0	0	1	239.4-ms 50% duty cycle start/stop period
_	_	-	1	0	0	1	0	314.2-ms 50% duty cycle start/stop period
_	_	-	1	0	0	1	1	403.9-ms 50% duty cycle start/stop period
—	_	-	1	0	1	0	0	538.6-ms 50% duty cycle start/stop period
-	_	-	1	0	1	0	1	703.1-ms 50% duty cycle start/stop period
-	_	-	1	0	1	1	0	942.5-ms 50% duty cycle start/stop period
_	_	-	1	0	1	1	1	1256.6-ms 50% duty cycle start/stop period
_	_	-	1	1	0	0	0	1728.1-ms 50% duty cycle start/stop period
-	_	-	1	1	0	0	1	2513.6-ms 50% duty cycle start/stop period
-	-	-	1	1	0	1	0	3299.1-ms 50% duty cycle start/stop period
-	-	-	1	1	0	1	1	4241.7-ms 50% duty cycle start/stop period
_	_	-	1	1	1	0	0	5655.6-ms 50% duty cycle start/stop period
_	_	-	1	1	1	0	1	7383.7-ms 50% duty cycle start/stop period
_	_	-	1	1	1	1	0	9897.3-ms 50% duty cycle start/stop period
-	-	-	1	1	1	1	1	13,196.4-ms 50% duty cycle start/stop period

Table 16. Start/Stop Period Register (0x1A)

OSCILLATOR TRIM REGISTER (0x1B)

The TAS5717/9 PWM processor contains an internal oscillator to support autodetect of I^2S clock rates. This reduces system cost because an external reference is not required. Currently, TI recommends a reference resistor value of 18.2 k Ω (1%). This should be connected between OSC_RES and DVSSO.

Writing 0x00 to register 0x1B enables the trim that was programmed at the factory.

Note that trim must always be run following reset of the device.

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
1	-	_	-	-	-	Ι	-	Reserved ⁽¹⁾
_	0	_	-	_	_	-	-	Oscillator trim not done (read-only) ⁽¹⁾
-	1	-	-	-	-	١	-	Oscillator trim done (read only)
-	-	0	0	0	0	Ι	-	Reserved ⁽¹⁾
-	_	_	_	-	_	0	_	Select factory trim (Write a 0 to select factory trim; default is 1.)
-	_	_	_	-	_	1	_	Factory trim disabled ⁽¹⁾
-	_	_	_	-	_	-	0	Reserved ⁽¹⁾

Table 17. Oscillator Trim Register (0x1B)

(1) Default values are in **bold**.

BKND_ERR REGISTER (0x1C)

When a back-end error signal is received from the internal power stage, the power stage is reset, stopping all PWM activity. Subsequently, the modulator waits approximately for the time listed in Table 18 before attempting to re-start the power stage.

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	0	0	0	-	_	-	-	Headphone enable time = 0 ms
0	0	0	1	-	_	-	-	Headphone enable time = 2 ms
0	0	1	0	-	_	-	-	Headphone enable time = 4 ms
0	0	1	1	-	_	-	-	Headphone enable time = 6 ms
0	1	0	0	-	_	-	-	Headphone enable time = 8 ms
0	1	0	1	1	_	_	1	Headphone enable time = 10 ms ⁽¹⁾
0	1	1	0	_	-	-	_	Headphone enable time = 12 ms
0	1	1	1	Ι	-	-	Ι	Headphone enable time = 14 ms
1	0	0	0	Ι	-	-	Ι	Headphone enable time = 16 ms
1	0	0	1	Ι	-	-	Ι	Headphone enable time = 18 ms
1	0	1	0	Ι	-	-	Ι	Headphone enable time = 20 ms
1	0	1	1	Ι	-	-	Ι	Headphone enable time = 22 ms
1	1	0	0	-	_	-	-	Headphone enable time = 24 ms
1	1	0	1	Ι	-	-	Ι	Headphone enable time = 26 ms
1	1	1	0	Ι	-	-	Ι	Headphone enable time = 28 ms
1	1	1	1	Ι	-	-	Ι	Headphone enable time = 30 ms
_	-	-	-	0	0	1	0	Set back-end reset period to 299 ms ⁽¹⁾
_	_	-	-	0	0	1	1	Set back-end reset period to 449 ms
_	_	-	-	0	1	0	0	Set back-end reset period to 598 ms
_	-	-	-	0	1	0	1	Set back-end reset period to 748 ms
_	-	-	-	0	1	1	0	Set back-end reset period to 898 ms
_	_	-	-	0	1	1	1	Set back-end reset period to 1047 ms
_	_	-	-	1	0	0	0	Set back-end reset period to 1197 ms

Table 18. BKND_ERR Register (0x1C)

TAS5717 TAS5719 SLOS655A – NOVEMBER 2010 – REVISED FEBRUARY 2011

www.ti.com

Table 18. BKND_ERR Register (0x1C) (continued)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
-	-	-	-	1	0	0	1	Set back-end reset period to 1346 ms
-	-	-	-	1	0	1	Х	Set back-end reset period to 1496 ms
-	-	-	-	1	1	Х	Х	Set back-end reset period to 1496 ms

INPUT MULTIPLEXER REGISTER (0x20)

This register controls the modulation scheme (AD or BD mode) as well as the routing of I^2S audio to the internal channels.

D31	D30	D29	D28	D27	D26	D25	D24	FUNCTION
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾
D23	D22	D21	D20	D19	D18	D17	D16	FUNCTION
0	_	_	_	_	_	_	_	Channel-1 AD mode ⁽¹⁾
1	_	_	_	_	_	_	-	Channel-1 BD mode
-	0	0	0	-	-	-	-	SDIN-L to channel 1 ⁽¹⁾
_	0	0	1	-	-	_	-	SDIN-R to channel 1
_	0	1	0	-	-	_	-	Reserved
-	0	1	1	-	-	_	-	Reserved
-	1	0	0	-	-	-	-	Reserved
-	1	0	1	-	-	-	-	Reserved
_	1	1	0	-	-	_	-	Ground (0) to channel 1
_	1	1	1	-	-	_	-	Reserved
-	_	-	_	0	-	_	-	Channel 2 AD mode ⁽¹⁾
-	_	-	-	1	-	-	-	Channel 2 BD mode
-	_	-	-	-	0	0	0	SDIN-L to channel 2
_	_	_	_	-	0	0	1	SDIN-R to channel 2 ⁽¹⁾
-	_	-	-	-	0	1	0	Reserved
-	_	-	-	-	0	1	1	Reserved
-	_	-	-	-	1	0	0	Reserved
-	_	-	-	-	1	0	1	Reserved
_	_	_	_	-	1	1	0	Ground (0) to channel 2
_	_	-	-	-	1	1	1	Reserved
D15	D14	D13	D12	D11	D10	D9	D8	FUNCTION
0	1	1	1	0	1	1	1	Reserved ⁽¹⁾
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	1	1	1	0	0	1	0	Reserved ⁽¹⁾

Table 19. Input Multiplexer Register (0x20)

CHANNEL 4 SOURCE SELECT REGISTER (0x21)

This register selects the channel 4 source.

					.u. 3ubc		Control	Register (0x21)
D31	D30	D29	D28	D27	D26	D25	D24	FUNCTION
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾
D23	D22	D21	D20	D19	D18	D17	D16	FUNCTION
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾
D15	D14	D13	D12	D11	D10	D9	D8	FUNCTION
0	1	0	0	0	0	1	-	Reserved ⁽¹⁾
_	_	-	-	_	_	_	0	(L + R)/2
_	-	Ι	-	_	-	-	1	Left-channel post-BQ ⁽¹⁾
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	0	0	0	0	0	1	1	Reserved ⁽¹⁾

Table 20. Subchannel Control Register (0x21)

(1) Default values are in **bold**.

PWM OUTPUT MUX REGISTER (0x25)

This DAP output mux selects which internal PWM channel is output to the external pins. Any channel can be output to any external output pin.

Bits D21–D20:	Selects which PWM channel is output to OUT_A
Bits D17–D16:	Selects which PWM channel is output to OUT_B
Bits D13–D12:	Selects which PWM channel is output to OUT_C
Bits D09–D08:	Selects which PWM channel is output to OUT_D

Note that channels are encoded so that channel 1 = 0x00, channel 2 = 0x01, ..., channel 4 = 0x03.

D31	D30	D29	D28	D27	D26	D25	D24	FUNCTION				
0	0	0	0	0	0	0	1	Reserved ⁽¹⁾				
D23	D22	D21	D20	D19	D18	D17	D16	FUNCTION				
0	0	-	-	-	-	_	_	Reserved ⁽¹⁾				
-	_	0	0	-	-	_	_	Multiplex channel 1 to OUT_A ⁽¹⁾				
-	-	0	1	-	-	-	-	Multiplex channel 2 to OUT_A				
-	_	1	0	-	-	_	-	Multiplex channel 1 to OUT_A				
-	_	1	1	-	-	_	-	Multiplex channel 2 to OUT_A				
_	_	-	-	0	0	_	_	Reserved ⁽¹⁾				
-	_	-	-	-	-	0	0	Multiplex channel 1 to OUT_B				
_	_	-	-	-	-	0	1	Multiplex channel 2 to OUT_B				
-	-	-	-	-	-	1	0	Multiplex channel 1 to OUT_B ⁽¹⁾				
_	_	_	_	_	_	1	1	Multiplex channel 2 to OUT_B				

Table 21. PWM Output Mux Register (0x25)

TAS5717 TAS5719

SLOS655A-NOVEMBER 2010-REVISED FEBRUARY 2011

Table 21. PWM Output Mux Register (0x25) (continued)

D15	D14	D13	D12	D11	D10	D9	D8	FUNCTION				
0	0	-	-	-	-	-	_	Reserved ⁽²⁾				
-	-	0	0	-	-	-	-	Multiplex channel 1 to OUT_C				
-	_	0	1	-	-	-	_	Multiplex channel 2 to OUT_C ⁽²⁾				
-	_	1	0	-	-	-	_	Multiplex channel 1 to OUT_C				
-	-	1	1	-	-	-	_	Multiplex channel 2 to OUT_C				
-	-	-	-	0	0	-	-	Reserved ⁽²⁾				
-	-	-	-	-	-	0	0	Multiplex channel 1 to OUT_D				
-	-	-	-	-	-	0	1	Multiplex channel 2 to OUT_D				
-	_	-	-	-	-	1	0	Multiplex channel 1 to OUT_D				
-	_	-	-	-	-	1	1	Multiplex channel 2 to OUT_D ⁽²⁾				
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION				
0	1	0	0	0	1	0	1	Reserved ⁽²⁾				

(2) Default values are in **bold**.

DRC CONTROL REGISTER (0x46)

D31	D30	D29	D28	D27	D26	D25	D24	FUNCTION
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾
D23	D22	D21	D20	D19	D18	D17	D16	FUNCTION
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾
D15	D14	D13	D12	D11	D10	D9	D8	FUNCTION
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	0			20				Percented ⁽¹⁾
U	U	-	-	-	-	-	-	Reserveu (
_	—	0	-	-	-	-	—	Reserved
_	_	1	١	_	_	_	_	Reserved
-	_	-	0	-	-	_	-	Reserved ⁽¹⁾
_	_	-	-	0	_	_	_	Reserved ⁽¹⁾
_	_	-	-	-	0	_	_	Reserved ⁽¹⁾
_	_	_	-	_	_	0	_	DRC2 turned OFF ⁽¹⁾
_	-	_	_	_	_	1	-	DRC2 turned ON
_	-	-	-	-	-	-	0	DRC1 turned OFF ⁽¹⁾
_	-	-	-	-	_	_	1	DRC1 turned ON

Table 22. DRC Control Register (0x46)

(1) Default values are in **bold**.

54

PWM SWITCHING RATE CONTROL REGISTER (0x4F)

PWM switching rate should be selected through the register 0x4F before coming out of all-channnel shutdown.

D31	D30	D29	D28	D27	D26	D25	D24	FUNCTION
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾
D23	D22	D21	D20	D19	D18	D17	D16	FUNCTION
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾
D15	D14	D13	D12	D11	D10	D9	D8	FUNCTION
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
-	-	0	0	-	-	-	_	Reserved ⁽¹⁾
-	-	-	Ι	0	1	1	0	$SRC = 6^{(1)}$
-	_	_	-	0	1	1	1	SRC = 7
-	-	-	1	1	0	0	0	SRC = 8
-	_	_	Ι	1	0	0	1	SRC = 9
-	-	-	-	1	0	1	0	Reserved
-	_	_	-	1	1	_	_	Reserved

Table 23. PWM Switching Rate Control Register (0x4F)

(1) Default values are in **bold**.

EQ CONTROL (0x50)

D31	D30	D29	D28	D27	D26	D25	D24	FUNCTION					
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾					
D23	D22	D21	D20	D19	D18	D17	D16	FUNCTION					
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾					
D15	D14	D13	D12	D11	D10	D9	D8	FUNCTION					
0	0	0	0	0	0	0	0	Reserved ⁽¹⁾					
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION					
0								EQ ON ⁽¹⁾					
1	_	_	_	_	_	-	_	EQ OFF (bypass BQ 0–7 of channels 1 and 2)					
_	0	_	_	_	_	-	_	Reserved ⁽¹⁾					
_	_	0	_	_	_	-	_	Reserved ⁽¹⁾					
		1						Reserved ⁽¹⁾					
_	_	_	0	_	_	-	_	L and R can be written independently. ⁽¹⁾					
_	_	_	1	_	_	_	_	L and R are ganged for EQ biquads; a write to the left-channel biquad is also written to the right-channel biquad. (0x29–0x2F is ganged to 0x30–0x36. Also, 0x58–0x5B is ganged to 0x5C–0x5F.					
_	_	_	_	0	_	-	_	Reserved ⁽¹⁾					
_	_	_	_	_	0	0	0	Reserved ⁽¹⁾					
_	-	-	-	-	0	0	1	Reserved ⁽¹⁾					
_	_	_	-	_	0	1	х	Reserved					
_	-	_	_	_	1	Х	Х	Reserved					

Table 24. EQ Command (0x50)

TEXAS INSTRUMENTS

www.ti.com

USING HEADPHONE AMPLIFIER IN TAS5717

This device has a stereo output which can be used as a line driver or a headphone driver that can output 2-Vrms stereo. An audio system can be set up for different applications using this device.

Case 1 – Headphone (HP)/Line Drive With Analog Input:

The device can be represented as shown in Figure 46: analog inputs (single-ended) as HPL_IN (pin 1) and HPR_IN (pin 4) with the outputs HPL_OUT (pin 2) and HPR_OUT (pin 3).

Figure 46. Headphone/Line Driver with Analog Input

HP_SD pin can be used turn ON/OFF the headphone amplifier/line driver.

Speaker channels are independent of headphone/line driver in this mode.

Case 2 – Headphone With I²S Input:

Hardware setup: The HP_PWML and HP_PWMR signals should be fed into a low-pass filter (LPF), and the output of the LPF is fed to analog inputs (HPL_IN and HPR_IN). The A_SEL pin has a 15-k Ω pulldown to ground and should be routed to headphone amplifier enable (HP_SDZ pin 33).

Software setup: Write to register 0x05 bits D4 = 1, D1 = 1, and D0 = 1 (13 hex). When D4 and D1 are set to 1, the A_SEL pin goes high and thus enables the headphone output. When register 0x05 D4 = 1, the device is in headphone mode and the speaker outputs are in shutdown.

NOTE: The speaker and headphone cannot be used at the same time as they both share the same digital channel. DAP can be used for headphone volume.

APPLICATION INFORMATION

LINE DRIVER AMPLIFIERS

Single-supply headphone and line driver amplifiers typically require dc-blocking capacitors. The top drawing in Figure 47 illustrates the conventional line driver amplifier connection to the load and output signal.

DC blocking capacitors for headphone amps are often large in value, and a mute circuit is needed during power up to minimize click and pop for both headphone and line driver. The output capacitors and mute circuits consume PCB area and increase cost of assembly, and can reduce the fidelity of the audio output signal.

Figure 47. Conventional and DirectPath HP and Line Driver

The DirectPath[™] amplifier architecture operates from a single supply but makes use of an internal charge pump to provide a negative voltage rail.

Combining the user provided positive rail and the negative rail generated by the IC, the device operates in what is effectively a split supply mode.

The output voltages are now centered at zero volts with the capability to swing to the positive rail or negative rail, combining this with the build in click and pop reduction circuit, the DirectPath[™] amplifier requires no output dc blocking capacitors.

The bottom block diagram and waveform of Figure 47 illustrate the ground-referenced headphone and line driver architecture. This is the architecture of the TAS5717/9.

COMPONENT SELECTION

Charge Pump

The charge pump flying capacitor serves to transfer charge during the generation of the negative supply voltage. The PVSS capacitor must be at least equal to the charge pump capacitor in order to allow maximum charge transfer. Low ESR capacitors are an ideal selection, and a value of 1μ F is typical. Capacitor values that are smaller than 1μ F can not be recommended for the HP section as it will limit the negative voltage swing in low impedance loads.

© 2010–2011, Texas Instruments Incorporated

TAS5717 TAS5719 SLOS655A – NOVEMBER 2010–REVISED FEBRUARY 2011

Decoupling Capacitors

The TAS5717/9 is a DirectPath[™] amplifier that requires adequate power supply decoupling to ensure that the noise and total harmonic distortion (THD) are low. A good low equivalent-series-resistance (ESR) ceramic capacitor, typically 1µF, placed as close as possible to the device PVDD leads works best. Placing this decoupling capacitor close to the TAS5717/9 is important for the performance of the amplifier. For filtering lower frequency noise signals, a 10µF or greater capacitor placed near the audio power amplifier would also help, but it is not required in most applications because of the high PSRR of this device.

Gain Setting Resistors Ranges

The gain setting resistors, R_{in} and R_{fb} , must be chosen so that noise, stability and input capacitor size of the TAS5717/9 is kept within acceptable limits. Voltage gain is defined as R_{fb} divided by R_{in} . Selecting values that are too low demands a large input ac-coupling capacitor, C_{IN} . Selecting values that are too high increases the noise of the amplifier. Table 25 lists the recommended resistor values for different gain settings.

INPUT RESISTOR VALUE, R _{in}	FEEDBACK RESISTOR VALUE, R _{fb}	DIFFERENTIAL INPUT GAIN	INVERTING INPUT GAIN	NON INVERTING INPUT GAIN
10 kΩ	10 kΩ	1.0 V/V	-1.0 V/V	2.0 V/V
10 kΩ	15 kΩ	1.5 V/V	–1.5 V/V	2.5 V/V
10 kΩ	20 kΩ	2.0 V/V	-2.0 V/V	3.0 V/V
4.7 kΩ	47 kΩ	10.0 V/V	-10.0 V/V	11.0 V/V

 Table 25. Recommended Resistor Values

Figure 48. Inverting Gain Configuration

Input-Blocking Capacitors

DC input-blocking capacitors are required to be added in series with the audio signal into the input pins of the TAS5717/9. These capacitors block the DC portion of the audio source and allow the TAS5717/9 inputs to be properly biased to provide maximum performance. The input blocking capacitors also limit the DC gain to 1, limiting the DC-offset voltage at the output.

These capacitors form a high-pass filter with the input resistor, R_{in} . The cutoff frequency is calculated using Equation 1. For this calculation, the capacitance used is the input-blocking capacitor and the resistance is the input resistor chosen from Table 25, then the frequency and/or capacitance can be determined when one of the two values is given.

$$fc_{in} = \frac{1}{2\pi \times R_{in} \times C_{in}} \qquad C_{in} = \frac{1}{2\pi \times fc_{in} \times R_{in}} \qquad (1)$$

Using the TAS5717/9 as a 2nd order filter

Several audio DACs used today require an external low-pass filter to remove out of band noise. This is possible with the TAS5717/9 as it can be used like a standard OPAMP. Several filter topologies can be implemented both single ended and differential. In the figure below a Multi Feed Back (MFB), with differential input and single ended input is shown.

An AC-coupling capacitor to remove dc-content from the source is shown, it serves to block any dc content from the source and lowers the dc-gain to 1 helping reducing the output dc-offset to minimum.

The component values can be calculated with the help of the TI FilterPro[™] program available on the TI website at:

http://focus.ti.com/docs/toolsw/folders/print/filterpro.html

Figure 49. Second-Order Active Low-Pass Filter

The resistor values should have a low value for obtaining low noise, but should also have a high enough value to get a small size ac-coupling cap. C2 can be split in two with the midpoint connected to GND, this can increase the common-mode attenuation.

Pop-Free Power Up

Pop-free power up is ensured by keeping the $\overline{HP}SD$ low during power supply ramp up and down. The pin should be kept low until the input AC-coupling capacitors are fully charged before asserting the $\overline{HP}SD$ pin high, this way proper pre-charge of the ac-coupling is performed and pop-less power-up is achieved. Figure 50 illustrates the preferred sequence.

Figure 50. Power-Up/Down Sequence

TAS5717	
TAS5719	
SLOS655A – NOVEMBER 2010–REVISED FEBRUARY 2011	

REVISION HISTORY

Cł	hanges from Original (November 2010) to Revision A	Page
•	Changed the SNR typ value from 70°C to 105°C	10
•	Deleted sub section titled 11.12 BANK SWITCHING	31
•	Changed Table 3 rows 0x01, 0x03, 0x0E, 0x10, 0x1A, and 0x1C Initialization Values	33
•	Changed Table 3 rows 0x07, 0x08, 0x09, and 0x1A No of Bytes and Initialization Values	33
•	Changed Table 3 row 0x46 and 0x4F Initialization Values	36
•	Changed Table 3 row 0x50 register name From: Bank switch control To: EQ control	36
•	Changed Table 3 row 0xF9 Initialization Value	37
•	Changed Section 11.34 BANK SWITCH AND EQ CONTROL (0x50) to EQ CONTROL 90x50)	55
•	Changed Table 24. Bank Switching Command (0x50) to EQ Command (0x50)	55
•	Changed the Function descriptions to: Reserved for D5, D2, D1, and D0	55

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TAS5717PHP	ACTIVE	HTQFP	PHP	48	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	0 to 85	TAS5717	Samples
TAS5717PHPR	ACTIVE	HTQFP	PHP	48	1000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	0 to 85	TAS5717	Samples
TAS5719PHP	ACTIVE	HTQFP	PHP	48	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	0 to 85	TAS5719	Samples
TAS5719PHPR	ACTIVE	HTQFP	PHP	48	1000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	0 to 85	TAS5719	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

10-Dec-2020

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TAS5717PHPR	HTQFP	PHP	48	1000	330.0	16.4	9.6	9.6	1.5	12.0	16.0	Q2
TAS5719PHPR	HTQFP	PHP	48	1000	330.0	16.4	9.6	9.6	1.5	12.0	16.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

26-Feb-2019

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TAS5717PHPR	HTQFP	PHP	48	1000	350.0	350.0	43.0
TAS5719PHPR	HTQFP	PHP	48	1000	350.0	350.0	43.0

PHP 48

7 x 7, 0.5 mm pitch

GENERIC PACKAGE VIEW

TQFP - 1.2 mm max height

QUAD FLATPACK

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

 $\textbf{PowerPAD}^{\,\mathbb{M}} \quad \textbf{PLASTIC} \ \textbf{QUAD} \ \textbf{FLATPACK}$

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.
- E. Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments.

PowerPAD™ PLASTIC QUAD FLATPACK

THERMAL INFORMATION

This PowerPAD[™] package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

A Tie strap features may not be present.

PowerPAD is a trademark of Texas Instruments

 $\textbf{PowerPAD}^{\,\mathbb{M}} \quad \textbf{PLASTIC} \ \textbf{QUAD} \ \textbf{FLATPACK}$

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.
- E. Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments.

PowerPAD™ PLASTIC QUAD FLATPACK

THERMAL INFORMATION

This PowerPAD[™] package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

A Tie strap features may not be present.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting options for vias placed in the thermal pad.

PowerPAD is a trademark of Texas Instruments

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated