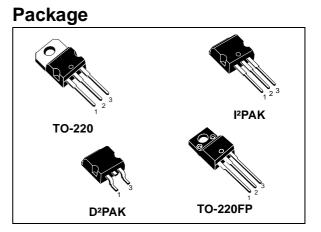
STB20NM50 - STB20NM50-1 STP20NM50 - STP20NM50FP

N-CHANNEL 550V@Tj_{max} - 0.20Ω - 20A - TO220/FP-D²PAK-I²PAK Zener-Protected SuperMESH™ MOSFET

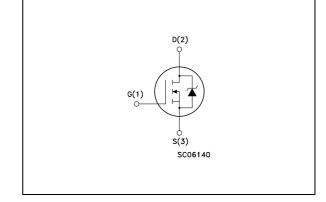
General features

Туре	V _{DSS(@Tj} max)	R _{DS(on)}	I _D
STB20NM50	550 V	<0.25 Ω	20 A
STB20NM50-1	550 V	<0.25 Ω	20 A
STP20NM50	550 V	<0.25 Ω	20 A
STP20NM50FP	550 V	<0.25 Ω	20 A

- HIGH dv/dt AND AVALANCHE CAPABILITIES
- 100% AVALANCHE TESTED
- LOW INPUT CAPACITANCE AND GATE CHARGE
- LOW GATE INPUT RESISTANCE


Description

The MDmesh[™] is a new revolutionary MOSFET technology that associates the Multiple Drain process with the Company's PowerMESH[™]horizontal layout. The resulting product has an outstanding low on-resistance, impressively high dv/dt and exellent avalanche characteristics and dynamic performances.


Applications

The MDmesh[™] family is very suitable for increasing power density of high voltage converters allowing system miniaturization andhiher efficiencies

Order codes

Internal schematic diagram

Sales Type	Marking	Package	Packaging
STB20NM50T4	B20NM50	D²PAK	TAPE & REEL
STB20NM50-1	B20NM50-1	I²PAK	TUBE
STP20NM505	P20NM50	TO-220	TUBE
STP20NM50FP	P20NM50FP	TO-220FP	TUBE

September 2005

Rev 2

Downloaded from Arrow.com.

1 Electrical ratings

Symbol	Parameter V			Unit
		TO-220/D ² PAK/I ² PAK	TO-220FP	
V _{GS}	Gate-Source Voltage	± 30		V
I _D	Drain Current (continuous) at T _C = 25°C	20	20 (<i>Note</i> 3)	А
I _D	Drain Current (continuous) at T _C = 100°C	12.6	12.6 (<i>Note</i> 3)	А
I _{DM} Note 2	Drain Current (pulsed)	80	80 (<i>Note</i> 3)	Α
P _{TOT}	Total Dissipation at $T_{C} = 25^{\circ}C$	192	45	W
	Derating Factor	1.2	0.36	W/°C
dv/dt Note 1	Peak Diode Recovery voltage slope	15		V/ns
V _{ISO}	Insulation Withstand Volatge (DC)		2000	V
T _j T _{stg}	Operating Junction Temperature Storage Temperature	-65 to 1	50	°C

Table 1. Absolute maximum ratings

Table 2.Thermal data

		TO-220/D ² PAK/I ² PAK	TO-220FP	Unit
Rthj-case	Thermal Resistance Junction-case Max	0.65	2.8	°C/W
Rthj-amb	Thermal Resistance Junction-amb Max	62.5		°C/W
Т	Maximum Lead Temperature For Soldering Purpose	300		°C

Table 3. Avalanche characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, repetitive or Not-Repetitive (pulse width limited by Tj max)	10	A
E _{AS}	Single Pulse Avalanche Energy (starting Tj=25°C, I _D =5A, V _{DD} = 50V)	650	mJ

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0	500			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating, V _{DS} = Max Rating,Tc = 125°C			1 10	μΑ μΑ
I _{GSS}	Gate Body Leakage Current (V _{DS} = 0)	V _{GS} = ±30V			±100	μΑ
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	3	4	5	V
R _{DS(on)}	Static Drain-Source On Resistance	V _{GS} = 10 V, I _D = 10 A		0.20	0.25	Ω

Table 5. Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} Note 4	Forward Transconductance	$V_{DS} > I_{D(ON)} \times R_{DS(ON)max,}$ $I_{D} = 10A$		10		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} =25V, f=1 MHz, V _{GS} =0		1480 285 34		pF pF pF
C _{oss eq.} Note 5	Equivalent Ouput Capacitance	V_{GS} =0, V_{DS} =0V to 400V		130		pF
Rg	Gate Input Resistance	f=1MHz Gate DC Bias=0 Test Signal Level=20mV Open Drain		1.6		Ω
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} =400V, I _D = 20A V _{GS} =10V (see Figure 15)		40 13 19	56	nC nC nC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	V_{DD} =250 V, I _D =10A, R _G =4.7 Ω , V _{GS} =10V (see Figure 16)		24 16		ns ns
t _{r(Voff)} t _f t _c	Off-voltage Rise Time Fall Time Cross-over Time	V_{DD} =400 V, I _D =20A, R _G =4.7 Ω , V _{GS} =10V (see Figure 16)		9 8.5 23		ns ns ns

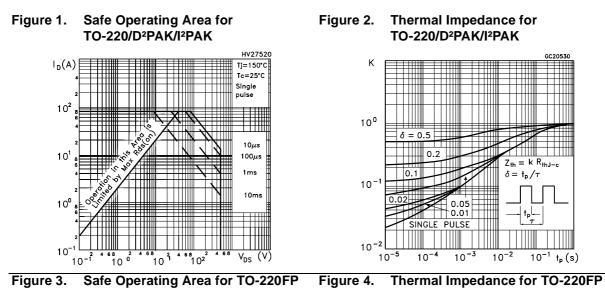
Table 6. Switching times

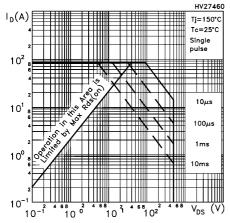
Table 7.Source drain diode

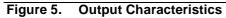
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} Note 2	Source-drain Current Source-drain Current (pulsed)				20 80	A A
V _{SD} Note 4	Forward on Voltage	I _{SD} =20A, V _{GS} =0			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I _{SD} =20A, di/dt = 100A/µs, V _{DD} =100 V, Tj=25°C		350 4.6 26		ns µC A
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I _{SD} =20A, di/dt = 100A/µs, V _{DD} =100 V, Tj=150°C		435 5.9 27		ns µC A

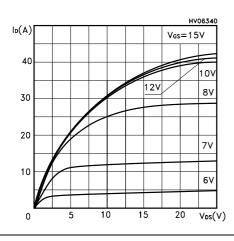
(1) I_{SD} \leq\!\!20A, di/dt \leq\!\!400A/\mu s, V_{DD} \leq V_{(BR)DSS}, T_j \leq T_{JMAX}

(2) Pulse width limited by safe operating area

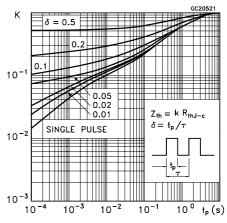
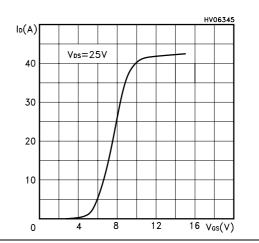

(3) Limited only by maximum temperature allowed

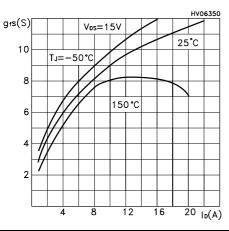

(4) Pulsed: pulse duration = 300μ s, duty cycle 1.5%

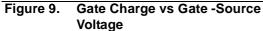

(5) $C_{oss eq}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

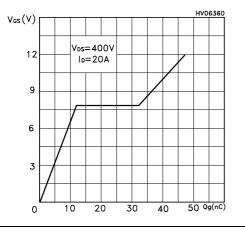


2.1 Electrical Characteristics (curves)


Figure 6. Transfer Characteristics




57

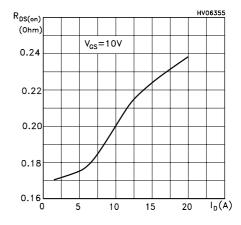

Figure 8.

Figure 7. Transconductance

Static Drain-Source on Resistance

Figure 11. Capacitance Variations

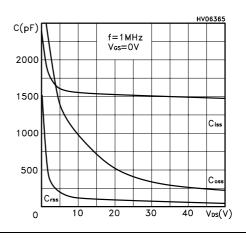
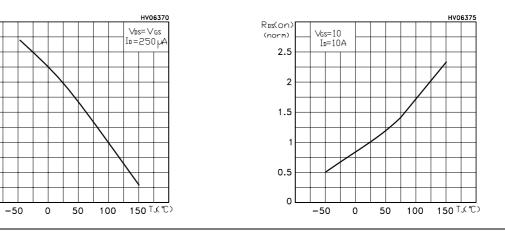
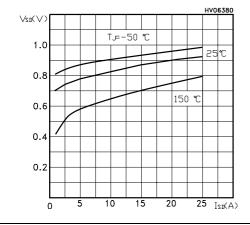



Figure 10. Normalized Gate Threshold Voltage Figure 12. Normalized on Resistance vs vs Temperatute Temperature

VGS(th) (norm)


1.1

0.9

0.8

0.7

Figure 13. Source-drain Diode Forward Characteristics

3 Test circuits

Figure 14. Switching Times Test Circuit For Resistive Load

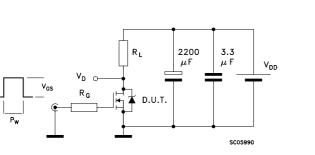


Figure 16. Test Circuit For Indictive Load Switching and Diode Recovery Times

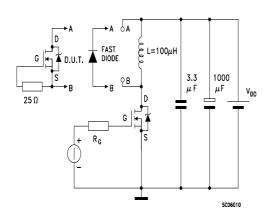


Figure 17. Unclamped Inductive Waveform

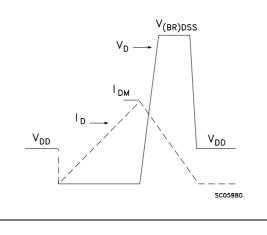
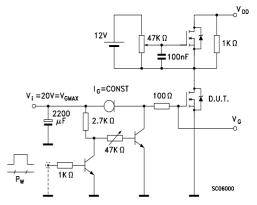
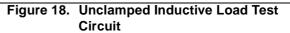
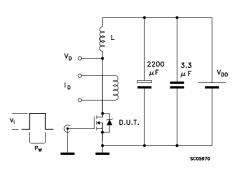
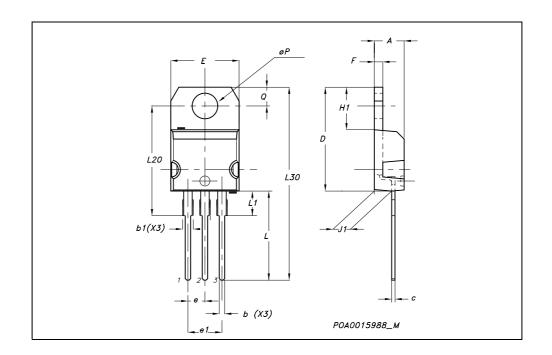





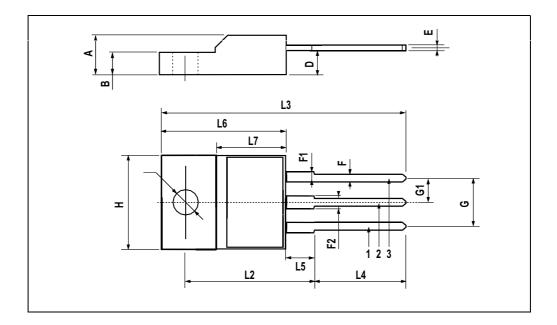
Figure 15. Gate Charge Test Circuit

5

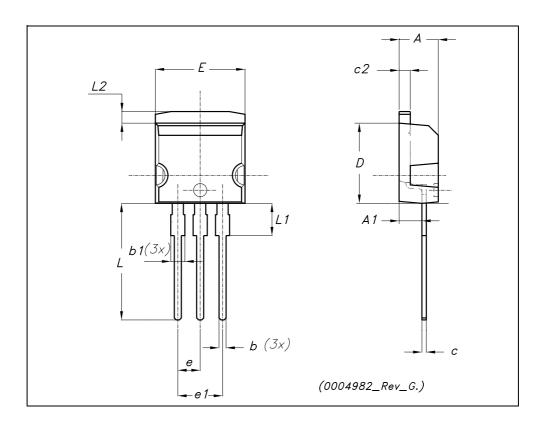

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

DIM.		mm.		inch			
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX	
А	4.40		4.60	0.173		0.181	
b	0.61		0.88	0.024		0.034	
b1	1.15		1.70	0.045		0.066	
С	0.49		0.70	0.019		0.027	
D	15.25		15.75	0.60		0.620	
E	10		10.40	0.393		0.409	
е	2.40		2.70	0.094		0.106	
e1	4.95		5.15	0.194		0.202	
F	1.23		1.32	0.048		0.052	
H1	6.20		6.60	0.244		0.256	
J1	2.40		2.72	0.094		0.107	
L	13		14	0.511		0.551	
L1	3.50		3.93	0.137		0.154	
L20		16.40			0.645		
L30		28.90			1.137	1	
øP	3.75		3.85	0.147	İ	0.151	
Q	2.65		2.95	0.104		0.116	

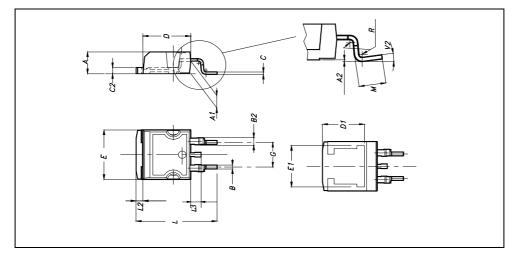


10/16

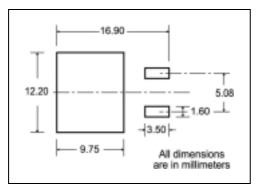

DIM.		mm.		inch			
DINI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX	
А	4.4		4.6	0.173		0.181	
В	2.5		2.7	0.098		0.106	
D	2.5		2.75	0.098		0.108	
Е	0.45		0.7	0.017		0.027	
F	0.75		1	0.030		0.039	
F1	1.15		1.7	0.045		0.067	
F2	1.15		1.7	0.045		0.067	
G	4.95		5.2	0.195		0.204	
G1	2.4		2.7	0.094		0.106	
Н	10		10.4	0.393		0.409	
L2		16			0.630		
L3	28.6		30.6	1.126		1.204	
L4	9.8		10.6	.0385		0.417	
L5	2.9		3.6	0.114		0.141	
L6	15.9		16.4	0.626		0.645	
L7	9		9.3	0.354		0.366	
Ø	3		3.2	0.118		0.126	

TO-220FP MECHANICAL DATA

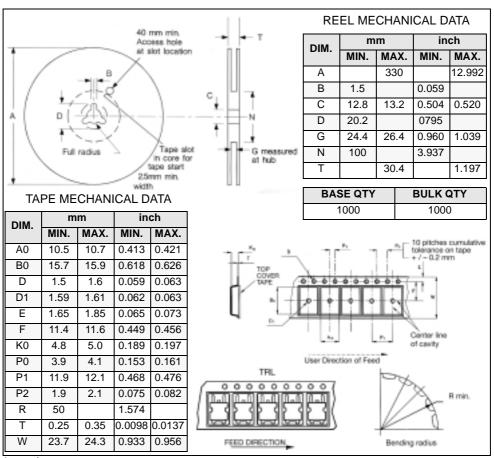
DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
A1	2.40		2.72	0.094		0.107
b	0.61		0.88	0.024		0.034
b1	1.14		1.70	0.044		0.066
С	0.49		0.70	0.019		0.027
c2	1.23		1.32	0.048		0.052
D	8.95		9.35	0.352		0.368
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
Е	10		10.40	0.393		0.410
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L2	1.27		1.40	0.050		0.055



12/16


DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
E	10		10.4	0.393		
E1		8.5			0.334	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.625
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
М	2.4		3.2	0.094		0.126
R		0.4			0.015	
V2	0°		4°			

D²PAK MECHANICAL DATA



5 Packing mechanical data

D²PAK FOOTPRINT

TAPE AND REEL SHIPMENT

* on sales type

6 Revision History

Date	Revision	Changes	
05-Sep-2005	2	Inserted Ecopack indication	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16

