FAIRCHILD

SEMICONDUCTOR

MM74HCT373 • MM74HCT374 3-STATE Octal D-Type Latch • 3-STATE Octal D-Type Flip-Flop

General Description

The MM74HCT373 octal D-type latches and MM74HCT374 Octal D-type flip flops advanced silicon-gate CMOS technology, which provides the inherent benefits of low power consumption and wide power supply range, but are LS-TTL input and output characteristic & pin-out compatible. The 3-STATE outputs are capable of driving 15 LS-TTL loads. All inputs are protected from damage due to static discharge by internal diodes to V_{CC} and ground.

When the MM74HCT373 LATCH ENABLE input is HIGH, the Q outputs will follow the D inputs. When the LATCH ENABLE goes LOW, data at the D inputs will be retained at the outputs until LATCH ENABLE returns HIGH again. When a high logic level is applied to the OUTPUT CON-TROL input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

The MM74HCT374 are positive edge triggered flip-flops. Data at the D inputs, meeting the setup and hold time

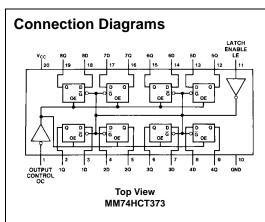
February 1984 Revised April 2001

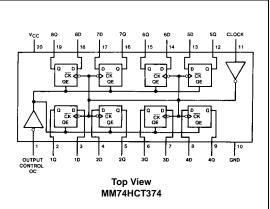
requirements, are transferred to the Q outputs on positive going transitions of the CLOCK (CK) input. When a high logic level is applied to the OUTPUT CONTROL (OC) input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

Features

- TTL input characteristic compatible
- Typical propagation delay: 20 ns
- Low input current: 1 µA maximum
- Low quiescent current: 80 µA maximum
- Compatible with bus-oriented systems
- Output drive capability: 15 LS-TTL loads


Ordering Code:


Order Number	Package Number	Package Descriptions
MM74HCT373WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HCT373SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT373MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT373N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
MM74HCT374WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HCT374SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT374MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT374N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

© 2001 Fairchild Semiconductor Corporation DS005367

MM74HCT373 • MM74HCT374

Truth Tables

MM74HCT373								
Output	-							
Control			Output					
L	Н	Н	Н					
L	Н	L	L					
L	L	х	Q ₀					
н	Х	Х	Z					

 $\begin{array}{l} H = HIGH \mbox{ Level} \\ L = LOW \mbox{ Level} \\ Q_0 = Level \mbox{ of output before steady-state input conditions were established.} \end{array}$

L = LOW LevelX = Don't Care $\uparrow = Transition from LOW-to-HIGH$

Output

Control

L

L

L

Н

H = HIGH Level

Z = High Impedance State Q_0 = The level of the output before steady state input conditions were established.

MM74HCT374

Data

Н

L

Х

Х

Output

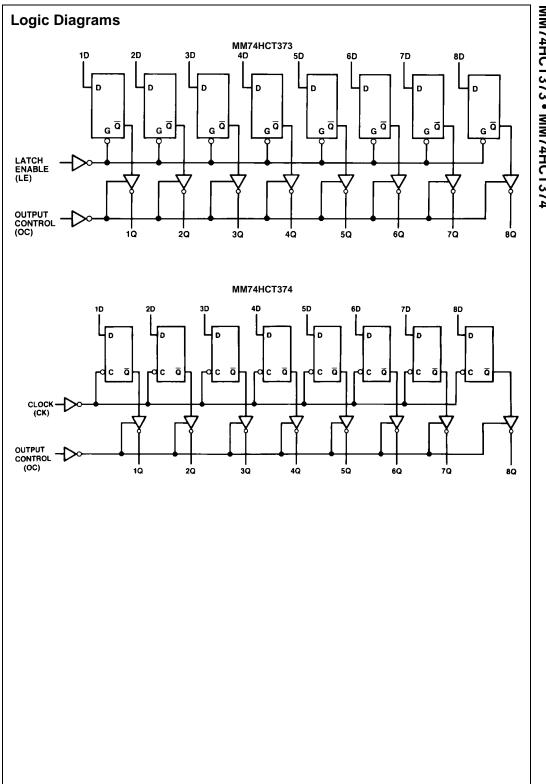
(374)

Н

L

 Q_0

Ζ


Clock

Ŷ

L

Х

Z = High Impedance

MM74HCT373 • MM74HCT374

Absolute Maximum Ratings(Note 1) (Note 2)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (VIN)	-1.5 to V _{CC} $+1.5$ V
DC Output Voltage (V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±70 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units	
Supply Voltage (V _{CC})	4.5	5.5	V	
DC Input or Output Voltage	0	V_{CC}	V	
(V _{IN} , V _{OUT})				
Operating Temperature Range (T_A)	-40	+85	°C	
Input Rise or Fall Times				
(t _r , t _f)		500	ns	
Note 1: Absolute Maximum Ratings are those age to the device may occur.	values be	eyond whi	ch dam-	

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics

V_{CC} = 5V \pm 10% (unless otherwise specified)

Symbol	Parameter	Conditions	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	Falanciel		Тур		Guaranteed Li	imits	Units
VIH	Minimum HIGH Level			2.0	2.0	2.0	V
	Input Voltage			2.0	2.0	2.0	v
V _{IL}	Maximum LOW Level			0.8	0.8	0.8	V
	Input Voltage			0.0	0.0	0.6	v
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
	Output Voltage	$ I_{OUT} = 20 \ \mu A$	V _{CC}	V _{CC} - 0.1	V _{CC} -0.1	V _{CC} -0.1	V
		$ I_{OUT} = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	3.7	V
		$ I_{OUT} = 7.2 \text{ mA}, V_{CC} = 5.5 \text{V}$	5.7	4.98	4.84	4.7	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
	Voltage	$ I_{OUT} = 20 \ \mu A$	0	0.1	0.1	0.1	V
		$ I_{OUT} = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	0.4	V
		$ I_{OUT} = 7.2 \text{ mA}, V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND,		±0.1	±1.0	±1.0	μA
	Current	V _{IH} or V _{IL}		10.1	1.0	11.0	μΑ
I _{OZ}	Maximum 3-STATE	$V_{OUT} = V_{CC} \text{ or } GND$					
	Output Leakage	$Enable = V_{IH} \text{ or } VIL$		±0.5	±5.0	±10	μA
	Current						
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND		8.0	80	160	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$		0.0	30	100	μΑ
		V _{IN} = 2.4V or 0.5V (Note 4)		1.0	1.3	1.5	mA

Note 4: Measured per pin. All others tied to V_{CC} or ground.

	: $V_{CC} = 5.0V$, $t_r = t_f = 6 \text{ ns } T_A = 25^{\circ}C$ (u	mess otherwise specified)			
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay Data to Output	C _L = 45 pF	18	25	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Latch Enable to Output	C _L = 45 pF	21	30	ns
t _{PZH} , t _{PZL}	Maximum Enable Propagation Delay Control to Output	$C_L = 45 \text{ pF}$ $R_L = 1 \text{ k}\Omega$	20	28	ns
t _{PHZ} , t _{PLZ}	Maximum Disable Propagation Delay Control to Output	$C_L = 5 \text{ pF}$ $R_L = 1 \text{ k}\Omega$	18	25	ns
t _W	Minimum Clock Pulse Width			16	ns
t _S	Minimum Setup Time Data to Clock			5	ns
t _H	Minimum Hold Time Clock to Data			10	ns

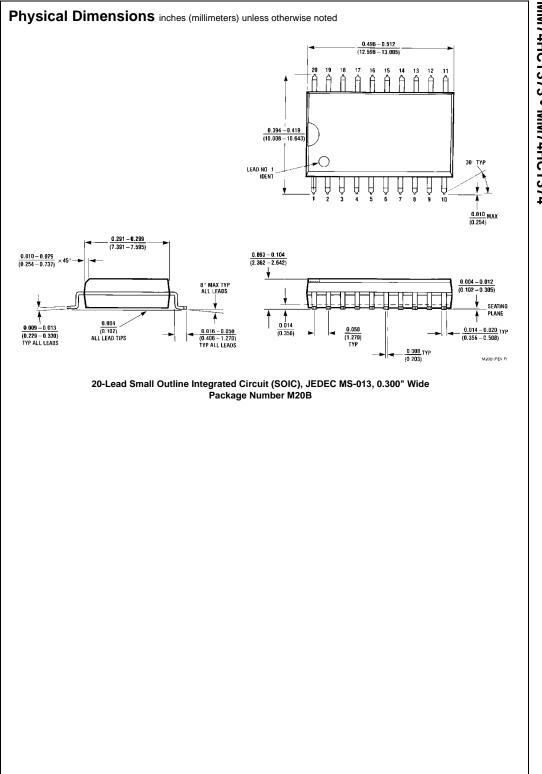
AC Electrical Characteristics

MM74HCT373: V_{CC} = 5.0V \pm 10%, t_{f} = t_{f} = 6 ns (unless otherwise specified)

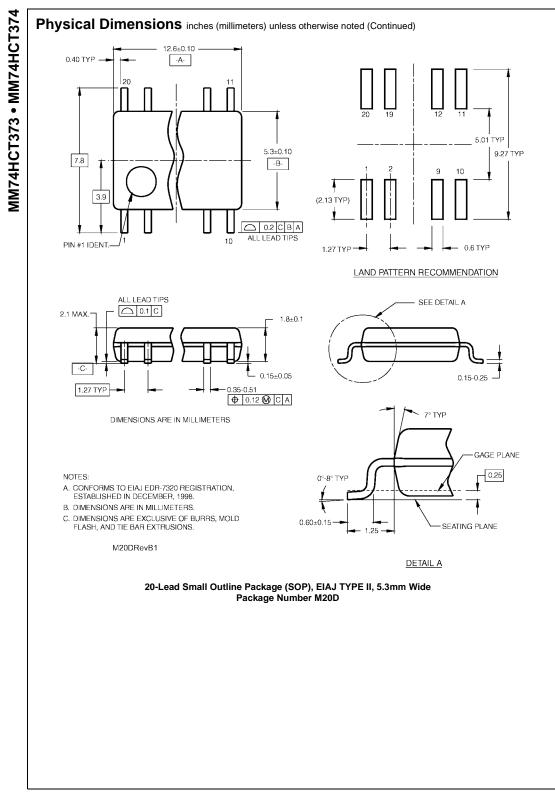
Symbol	Parameter	Conditions	T _A =	25°C	T _A =-40 to 85°C	T _A =-55 to 125°C	Units
Symbol			Тур	Typ Guaranteed Limits			011113
t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 50 pF	22	30	37	45	ns
	Delay Data to Output	C _L = 150 pF	30	40	50	60	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay	C _L = 50 pF	25	35	44	53	ns
	Latch Enable to Output	C _L = 150 pF	32	45	56	68	ns
t _{PZH} , t _{PZL}	Maximum Enable Propagation	C _L = 50 pF	21	30	37	45	ns
	Delay Control to Output	C _L = 150 pF	30	40	50	60	ns
		$R_L = 1 k\Omega$					
t _{PHZ} , t _{PLZ}	Maximum Disable Propagation	C _L = 50 pF	21	30	37	45	ns
	Delay Control to Output	$R_L = 1 k\Omega$					
t _{THL} , t _{TLH}	Maximum Output Rise	C _L = 50 pF	8	12	15	18	ns
	and Fall Time						
t _W	Minimum Clock Pulse Width			16	20	24	ns
t _S	Minimum Setup Time Data to Clock			5	6	8	ns
t _H	Minimum Hold Time Clock to Data			10	13	20	ns
CIN	Maximum Input Capacitance			10	10	10	pF
C _{OUT}	Maximum Output Capacitance			20	20	20	pF
C _{PD}	Power Dissipation Capacitance	$OC = V_{CC}$		5			pF
	(Note 5)	OC = GND		52			pF

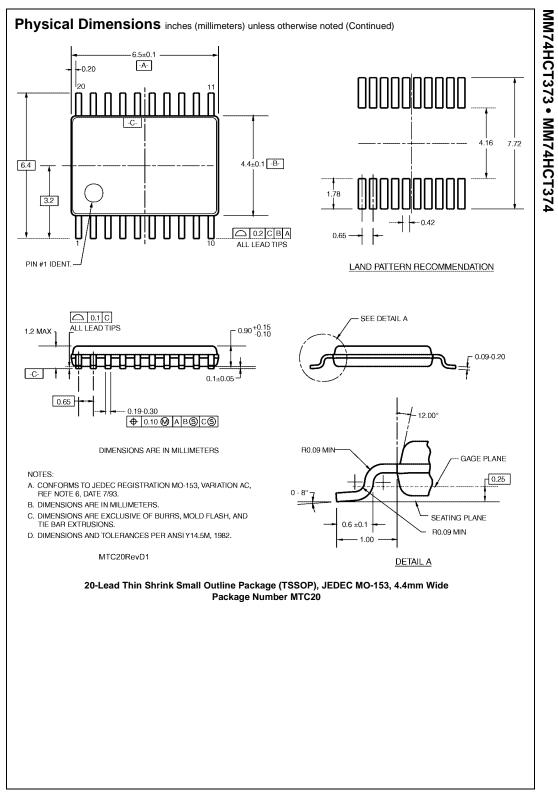
Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC} 2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} 2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} 2 f + I_{CC} V_{CC}$.

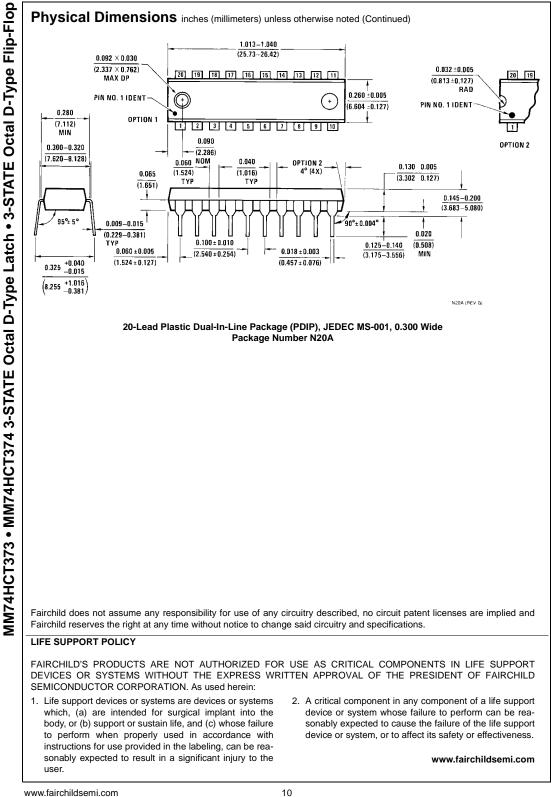
AC Electrical Characteristics


Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
MAX	Maximum Clock Frequency		50	30	MHz
PHL ^{, t} PLH	Maximum Propagation Delay	C _L = 45 pF	20	32	ns
	to Output				
t _{PZH} , t _{PZL}	Maximum Enable Propagation Delay	C _L = 45 pF	19	28	ns
	Control to Output	$R_L = 1 \ k\Omega$			
t _{PHZ} , t _{PLZ}	Maximum Disable Propagation Delay	$C_L = 5 pF$	17	25	ns
	Control to Output	$R_L = 1 \ k\Omega$			
t _W	Minimum Clock Pulse Width		1	20	ns
^t s	Minimum Setup Time Data to Clock			5	ns
t _H	Minimum Hold Time Clock to Data			16	ns

AC Electrical Characteristics


MM74HCT374: V_{CC} = 5.0V \pm 10%, t_{r} = t_{f} = 6 ns (unless otherwise specified)


Symbol	Parameter	Conditions	T _A =	25°C	$T_A = -40$ to 85°C $T_A = -55$ to 125°C		Units
Symbol			Тур		Guaranteed L	imits	Units
f _{MAX}	Maximum Clock Frequency			30	24	20	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay	C _L = 50 pF	22	36	45	48	ns
	to Output	$C_L = 150 \text{ pF}$	30	46	57	69	ns
t _{PZH} , t _{PZL}	Maximum Enable Propagation	C _L = 50 pF	21	30	37	45	ns
	Delay Control to Output	C _L = 150 pF	30	40	50	60	ns
		$R_L = 1 k\Omega$					
t _{PHZ} , t _{PLZ}	Maximum Disable Propagation	C _L = 50 pF	21	30	37	45	ns
	Delay Control to Output	$R_L = 1 k\Omega$					
t _{THL} , t _{TLH}	Maximum Output Rise	C _L = 50 pF	8	12	15	18	ns
	and Fall Time						
t _W	Minimum Clock Pulse Width			16	20	24	ns
t _S	Minimum Setup Time Data to Clock			20	25	30	ns
t _H	Minimum Hold Time Clock to Data			5	5	5	ns
CIN	Maximum Input Capacitance			10	10	10	pF
C _{OUT}	Maximum Output Capacitance			20	20	20	pF
C _{PD}	Power Dissipation Capacitance	$OC = V_{CC}$		5	1		pF
	(Note 6)	OC = GND		58			pF


Note 6: C_{PD} determines the no load power consumption, $P_D = C_{PD} V_{CC} 2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

MM74HCT373 • MM74HCT374

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.