

5063JD series (space miser) 0.25 to 0.40 W; 1% and 5% Metal film resistors

Product specification File under BCcomponents, BC08 2000 Aug 08

5063JD series (space miser) 0.25 to 0.40 W; 1% and 5%

DESCRIPTION

A homogeneous film of metal alloy is deposited on a high grade BALOX ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires of electrolytic copper are welded to the end-caps. The resistors are coated with a blue lacquer which provides electrical, mechanical, and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with "*MIL-STD-202E, method 215*", and "*IEC 60068-2-45*".

QUICK REFERENCE DATA

DESCRIPTION	VAL	UE	
Resistance range	0.22 Ω to 10 M Ω ; see Table 1		
Resistance tolerance and series	±5%, (E24); ±1%, (E24/E96)		
Temperature coefficient	$\pm 100 \times 10^{-6}$ /K		
Operation mode	normal	long term	
Climatic category (LCT/UCT/days)	55/155/56	55/125/56	
Max. dissipation, P70	0.40 W	0.25 W	
Thermal resistance, R _{th}	200 °	C/W	
Max. continuous operating voltage, U _{max}	200 V (DC or RMS)		
Noise $R \le 1 M\Omega$	max. 0.1 V/V		
Surface temperature	155 °C	125 °C	
Operating temperature range	−55 °C to +155 °C	–55 °C to +125 °C	
Max. resistance change at P_{70} for resistance range, $\Delta R/R$ max., after:			
1 000 h	0.50%	0.25%	
8000 h	1.0%	0.50%	
225000 h	_	1.5%	
Permissible voltage against ambient:	· · ·		
1 minute	300 V		
continuous	75 V		
Stability ($\Delta R/R$ max.) after:			
load (1000 hours)	$\pm 0.50\% + 0.05 \ \Omega$	$\pm 0.25\% + 0.05 \ \Omega$	
climatic test	$\pm 1.0\% + 0.05 \ \Omega$		
resistance to soldering heat	$\pm 0.25\% + 0.05 \ \Omega$		
short time overload (400 V max.)	$\pm 0.25\% + 0.05 \ \Omega$		

5063JD series (space miser) 0.25 to 0.40 W; 1% and 5%

ORDERING INFORMATION

ТҮРЕ	ТС (× 10 ⁻⁶ /К)	TOL. (%)	RESISTANCE RANGE	PART NUMBER	SPQ (units)
	5063JD ±100	I	jumper ⁽¹⁾	5063JD0R000J12AFS	5000; tape & reel
		-	jumper ⁽¹⁾	5063JD0R000J18AFS	5000; ammopack
50621D		±5	0.22 to 0.91 Ω	5063JDxxxxxJ12AFS	5000; tape & reel
3003)D		±5	0.22 to 0.91 Ω	5063JDxxxxxJ18AFS	5000; ammopack
	±1	1 Ω to 10 M Ω	5063JDxxxxxF12AF5	5000; tape & reel	
	±1	1 Ω to 10 M Ω	5063JDxxxxxF18AF5	5000; ammopack	

 Table 1
 Ordering code indicating resistor type and packaging

Note

1. A 0 Ω jumper is available with a maximum resistance $R_{max} \leq 10 \text{ m}\Omega$ at 3 A.

Composition of the clear text code (NAFTA P/N)

- The resistors have an ordering code starting with 50
- The subsequent digits indicate the resistor type, temperature coefficient, ohmic value, tolerance and packaging; see Table 1
- The ohmic value is represented by 5-digits; see Table 2
- For temperature coefficient and tolerance, see Table 3.

Table 2Examples of the ohmic value

OHMIC VALUE	5-DIGIT VALUE
0.22 Ω	0R220
1 Ω	1 R000
10 Ω	10R00
100 Ω	100R0
1 kΩ	1K000
10 kΩ	10K00
100 kΩ	100K0
1 MΩ	1M000

 Table 3
 Letter coding for temperature coefficient and tolerance

TC (×10 ⁻⁶ /K)	LETTER CODE	TOL. (%)	LETTER CODE
100	D	±5	J
-	—	±1	F

ORDERING EXAMPLE: CLEAR TEXT CODE

The ordering code of a 5063JD resistor, value 5600 $\Omega \pm 1\%$, taped on a bandolier of 5000 units in tape on reel is: 5063JD5K600F12AF5.

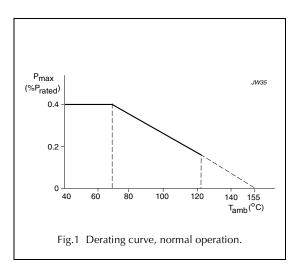
FUNCTIONAL DESCRIPTION

Product characterization

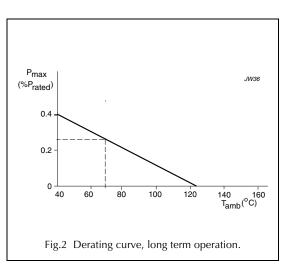
Standard values of nominal resistance are taken from the E24 or E96 series for resistors with a tolerance of $\pm 5\%$ or $\pm 1\%$.

The values of the E24 series are in accordance with *"IEC publication 60063"*.

Limiting values

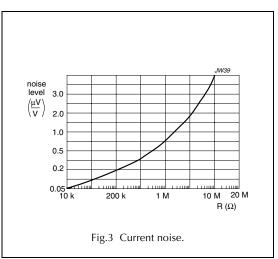

ТҮРЕ	LIMITING VOLTAGE ⁽¹⁾ (V)	LIMITING POWER (W)
5063JD	200	0.40

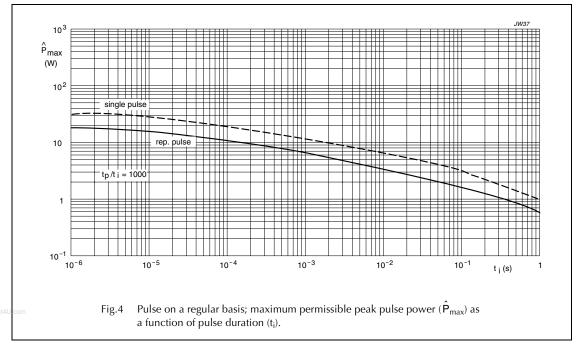
Note

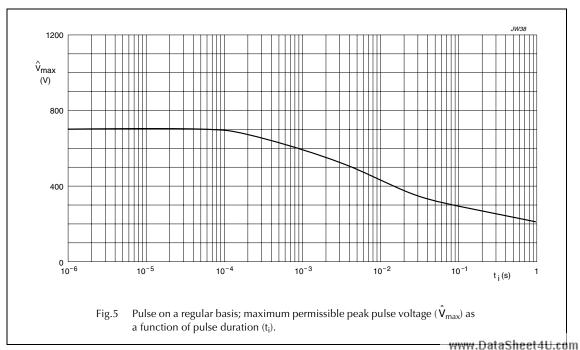

 The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

DERATING

The power that the resistor can dissipate depends on the operating temperature; see Figs 1 and 2.




NOISE


The current noise is measured in accordance with *"DIN 44049 Part 1 and IEC 600195"*. Maximum values are for 99.8% of all resistors; see Fig 3.

5063JD series (space miser) 0.25 to 0.40 W; 1% and 5%

Pulse-load behaviour

SYMBOL	DESCRIPTION
Ŷ	applied peak pulse power
P _{max}	maximum permissible peak pulse power; see Fig.4
V _i	applied peak pulse voltage; see Fig 6
\hat{V}_{max}	maximum permissible peak pulse voltage; see Fig.5
V(t)	pulse voltage
R	nominal resistance value
P _U	rated dissipation at ambient temperature
R _{nom}	nominal resistance value
t _i	pulse duration (rectangular pulses)
tp	pulse repetition time

Definition of symbols (see Figs 4, 5, 6 and 7)

Pulses

The permissible pulse-load is determined by the resistance change as given for the endurance test after 8000 hours.

PULSE VOLTAGE LIMIT

The maximum permissible impulse voltage \hat{V}_{max} is the voltage pulse short overload depending on the impulse time t_i . High ohmic values are protected by the interdependence of voltage limit and impulse time. this function is given by

the equation:
$$\hat{V}_{max} = \frac{2.5 \cdot V_{max}}{1 + t_i \cdot K} + V_{max}$$

 V_{max} = maximum permissible continuous voltage; ti = pulse time; K = 100 s⁻¹.

MAXIMUM PULSE-LOAD

The average load \overline{P} must not exceed the rated dissipation. For resistance values above the critical resistance the rated dissipation is given by the resistance value and the limiting

element voltage
$$V_{max}$$
: $\overline{P} = \frac{1}{t_p R} \int_{t_1}^{t_2} U^2(t) dt \le P v$

CONTINUOUS AND SINGLE PULSE-LOAD

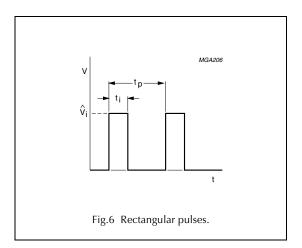
There is a difference between repetitive pulse-load

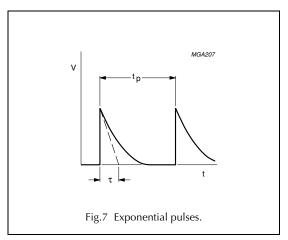
$$\overline{P} = \frac{t_i}{t_n} \cdot \underline{P}$$
 with $\underline{P} = power at the pulse time t_i) or$

single pulse load (e.g. switching events $\overline{P} > 0$).

A higher pulse-load P_{max} is accepted in the latter case.

5063JD series (space miser) 0.25 to 0.40 W; 1% and 5%


Pulse shapes


Figure 6 shows the maximum pulse-load for a rectangular

pulse shape:
$$\overline{P} = \frac{t_i \cdot V^2}{t_p \cdot R}$$

Other pulses should be converted into rectangular pulse shapes (see Fig.7), having the same energy at a given peak voltage. The following equation shows the calculation for exponential pulses:

$$\overline{P} = \frac{\tau_e}{2 \cdot t_p} \cdot \frac{V^2}{R} \text{ with } \tau_e = R \cdot C \text{ or } \tau_e = \frac{L}{R}$$

MECHANICAL DATA

Mass per 100 units

13 g

Marking

The nominal resistance and tolerance are marked on the resistor using four or five coloured bands in accordance with IEC publication 60062 *"Colour codes for fixed resistors"*.

Mounting

The resistors are suitable for processing on automatic insertion equipment in addition to cutting and bending machines. The minimum bending is 5 mm (.200 inch).

Outlines

The length of the body (L_1) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation (*"IEC publication 60294"*).

5063JD series (space miser) 0.25 to 0.40 W; 1% and 5%

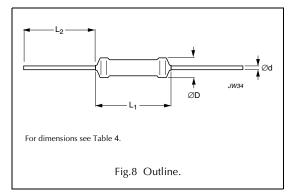


Table 4Resistor type and physical dimensions; see Fig.8

ТҮРЕ	ØD MAX. (mm)	L ₁ MAX. (mm)	L ₂ MAX. (mm)	Ød (mm)
Dimensions in inches				
5063JD	0.063	.142	1.14	.020
Dimensions in millimetres				
5063JD	1.6	3.6	29	0.5

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

5063JD 13 1%TR 5063JD 178K 1% 5063JD 20 1%TR 5063JD 22 1%TR 5063JD 249 1%TR 5063JD 3.9K 1%TR 5063JD 33 1% 5063JD 432 1%TR 5063JD 470K 1%TR 5063JD 51 1%TR 5063JD 60.4 1%TR 5063JD 619 1%TR 5063JD 69.8K 1% 5063JD 976K 1% 5063JD20K1% 5063JD 143 1% 5063JD 1.74M 1% 5063JD 3.83K 1% 5063JD 237 1%TR 5063JD 820K 1%TR 5063JD 390K 1%TR 5063JD 7.15 1% 5063JD 11 1% 5063JD 22.6 1%TR 5063JD 1.65K 1% 5063JD 16 1%TR 5063JD 560K 1%TR 5063JD 806 1%TR 5063JD 324K 1%TR 5063JD 9.31 1% 5063JD80.6K1% 5063JD 2.8 1% 5063JD 2.43M 1% 5063JD 3.3 1%TR 5063JD 33.2 1% 5063JD 910K 1% 5063JD 4.53 1% 5063JD 665K 1% 5063JD 191 1% 5063JD 2.4K 1%TR 5063JD 51K 1%TR 5063JD 1.3M 1% 5063JD 215K 1% 5063JD 2.55K 1% 5063JD 2.94 1% 5063JD 8.87 1% 5063JD22K1%TR 5063JD 68 1%TR 5063JD 3.24K 1% 5063JD 162 1%TR 5063JD 232K 1% 5063JD 54.9K 1% 5063JD 243K 1%TR 5063JD 196 1% 5063JD 56.2 1%TR 5063JD 2.15K 1% 5063JD 9.76 1% 5063JD 39 1% 5063JD 357K 1%TR 5063JD 5.76K 1% 5063JD 7.68K 1% 5063JD 147 1% 5063JD 130 1%TR 5063JD 205K 1% 5063JD 1.2M 1% 5063JD 127 1%TR 5063JD12K1% 5063JD 866K 1%TR 5063JD 178 1%TR 5063JD121R0FT 5063JD 1.27M 1% 5063JD 232K 1%TR 5063JD 390 1% 5063JD 240 1%TR 5063JD 1.13K 1% 5063JD 523 1%TR 5063JD 2.87K 1% 5063JD 309 1%TR 5063JD2M1%TR 5063JD 249K 1%TR 5063JD 430K 1% 5063JD 9.53 1% 5063JD 261 1%TR 5063JD 976 1%TR 5063JD 5.9K 1% 5063JD 1.05K 1% 5063JD 160K 1%TR 5063JD 200 1%TR 5063JD 6.65 1% 5063JD 402K 1%TR 5063JD 34.8 1% 5063JD 66.5K 1% 5063JD 2.49 1% 5063JD 1.82 1% 5063JD 210K 1%TR 5063JD 143K 1% 5063JD 76.8K 1% 5063JD 2.05K 1% 5063JD 6.98 1% 5063JD 21K 1%TR