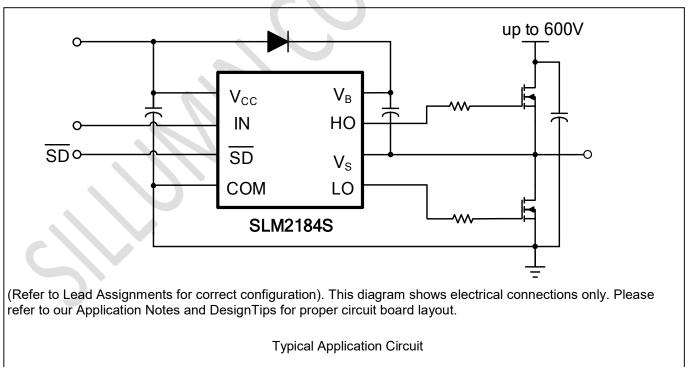


600V Half-Bridge Driver

PRODUCT SUMMARY

- VOFFSET 600 V max.
- I₀+/- 1.4 A/1.8 A
- **V**_{OUT} 10 V 20 V
- t_{on/off} (typ.)
 - 680 ns/270 ns **p.)** 400 ns
- Deadtime (typ.) 400

GENERAL DESCRIPTION


The SLM2184S is a high voltage, high speed power MOSFET and IGBT drivers with dependent highand low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

FEATURES

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, dV/dt immune

SLM2184S

- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout
- 3.3 V, 5 V, and 15 V logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- Internal set deadtime
- Shutdown input turns off both channels
- RoHS compliant
- SOIC-8 and PDIP-8 package

TYPICAL APPLICATION CIRCUIT

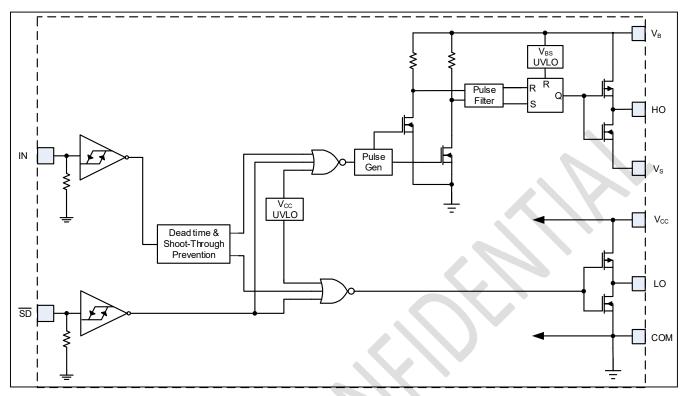
SLM2184S

PIN CONFIGURATION

Package	Pin Configuration (Top View)		
SOIC-8 and	2 SD HO 7		
PDIP-8	3 COM V _s 6		
	4 LO Vcc 5		

PIN DESCRIPTION

No.	Pin	Description
1	IN	Logic input for high-side and low-side gate driver outputs (HO and LO), in phase with HO
2	SD	Logic input for shutdown
3	СОМ	Low-side return
4	LO	Low-side gate drive output
5	Vcc	Low-side and logic fixed supply
6	Vs	High-side floating supply return
7	но	High-side gate drive output
8	VB	High-side floating supply


ORDERING INFORMATION Industrial Range: -40°C to +125°C

Order Part No.	Package	QTY
SLM2184SCA-13GTR	SOIC8, Pb-Free	2500/Reel
SLM2184SCA-GT SLM2184SDA-GT	SOIC8, Pb-Free PDIP8, Pb-Free	100/Tube 100/Tube
3LIVI2 1043DA-01	1 Dii 0, 1 D-1 lee	JOO/Tube

FUNCTIONAL BLOCK DIAGRAM

SLM2184S

1

SILLUMIN

ABSOLUTE MAXIMUM RATINGS

Symbol	Definition	Min.	Max.	Units	
VB	High-side floating absolute voltage		-0.3	625	
Vs	High-side floating supply offset voltage		V _B - 25	V _B + 0.3	
Vно	High-side floating output voltag	e	Vs - 0.3	V _B + 0.3	
Vcc	Low-side and logic fixed supply vo	Itage	-0.3	25	V
VLO	Low-side output voltage		-0.3	V _{cc} + 0.3]
VIN	Logic input voltage (IN & SD)	-0.3	Vcc + 0.3		
dVs/dt	Allowable offset supply voltage transient			50	V/ns
		PDIP-8		1.0	
PD	Package power dissipation @ $T_A \le +25^{\circ}C$	SOIC-8		0.625	W
		PDIP-8		125	°044/
Rth _{JA}	Thermal resistance, junction to ambient	SOIC-8		200	°C/W
TJ	Junction temperature		A	150	
Ts	Storage temperature		-55	150	°C
T∟	Lead temperature (soldering, 10 sec	conds)		300	1

Note:

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

RECOMMENDED OPERATIONG CONDITIONS

Symbol	Definition	Min.	Max.	Units
VB	High-side floating absolute voltage	V _S + 10	Vs + 20	
Vs	High-side floating supply offset voltage	Note 1	600	
Vst	Transient high-side floating supply offset voltage	-40 (within 400ns)	600	
V _{но}	High-side floating output voltage Vs		VB	V
Vcc	Low-side and logic fixed supply voltage	10	20	
Vlo	Low-side output voltage	0	Vcc	
VIN	Logic input voltage (IN & SD)	0	Vcc	
TA	Ambient temperature	- 40	125	°C

Note:

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_s offset rating is tested with all supplies biased at a 15 V differential.

DYNAMIC ELECTRICAL CHARACTERISTICS

VBIAS (VCC, VBS) = 15 V, CL = 1000 pF and TA = 25°C unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
ton	Turn-on propagation delay	Vs = 0 V		680	820	
t _{off}	Turn-off propagation delay	V _S = 600 V		270	400	
t _{sd}	Shutdown propagation delay			160	220	
tr	Turn-on rise time			40	80	ns
t _f	Turn-off fall time			20	40	
DT	Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off		400	520	650	
MT	Delay matching, HS & LS turn-on/off				60	

STATIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to COM. The V_0 and I_0 parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VIH	Logic "1" input voltage		2.5			
VIL	Logic "0" input voltage	$V_{11} = 10 V_{10} = 20 V_{10}$			0.8	
VSD, TH+	SD input positive going threshold	V _{cc} = 10 V to 20V	2.5			V
VSD, TH-	SD input negative going threshold				0.8	v
V _{OH}	High level output voltage, V_{BIAS} - V_{O}	lo = 2 mA		0.05	0.2	
V _{OL}	Low level output voltage, Vo	10 – 2 MA		0.02	0.1	
Ilk	Offset supply leakage current	V _B = V _S = 600 V			50	
I _{QBS}	Quiescent V _{BS} supply current	V _{IN} = 0 V or 5 V		60	75	
l _{QCC}	Quiescent V _{CC} supply current	VIN - 0 V 01 3 V		170	270	μA
l _{IN+}	Logic "1" input bias current	V _{IN} = 5 V		3	10	
lin-	Logic "0" input bias current	V _{IN} = 0 V			5	
Vccuv+ V _{BSUV+}	V _{CC} & V _{BS} supply undervoltage positive going threshold		8	8.9	9.8	V
Vccuv- V _{BSUV-}	V _{CC} & V _{BS} supply undervoltage negative going threshold		7.4	8.2	9	V
lo+	Output high short circuit pulsed current	V_{O} = 0 V, V_{IN} = V_{IH} PW \leqslant 10 μs	1.4	1.9		^
lo-	Output low short circuit pulsed current	V_{O} = 15 V, V_{IN} = V_{IL} PW \leqslant 10 μs	1.8	2.3		A

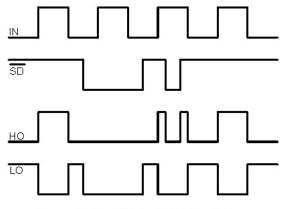


Figure 1. Input/Output Timing Diagram

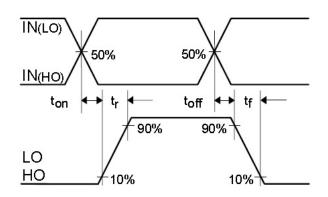


Figure 2. Switching Time Waveform Definitions

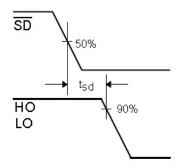


Figure 3. Shutdown Waveform Definitions

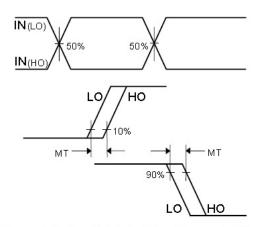


Figure 5. Delay Matching Waveform Definitions

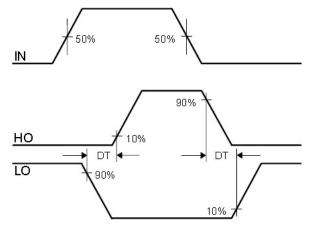


Figure 4. Deadtime Waveform Definitions

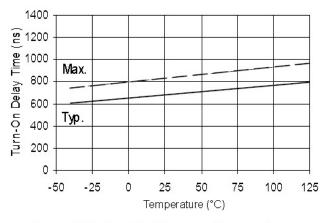


Figure 6A. Turn-On Time vs. Temperature

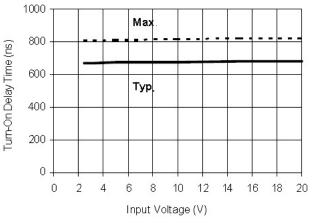


Figure 6C. Turn-On Time vs. Input Voltage

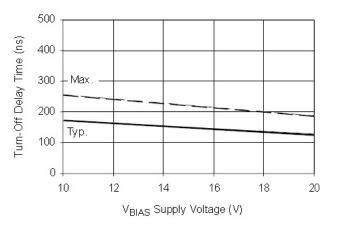


Figure 7B. Turn-Off Time vs. Supply Voltage

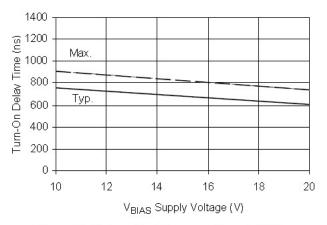


Figure 6B. Turn-On Time vs. Supply Voltage

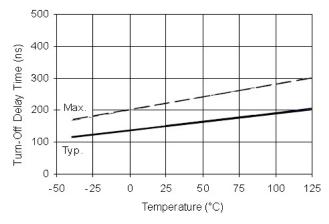


Figure 7A. Turn-Off Time vs. Temperature

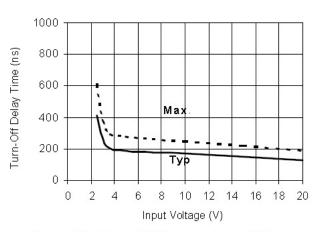


Figure 7C. Turn-Off Time vs. Input Voltage

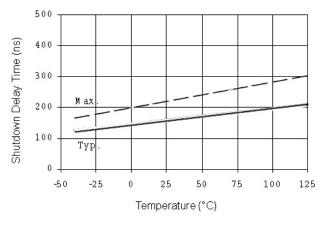


Figure 8A. Shutdown Time vs. Temperature

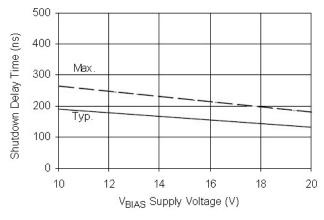
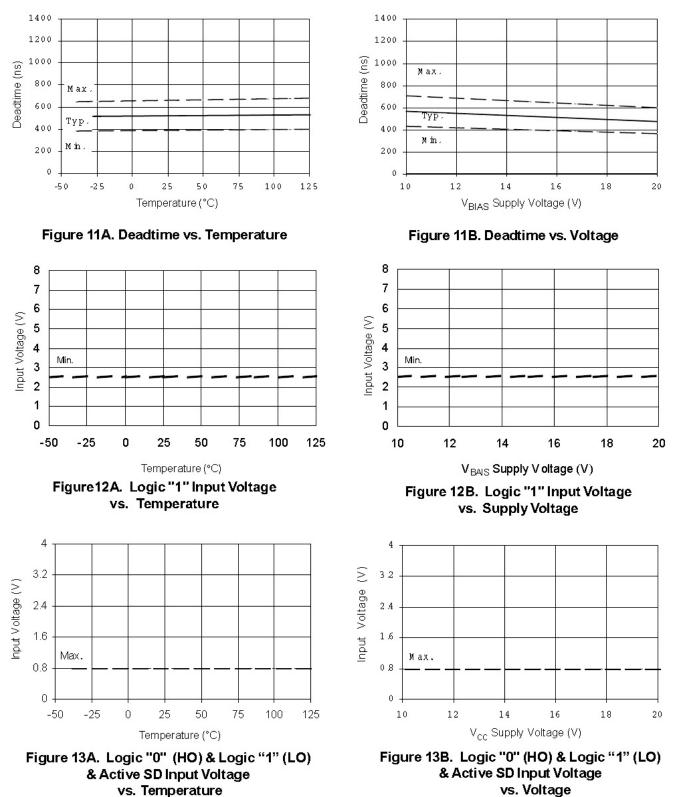
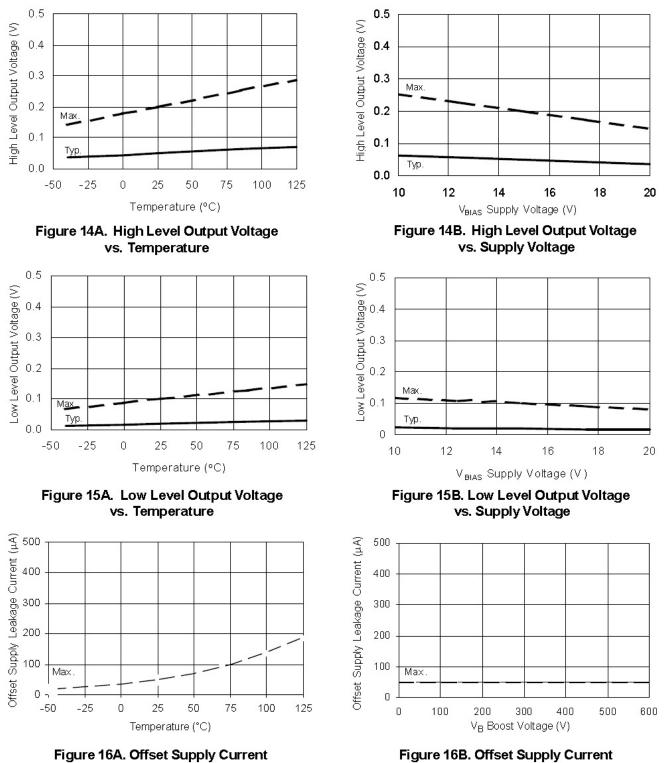
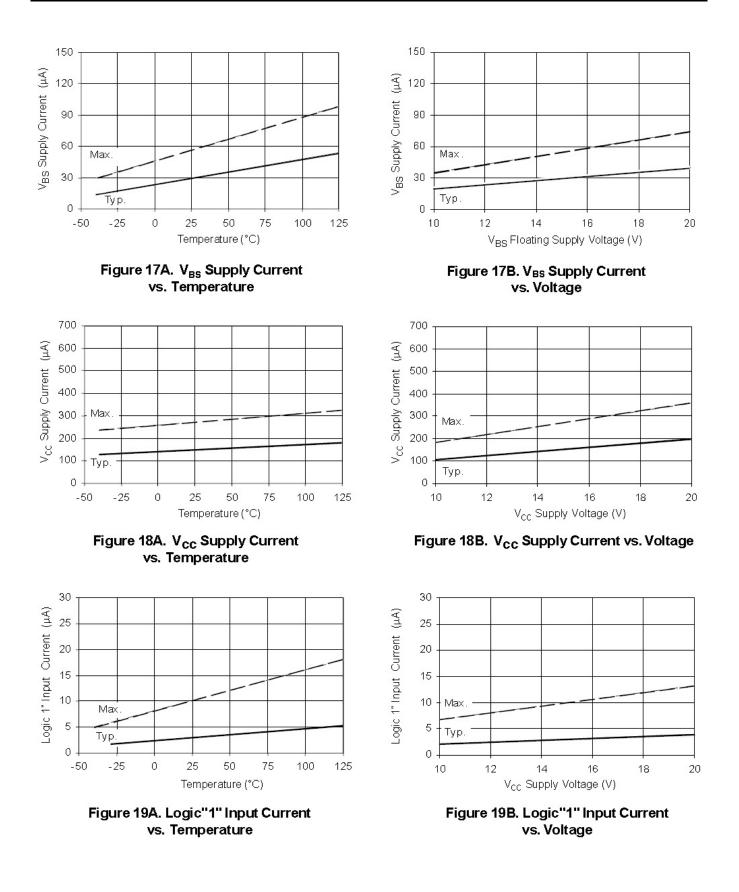



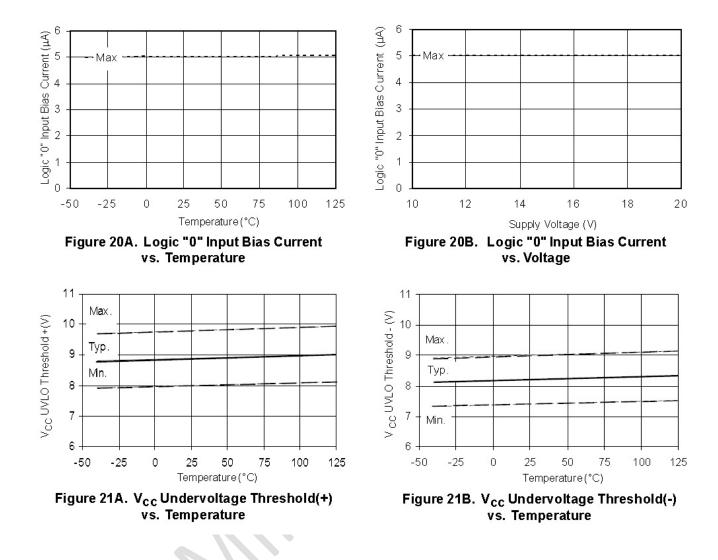
Figure 8B. Shutdown Time vs. Voltage



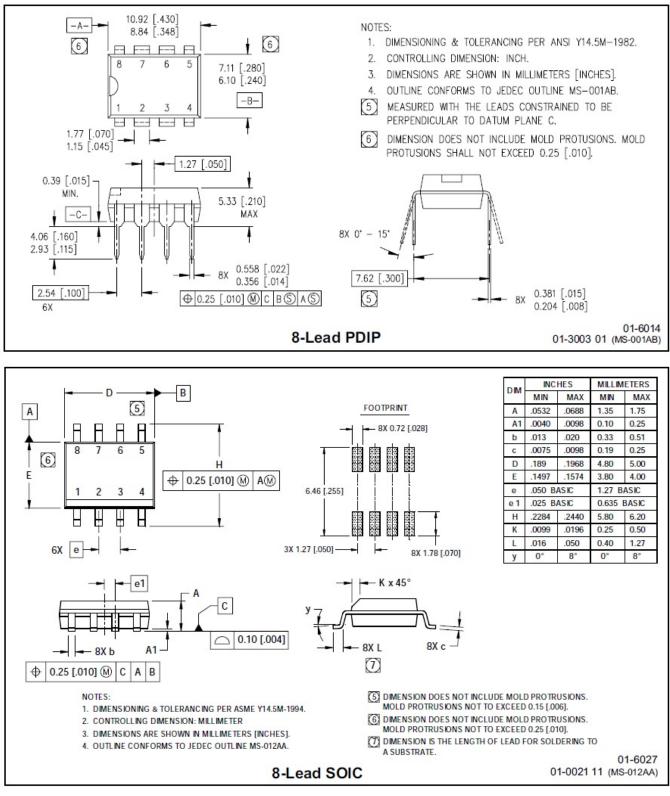
vs. Voltage

Sillumin Semiconductor Co., Ltd. - www.sillumin.com Rev1.0, August 2019




vs. Voltage

vs. Temperature

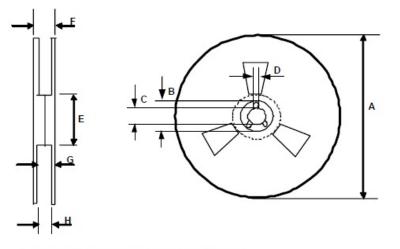


SLM2184S

PACKAGE CASE OUTLINES

Tape & Reel

8-lead SOIC


SLM2184S

С

LOADED TAPE FEED DIRECTION \equiv Е A В Н \oplus \oplus \oplus \oplus ⊕ NOTE : CONTROLLING DIMENSION IN MM Е G

CARRIER TAPE DIMENSION FOR 8SOICN

	Metric		Imp	erial	
Code	Min	Max	Min	Max	
A	7.90	8.10	0.311	0.318	
В	3.90	4.10	0.153	0.161	
С	11.70	12.30	0.46	0.484	
D	5.45	5.55	0.214	0.218	
E	6.30	6.50	0.248	0.255	
F	5.10	5.30	0.200	0.208	
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.062	

REEL DIMENSIONS FOR 8SOICN

	Me	Metric		erial	
Code	Min	Max	Min	Max	
A	329.60	330.25	12.976	13.001	
В	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E	98.00	102.00	3.858	4.015	
F	n/a	18.40	n/a	0.724	
G	14.50	17.10	0.570	0.673	
Н	12.40	14.40	0.488	0.566	

Revision History

Note: page numbers for previous revisions may differ from page numbers in current version

Page or Item	Subjects (major changes since previous revision)			
Rev 1.0 datasheet, 2	019-8-27			
Whole document	New company logo released			
Page 1	Remove "Figure 1." and "June 2019"			