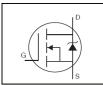
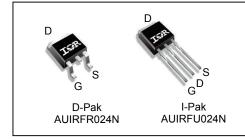


AUTOMOTIVE GRADE


AUIRFR024N AUIRFU024N

Features


- Advanced Planar Technology
- Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Tjmax
- · Lead-Free, RoHS Compliant
- Automotive Qualified *

Specifically designed for Automotive applications, this Cellular design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

V _{DSS}		55V
R _{DS(on)}	max.	0.075Ω
I _D		17A⑤

G	D	S
Gate	Drain	Source

Boss nort number	Dookogo Typo	Standard Pack		Orderable Part Number	
Base part number	Package Type	Form	Quantity	Orderable Part Number	
AUIRFU024N	I-Pak	Tube	75	AUIRFU024N	
ALUDEDO24N	D. Dok	Tube	75	AUIRFR024N	
AUIRFR024N	D-Pak	Tape and Reel Left	3000	AUIRFR024NTRL	

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	17	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	12	Α
I _{DM}	Pulsed Drain Current ① ⑥	68	
P _D @T _C = 25°C	Maximum Power Dissipation	45	W
	Linear Derating Factor	0.3	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS} Single Pulse Avalanche Energy (Thermally Limited) ②⑥		71	mJ
I _{AR}	Avalanche Current ①	10	Α
E _{AR}	Repetitive Avalanche Energy ①	4.5	mJ
dv/dt	Peak Diode Recovery dv/dt36	5.0	V/ns
T _J Operating Junction and		-55 to + 175	
T_{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		3.3	
$R_{ heta JA}$	Junction-to-Ambient (PCB Mount) ∅		50	°C/W
$R_{ heta JA}$	Junction-to-Ambient		110	

HEXFET® is a registered trademark of Infineon.

^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.052		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.075	Ω	V _{GS} = 10V, I _D = 10A ④
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Trans conductance	4.5				$V_{DS} = 25V, I_{D} = 10A $
ı	Drain to Source Leakage Current			25		$V_{DS} = 55 \text{ V}, V_{GS} = 0 \text{ V}$
I _{DSS}	Drain-to-Source Leakage Current			250	μΑ	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
	Gate-to-Source Forward Leakage			100	- Δ	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -20V$

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Total Gate Charge			20		I _D = 10A
Gate-to-Source Charge			5.3	nC	$V_{DS} = 44V$
Gate-to-Drain Charge			7.6		V _{GS} = 10V, See Fig 6 and 13 ④ ⑥
Turn-On Delay Time		4.9			$V_{DD} = 28V$
Rise Time		34		no	I _D = 10A
Turn-Off Delay Time		19		115	$R_G = 24\Omega$
Fall Time		27			R _D = 2.6Ω, See Fig 10 ④ ⑥
Internal Drain Inductance		4.5			Between lead, 6mm (0.25in.)
Internal Source Inductance		7.5			from package and center of die contact ⑤
Input Capacitance		370			$V_{GS} = 0V$
Output Capacitance		140		pF	$V_{DS} = 25V$
Reverse Transfer Capacitance		65			f = 1.0MHz, See Fig. 5
	Gate-to-Source Charge Gate-to-Drain Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance	Gate-to-Source Charge —— Gate-to-Drain Charge —— Turn-On Delay Time —— Rise Time —— Turn-Off Delay Time —— Fall Time —— Internal Drain Inductance —— Internal Source Inductance —— Unput Capacitance —— Output Capacitance ——	Gate-to-Source Charge — — Gate-to-Drain Charge — — Turn-On Delay Time — 4.9 Rise Time — 34 Turn-Off Delay Time — 19 Fall Time — 27 Internal Drain Inductance — 4.5 Internal Source Inductance — 7.5 Input Capacitance — 370 Output Capacitance — 140	Gate-to-Source Charge — 5.3 Gate-to-Drain Charge — 7.6 Turn-On Delay Time — 4.9 — Rise Time — 34 — Turn-Off Delay Time — 19 — Fall Time — 27 — Internal Drain Inductance — 4.5 — Internal Source Inductance — 7.5 — Input Capacitance — 370 — Output Capacitance — 140 —	Gate-to-Source Charge — 5.3 nC Gate-to-Drain Charge — 7.6 Turn-On Delay Time — 4.9 — Rise Time — 34 — Turn-Off Delay Time — 19 — Fall Time — 27 — Internal Drain Inductance — 4.5 — Internal Source Inductance — 7.5 — Input Capacitance — 370 — Output Capacitance — 140 — pF

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
	Continuous Source Current			17 ^⑤		MOSFET symbol
I _S	(Body Diode)			179	_	showing the
	Pulsed Source Current			68	Α	integral reverse
I _{SM}	(Body Diode) ①			00		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 10A, V_{GS} = 0V $ ④
t _{rr}	Reverse Recovery Time		56	83	ns	$T_J = 25^{\circ}C$, $I_F = 10A$
Q_{rr}	Reverse Recovery Charge		120	180	nC	di/dt = 100A/µs ④⑥
t _{on}	Forward Turn-On Time	Intrinsio	turn-or	time is	negligil	ole (turn-on is dominated by L _S +L _D)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- V_{DD} = 25V, starting T_J = 25°C, L = 1mH, R_G = 25 Ω , I_{AS} = 10A, V_{GS} =10V. (See Fig.12)
- $\exists \quad I_{SD} \leq 10 A, \ di/dt \leq 280 A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C.$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- ⑤ This is applied for I-PAK, L_S of D-PAK is measured between lead and center of die contact .
- © Uses IRFZ24N data and test conditions.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

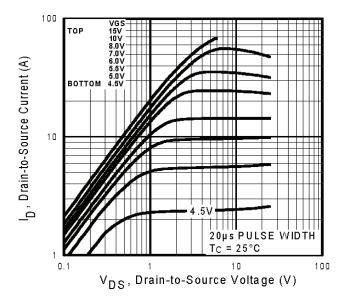


Fig. 1 Typical Output Characteristics

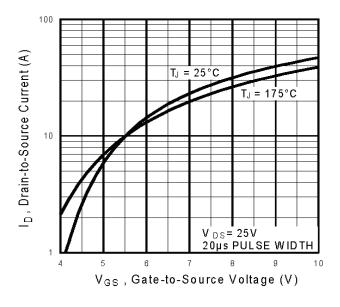


Fig. 3 Typical Transfer Characteristics

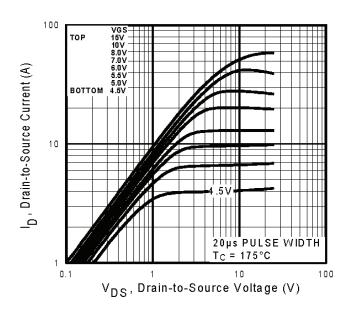
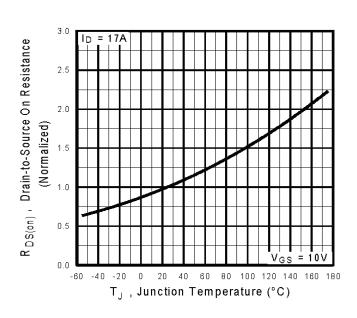
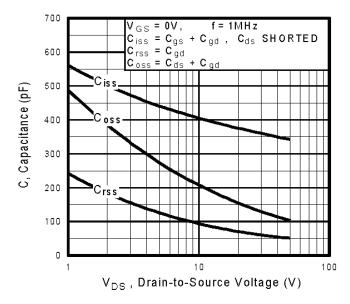




Fig. 2 Typical Output Characteristics

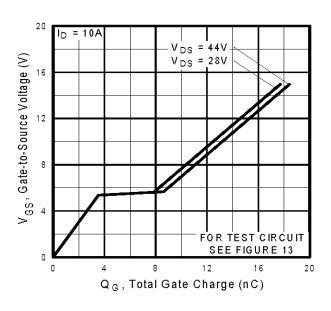


Fig. 4 Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

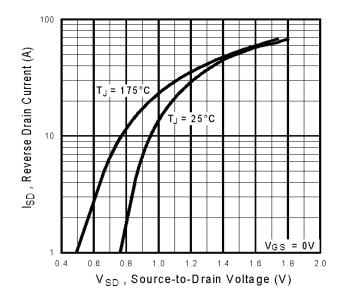


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

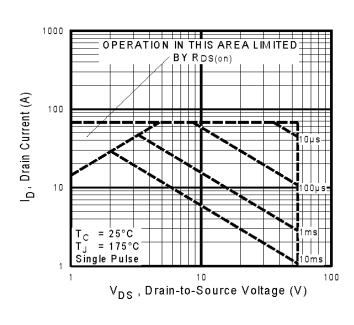


Fig 8. Maximum Safe Operating Area

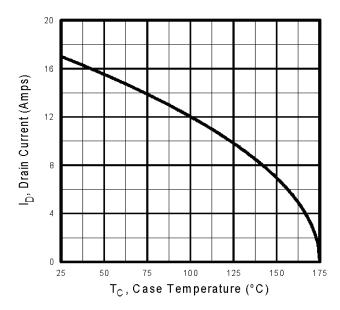


Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10a. Switching Time Test Circuit

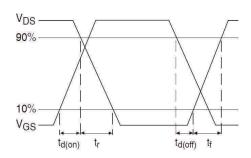


Fig 10b. Switching Time Waveforms

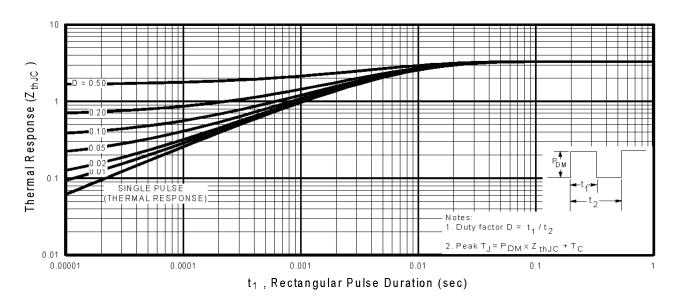


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

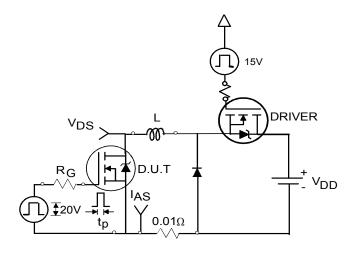


Fig 12a. Unclamped Inductive Test Circuit

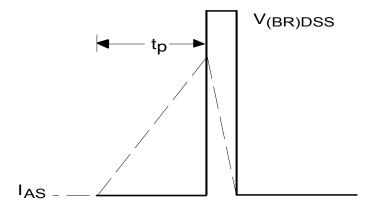


Fig 12b. Unclamped Inductive Waveforms

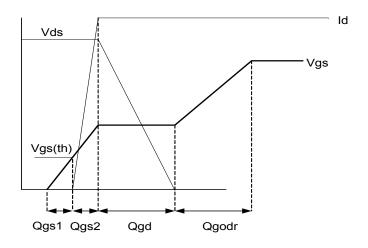
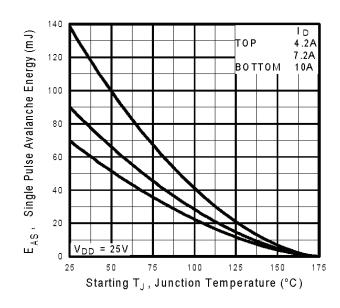



Fig 13a. Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy vs. Drain Current

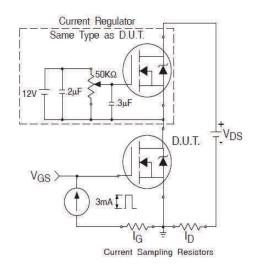
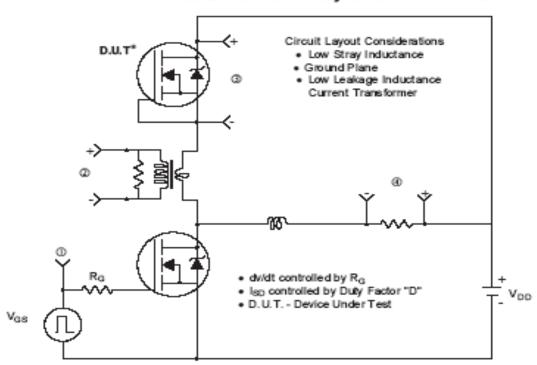



Fig 13b. Gate Charge Test Circuit

2015-10-12

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

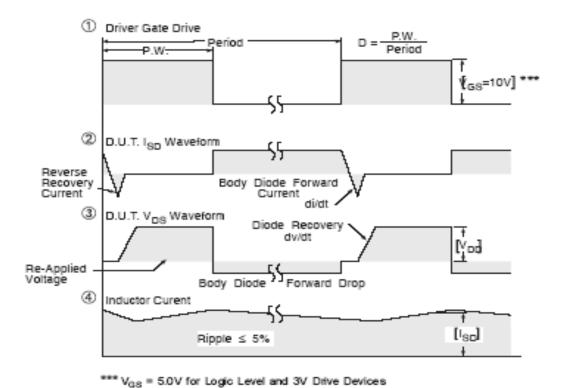
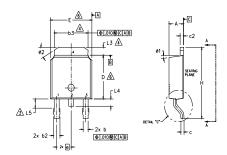
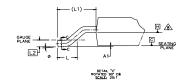
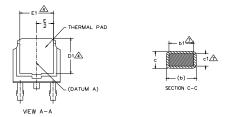



Fig 14. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs


2015-10-12



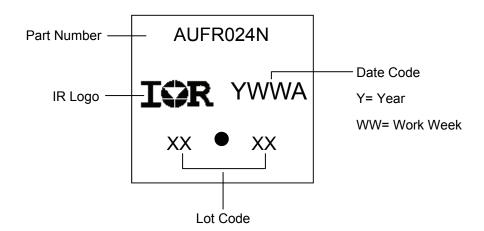
D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.— SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- Limited Dimension D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- DIMENSION b1 & c1 APPLIED TO BASE METAL ONLY.
- ♠ DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

Name
B
A 2.18 2.39 .086 .094 A1 - 0.13005 b 0.64 0.89 .025 .035 b1 0.65 0.79 .025 .031 7 b2 0.76 1.14 .030 .045 b3 4.95 5.46 .195 .215 4 c 0.46 0.61 .018 .024 c1 0.41 0.56 .016 .022 7 c2 0.46 0.89 .018 .035 D 5.97 6.22 .235 .245 6
A1 - 0.13 - .005 b 0.64 0.89 .025 .035 b1 0.65 0.79 .025 .031 7 b2 0.76 1.14 .030 .045 b3 4.95 5.46 .195 .215 4 c 0.46 0.61 .018 .024 c1 0.41 0.56 .016 .022 7 c2 0.46 0.89 .018 .035 D 5.97 6.22 .235 .245 6
b 0.64 0.89 .025 .035 b1 0.65 0.79 .025 .031 7 b2 0.76 1.14 .030 .045 b3 4.95 5.46 .195 .215 4 c 0.46 0.61 .018 .024 c1 0.41 0.56 .016 .022 7 c2 0.46 0.89 .018 .035 D 5.97 6.22 .235 .245 6
b1 0.65 0.79 .025 .031 7 b2 0.76 1.14 .030 .045 b3 4.95 5.46 .195 .215 4 c 0.46 0.61 .018 .024 .024 .016 .022 7 c2 0.46 0.89 .018 .035 .035 .056 .056 .022 .235 .245 6
b2 0.76 1.14 .030 .045 b3 4.95 5.46 .195 .215 4 c 0.46 0.61 .018 .024 c1 0.41 0.56 .016 .022 7 c2 0.46 0.89 .018 .035 D 5.97 6.22 .235 .245 6
b3 4.95 5.46 .195 .215 4 c 0.46 0.61 .018 .024 c1 0.41 0.56 .016 .022 7 c2 0.46 0.89 .018 .035 D 5.97 6.22 .235 .245 6
c 0.46 0.61 .018 .024 c1 0.41 0.56 .016 .022 7 c2 0.46 0.89 .018 .035 D 5.97 6.22 .235 .245 6
c1 0.41 0.56 .016 .022 7 c2 0.46 0.89 .018 .035 D 5.97 6.22 .235 .245 6
c2 0.46 0.89 .018 .035 D 5.97 6.22 .235 .245 6
D 5.97 6.22 .235 .245 6
- · - · · - · -
D1 5.21 - 205 - 4
E 6.35 6.73 .250 .265 6
E1 4.32170 - 4
e 2.29 BSC .090 BSC
H 9.40 10.41 .370 .410
L 1.40 1.78 .055 .070
L1 2.74 BSC .108 REF.
L2 0.51 BSC .020 BSC
L3 0.89 1.27 .035 .050 4
L4 - 1.02040
L5 1.14 1.52 .045 .060 3
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ø1 0° 15° 0° 15°
ø2 25° 35° 25° 35°

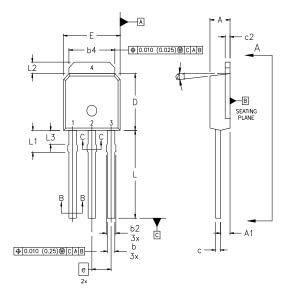
LEAD ASSIGNMENTS

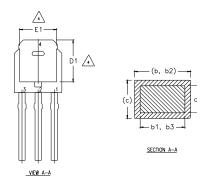

HEXFET

- 1.- GATE
- 2.- DRAIN 3.- SOURCE
- 4.- DRAIN

IGBT & CoPAK

- 1.- GATE
- 2.- COLLECTOR
- 3.- EMITTER
- 4.- COLLECTOR


D-Pak (TO-252AA) Part Marking Information



Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

I-Pak (TO-251AA) Package Outline (Dimensions are shown in millimeters (inches)

NOTES:

SYMBOL

A1

b

ь1

b2

b4

c1 c2

D

D1

Ε1

е L

L1

L2

L3

- DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994.
- DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 2
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- THERMAL PAD CONTOUR OPTION WITHIN DIMENSION 64, L2, E1 & D1.

INCHES

.094

0.045

0.035

0.031

0.045

0.041

0.215

0.024

0.022

0.035

0.245

0.265

0.380

0.090

0.050

0.060

15*

0.086

0.035

0.025

0.025

0.030

0.030

0.195

0.018

0.016

0.018

0.235

0.205

0.250

0.170

0.350

0.075

0.035

0.045

0.090 BSC

NOTES

LEAD DIMENSION UNCONTROLLED IN L3.

2.39

1.14

0.89

0.79

1.14

1.04

5.46

0.61

0.56

0.86

6.22

6.73

9.60

2.29

1.27

1.52

DIMENSION 61, 63 APPLY TO BASE METAL ONLY. OUTLINE CONFORMS TO JEDEC OUTLINE TO-251AA.

DIMENSIONS

CONTROLLING DIMENSION: INCHES.

MILLIMETERS

MIN.

2.18

0.89

0.64

0.64

0.76

0.76

5.00

0.46

0.41

.046

5.97

5.21

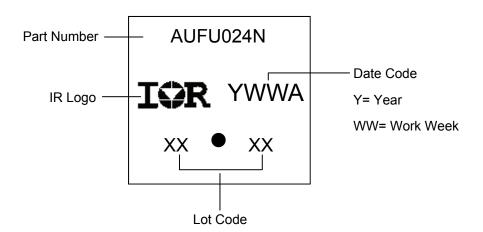
6.35

4.32

8.89

1,91

0.89

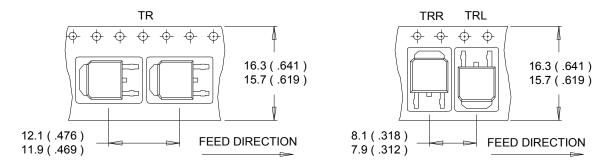

1.14

LEAD ASSIGNMENTS

. 1

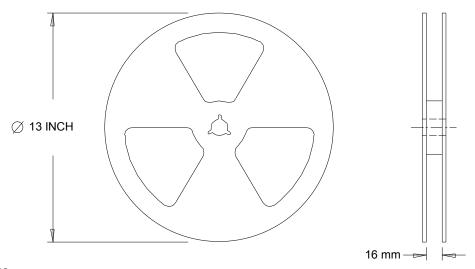
- 1.- GATE 2.- DRAIN
- 3.- SOURCE
- 4.- DRAIN

I-Pak (TO-251AA) Part Marking Information



Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

2015-10-12



D-Pak (TO-252AA) Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

4000000						
		Automotive (per AEC-Q101)				
		Industrial and C	is part number(s) passed Automotive qualification. Infineon's consumer qualification level is granted by extension of the higher let.			
Moisture Sensitivity Level		D-Pak	MCI 1			
		I-Pak	MSL1			
Manhima Manhal			Class M2 (+/- 150V) [†]			
	Machine Model		AEC-Q101-002			
FOD	Liverson Dady Madal	Class H1A (+/- 500V) [†]				
ESD	Human Body Model	AEC-Q101-001				
	Charged Davies Madel	Class C5 (+/- 2000V) [†]				
	Charged Device Model	AEC-Q101-005				
RoHS Compliant			Yes			

[†] Highest passing voltage.

Revision History

Date	Comments
10/12/2015	Updated datasheet with corporate template
10/12/2015	Corrected ordering table on page 1.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

AUIRFR024N AUIRFR024NTRL AUIRFR024NTRR