Integrated LCD controller/driver, 12-bit resolution A/D Converter, USB 2.0 controller (function), True Low Power Platform (as low as 112.5 $\mu \mathrm{A} / \mathrm{MHz}$, and $0.68 \mu \mathrm{~A}$ for RTC2 + LVD), 1.6 V to 3.6 V operation, 64 to 256 Kbyte Flash, 33 DMIPS at 24 MHz , for All LCD Based Applications

1. OUTLINE

1.1 Features

Ultra-low power consumption technology

- VDD = single power supply voltage of 1.6 to 3.6 V
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed ($0.04167 \mu \mathrm{~s}$: @ 24 MHz operation with high-speed on-chip oscillator clock or PLL clock) to ultra-low speed ($30.5 \mu \mathrm{~s}$: @ 32.768 kHz operation with subsystem clock)
- Multiply/divide and multiply/accumulate instructions are supported.
- Address space: 1 Mbyte
- General-purpose registers: (8-bit register $\times 8$) $\times 4$ banks
- On-chip RAM: 8 to 16 KB

Code flash memory

- Code flash memory: 64 to 256 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

Data flash memory

- Data flash memory: 8 KB
- Background operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: $1,000,000$ times (TYP.)
- Voltage of rewrites: VDD $=1.8$ to 3.6 V

High-speed on-chip oscillator

- Select from 48 MHz, $24 \mathrm{MHz}, 16 \mathrm{MHz}, 12 \mathrm{MHz}, 8 \mathrm{MHz}, 6 \mathrm{MHz}, 4$ $\mathrm{MHz}, 3 \mathrm{MHz}, 2 \mathrm{MHz}$, and 1 MHz
- High accuracy: $\pm 1.0 \%$ (VDD $=1.8$ to $3.6 \mathrm{~V}, \mathrm{TA}=-20$ to $+85^{\circ} \mathrm{C}$)

Operating ambient temperature

- $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications)
- $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications)

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 12 levels)

Data transfer controller (DTC)

- Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
- Activation sources: Activated by interrupt sources (30 to 33 sources).
- Chain transfer function

Event link controller (ELC)

- Event signals of 30 or 31 types can be linked to the specified peripheral function.

Serial interfaces

- Simplified SPI (CSI Note 1): 4 channels
- UART/UART (LIN-bus supported): 4 channels
- ${ }^{2} \mathrm{C} /$ simplified $\mathrm{I}^{2} \mathrm{C}: 5$ channels

Timers

- 16-bit timer: 11 channels
- 12-bit interval timer: 1 channel
- Real-time clock 2: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel (operable with the dedicated low-speed on-chip oscillator)

LCD controller/driver

- Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.
- Segment signal output: 44 (40) Note 2 to 56 (52) Note 2
- Common signal output: 4 (8) Note 2

USB Note 3

- USB version 2.0 (function controller)
- Full-speed transfer (12 Mbps) and low-speed transfer (1.5 Mbps) are supported
- Compliant to Battery Charging Specification Revision 1.2

A/D converter

- 8/10-bit resolution A/D converter (VDD $=1.6$ to 3.6 V)
- 12-bit resolution A/D converter (VDD $=2.4$ to 3.6 V)
- Analog input: 9 to 13 channels
- Internal reference voltage (TYP. 1.45 V) and temperature sensor Note 3

DIA converter

- 8-bit resolution D/A converter (VDD = 1.6 to 3.6 V)
- Analog output: 2 channels
- Output voltage: 0 V to VDD
- Real-time output function

Comparator

- 2 channels
- Operating modes: Comparator high-speed mode, comparator lowspeed mode, window mode
- The external reference voltage or internal reference voltage can be selected as the reference voltage.

I/O ports

- I/O ports: 59 to 77 (N-ch open drain I/O [withstand voltage of 6 V]: 2)
- Can be set to N -ch open drain, TTL input buffer, and on-chip pull-up resistor
- On-chip key interrupt function
- On-chip clock output/buzzer output controller

Others

- On-chip BCD (binary-coded decimal) correction circuit

Note 1. Although the CSI function is generally called SPI, it is also called CSI in this product, so it is referred to as such in this manual.
Note 2. The number in parentheses indicates the number of signal outputs when 8 coms are used.
Note 3. Selectable only in HS (high-speed main) mode.

Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

O ROM, RAM capacities
Products with USB

Flash ROM	Data Flash	RL78/L1C			
			80 pins	85 pins	100 pins
256 KB	8 KB		R5F110MJ	R5F110NJ	R5F110PJ
192 KB	8 KB	16 KB Note	R5F110MH	R5F110NH	R5F110PH
128 KB	8 KB	12 KB	R5F110MG	R5F110NG	R5F110PG
96 KB	8 KB	10 KB	R5F110MF	R5F110NF	R5F110PF
64 KB	8 KB	8 KB	R5F110ME	R5F110NE	R5F110PE

Products without USB

Flash ROM	Data Flash	RL78/L1C			
			80 pins	85 pins	100 pins
256 KB	8 KB		R5F111MJ	R5F111NJ	R5F111PJ
192 KB	16 KB Note	R5F111MH	R5F111NH	R5F111PH	
128 KB	8 KB	12 KB	R5F111MG	R5F111NG	R5F111PG
96 KB	8 KB	10 KB	R5F111MF	R5F111NF	R5F111PF
64 KB	8 KB	8 KB	R5F111ME	R5F111NE	R5F111PE

Note \quad This is about 15 KB when the self-programming function and data flash function are used (For details, see CHAPTER 3 in the RL78/L1C User's Manual).

1.2 Ordering Information

Products with USB

Pin Count	Package	Fields of Application	Orderable Part Number		RENESAS Code
			Product Name	Packaging Specifications	
80 pins	80-pin plastic LFQFP ($12 \times 12 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)	A	R5F110MEAFB, R5F110MFAFB, R5F110MGAFB, R5F110MHAFB, R5F110MJAFB	\#10,\#50	PLQP0080KB-B PLQP0080KJ-A
				\#30	PLQP0080KB-B
		G	R5F110MEGFB, R5F110MFGFB, R5F110MGGFB, R5F110MHGFB, R5F110MJGFB	\#10,\#50	PLQP0080KB-B PLQP0080KJ-A
				\#30	PLQP0080KB-B
85 pins	85-pin plastic VFLGA ($7 \times 7 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)	A	R5F110NEALA, R5F110NFALA, R5F110NGALA, R5F110NHALA, R5F110NJALA	\#U0,\#W0	PVLG0085JA-A
		G	R5F110NEGLA, R5F110NFGLA, R5F110NGGLA, R5F110NHGLA, R5F110NJGLA		
100 pins	100-pin plastic LFQFP ($14 \times 14 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)	A	R5F110PEAFB, R5F110PFAFB, R5F110PGAFB, R5F110PHAFB, R5F110PJAFB	\#10,\#50	PLQP0100KB-B PLQP0100KP-A
				\#30	PLQP0100KB-B
		G	R5F110PEGFB, R5F110PFGFB, R5F110PGGFB, R5F110PHGFB, R5F110PJGFB	\#10,\#50	PLQP0100KB-B PLQP0100KP-A
				\#30	PLQP0100KB-B

Products without USB

Pin Count	Package	Fields of Application	Orderable Part Number		RENESAS Code
			Product Name	Packaging Specifications	
80 pins	80-pin plastic LFQFP ($12 \times 12 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)	A	R5F111MEAFB, R5F111MFAFB, R5F111MGAFB, R5F111MHAFB, R5F111MJAFB	\#10,\#50	PLQP0080KB-B PLQP0080KJ-A
				\#30	PLQP0080KB-B
		G	R5F111MEGFB, R5F111MFGFB, R5F111MGGFB, R5F111MHGFB, R5F111MJGFB	\#10,\#50	PLQP0080KB-B PLQP0080KJ-A
				\#30	PLQP0080KB-B
85 pins	$\begin{aligned} & \text { 85-pin plastic VFLGA } \\ & (7 \times 7 \mathrm{~mm}, 0.65 \mathrm{~mm} \text { pitch }) \end{aligned}$	A	R5F111NEALA, R5F111NFALA, R5F111NGALA, R5F111NHALA, R5F111NJALA	\#U0,\#W0	PVLG0085JA-A
		G	R5F111NEGLA, R5F111NFGLA, R5F111NGGLA, R5F111NHGLA, R5F111NJGLA		
100 pins	100-pin plastic LFQFP ($14 \times 14 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)	A	R5F111PEAFB, R5F111PFAFB, R5F111PGAFB, R5F111PHAFB, R5F111PJAFB	\#10,\#50	PLQP0100KB-B PLQP0100KP-A
				\#30	PLQP0100KB-B
		G	R5F111PEGFB, R5F111PFGFB, R5F111PGGFB, R5F111PHGFB, R5F111PJGFB	\#10,\#50	PLQP0100KB-B PLQP0100KP-A
				\#30	PLQP0100KB-B

Figure 1-1 Part Number, Memory Size, and Package of RL78/L1C
Part No. R 5 F 110 PEAxxxFB\#30

Caution Orderable part numbers are current as of when this manual was published.
Please make sure to refer to the relevant product page on the Renesas website for the latest part numbers.

1.3 Pin Configuration (Top View)

1.3.1 80-pin products (with USB)

- 80-pin plastic LFQFP ($12 \times 12 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$

Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
Caution 2. Connect the Uregc pin to Vss pin via a capacitor ($0.33 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral l/O redirection register (PIOR).

1.3.2 80-pin products (without USB)

- 80-pin plastic LFQFP (fine pitch) ($12 \times 12 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.3.3 85-pin products (with USB)

(410) (B10 (c10) (10 E10 F10 (610) H10 (310) ${ }^{10}$
(A9) (B9)
(C9) (D9) (E9)
(F9) (G9)
(H9)
(39) к9)

(A7) (B7) (C7)
(H7) (37) K7
(A6) (B6) C6
(H6) 36
(A5) (B5) (C5
(H5) 55
(A4) (B4) (C4) (D4)
(H4) (34) 64
(A3 (B3) C3 (D3 E3 F3 (G3 H3 Ј3 K3
(A2) (B2) (C2) (D2 E2 (G2) H2 (J2) K2
(A1) (B1) (C1) (D1) (E1) (G1) H1 (J1) K1

Pin	Name								
A1	COM7/SEG3	C1	COM2	E1	P04/INTP2/SEG52	G1	P00/SCK10/SCL10/ SEG48	J1	Vsso
A2	P51/SEG5	C2	COM5/SEG1	E2	P05/TI02/TO02/SEG53	G2	Vsso	J2	P11/RxD2/SI20/SDA20/ SEG41/VCOUT0
A3	P70/KR7/SEG12	C3	COM6/SEG2	E3	P06/INTP5/SEG54	G3	P12/TxD2/SO20/SEG42/ VCOUT1	J3	P26/SO00/TxD0/ TOOLTxD/SEG38
A4	P73/KR4/TKBO21/SEG15	C4	P71/KR6/SEG13	E4	-	G4	-	J4	P23/T107/TO07/SEG35
A5	P74/KR3/TKBO10/SEG16	C5	P76/KR1/TKBO00/SEG18	E5	-	G5	-	J5	P20/ANI20/SEG32
A6	$\begin{aligned} & \text { P31/INTP3/RTC1HZ/ } \\ & \text { SEG21 } \end{aligned}$	C6	P77/KR0/TKBO01/SEG19	E6	-	G6	-	J6	P141/ANI17/SEG29
A7	P33/INTP4/SCK30/SCL30/ SEG23	C7	P34/SI30/RxD3/SDA30/ SEG24	E7	-	G7	-	J7	UREGC
A8	P35/SO30/TxD3/SEG25	C8	VL1	E8	P40/TOOLO/(TIOO)/(TO00)	G8	P44/(SCK10)/(SCL10)/ IVREFO	J8	UVbus
A9	VL4	C9	P61/SDAA0/(TIO2)/(TO02)	E9	P137/INTP0	G9	P45/ANO0	J9	AVDD
A10	P126/CAPL/(TIO4)/(TO04)	C10	VdDo	E10	P122/X2/EXCLK	G10	P123/XT1	J10	P150/ANIO/AVREFP
B1	COM4/SEG0	D1	COMO	F1	P03/T100/TO00/INTP1/ SEG51	H1	Vsso	K1	Vsso
B2	P50/SEG4/INTP6	D2	COM1	F2	P02/SO10/TxD1/ (PCLBUZ0)/SEG50	H2	Vsso	K2	P27/TI05/TO05/(INTP5)/ PCLBUZ1/SEG39
B3	P52/SEG6	D3	P07/TI06/TO06/SEG55	F3	P01/SI10/RxD1/SDA10/ SEG49	H3	P10/INTP7/PCLBUZ0/ SCK20/SCL20/SEG40	K3	P25/SI00/RxD0/ TOOLRxD/SDA00/SEG37
B4	P72/KR5/TKBO20/SEG14	D4	COM3	F4	-	H4	$\begin{aligned} & \text { P24/SCK00/SCL00/ } \\ & \text { SEG36 } \end{aligned}$	K4	P22/TI04/TO04/SEG34
B5	P75/KR2/TKBO11/SEG17	D5	-	F5	-	H5	P21/ANI21/SEG33	K5	P143/ANI19/SEG31
B6	P30/TI03/TO03/ REMOOUT/SEG20	D6	-	F6	-	H6	P140/ANI16/SEG28	K6	P142/ANI18/SEG30
B7	P32/TI01/TO01/SEG22	D7	-	F7	-	H7	P152/ANI2	K7	UDM
B8	P125/VL3/(TIO6)/(TO06)	D8	P60/SCLA0/(TI01)/(TO01)	F8	$\begin{aligned} & \text { P43/(INTP7)/(SI10)/ } \\ & \text { (RxD1)/(SDA10)/IVCMP0 } \end{aligned}$	H8	P46/ANO1	K8	UDP
B9	VL2	D9	REGC	F9	RESET	H9	P130	K9	AVss
B10	P127/CAPH/(TIO3)/ (TO03)/(REMOOUT)	D10	P121/X1	F10	Vsso	H10	P124/XT2/EXCLKS	K10	P151/ANI1/AVREFM

1.3.4 85-pin products (without USB)

(A10) (B10 (c10) (D10) E10) F10) (610) H10 (310) ${ }^{\kappa 10}$
(A9) (B9)
(C9) (D9) (E9)
(F9) (G9)
(H9)
(39) к9)

(A7) (B7) (C7)
(H7) (37) K7
(A6) (B6) (C6)
(H6) 36
(A5) (B5) C5
(H5) 55
(A4) (B4) (C4) (D4)
(H4) (J4) K4
(A3 (B3) C3 (D3 E3 F3 (G3 H3 Ј3 K3
(A2) (B2) (C2) (D2 E2 (G2) H2 (J2) K2
(A1) (B1) (C1) (D1) E1 (G1) H1 (11 K1

Pin	Name								
A1	COM7/SEG3	C1	COM2	E1	P04/INTP2/SEG52	G1	P00/SCK10/SCL10/ SEG48	J1	Vsso
A2	P51/SEG5	C2	COM5/SEG1	E2	P05/TI02/TO02/SEG53	G2	Vsso	J2	P11/RxD2/SI20/SDA20/ SEG41/VCOUT0
A3	P70/KR7/SEG12	C3	COM6/SEG2	E3	P06/INTP5/SEG54	G3	P12/TxD2/SO20/SEG42/ VCOUT1	J3	P26/SO00/TxD0/ TOOLTxD/SEG38
A4	P73/KR4/TKBO21/SEG15	C4	P71/KR6/SEG13	E4	-	G4	-	J4	P23/T107/TO07/SEG35
A5	P74/KR3/TKBO10/SEG16	C5	P76/KR1/TKBO00/SEG18	E5	-	G5	-	J5	P20/ANI20/SEG32
A6	P31/INTP3/RTC1HZ/ SEG21	C6	P77/KR0/TKBO01/ SEG19	E6	-	G6	-	J6	P141/ANI17/SEG29
A7	P33/INTP4/SCK30/ SCL30/SEG23	C7	P34/SI30/RxD3/SDA30/ SEG24	E7	-	G7	-	J7	P82
A8	P35/SO30/TxD3/SEG25	C8	VL1	E8	P40/TOOLO/(TIOO)/(TO00)	G8	P44/(SCK10)/(SCL10)/ IVREFO	J8	P83
A9	VL4	C9	P61/SDAA0/(TIO2)/(TO02)	E9	P137/INTP0	G9	P45/ANO0	J9	AVDD
A10	P126/CAPL/(TIO4)/(TO04)	C10	VdDo	E10	P122/X2/EXCLK	G10	P123/XT1	J10	P150/ANIO/AVREFP
B1	COM4/SEG0	D1	COMO	F1	P03/TI00/TO00/INTP1/ SEG51	H1	Vsso	K1	Vsso
B2	P50/SEG4/INTP6	D2	COM1	F2	P02/SO10/TxD1/ (PCLBUZO)/SEG50	H2	Vsso	K2	P27/TI05/TO05/(INTP5)/ PCLBUZ1/SEG39
B3	P52/SEG6	D3	P07/TI06/TO06/SEG55	F3	P01/SI10/RxD1/SDA10/ SEG49	H3	P10/INTP7/PCLBUZ0/ SCK20/SCL20/SEG40	K3	P25/SI00/RxD0/ TOOLRxD/SDA00/SEG37
B4	P72/KR5/TKBO20/SEG14	D4	COM3	F4	-	H4	$\begin{aligned} & \text { P24/SCK00/SCL00/ } \\ & \text { SEG36 } \end{aligned}$	K4	P22/TI04/TO04/SEG34
B5	P75/KR2/TKBO11/SEG17	D5	-	F5	-	H5	P21/ANI21/SEG33	K5	P143/ANI19/SEG31
B6	P30/TI03/TO03/ REMOOUT/SEG20	D6	-	F6	-	H6	P140/ANI16/SEG28	K6	P142/ANI18/SEG30
B7	P32/TI01/TO01/SEG22	D7	-	F7	-	H7	P152/ANI2	K7	P156/ANI6
B8	P125/VL3/(TIO6)/(TO06)	D8	P60/SCLA0/(TI01)/(TO01)	F8	P43/(INTP7)/(SI10)/ (RxD1)/(SDA10)/IVCMP0	H8	P46/ANO1	K8	P155/ANI5
B9	VL2	D9	REGC	F9	RESET	H9	P130	K9	AVss
B10	P127/CAPH/(TI03)/ (TO03)/(REMOOUT)	D10	P121/X1	F10	Vsso	H10	P124/XT2/EXCLKS	K10	P151/ANI1/AVREFM

1.3.5 100-pin products (with USB)

- 100-pin plastic LFQFP (fine pitch) (14 $\times 14 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
Caution 2. Connect the Uregc pin to Vss pin via a capacitor ($0.33 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral l/O redirection register (PIOR).

1.3.6 100-pin products (without USB)

- 100-pin plastic LFQFP (fine pitch) ($14 \times 14 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.4 Pin Identification

ANIO to ANI6,	: Analog Input	SCL00, SCL10, SCL20, SCL30	Serial Clock Output
ANI16 to ANI21		SDAA0, SDA00, SDA10,	Serial Data Input/Output
ANOO, ANO1	: Analog Output	SDA20, SDA30	
AVDD	: Analog Power Supply	SEG0 to SEG55	: LCD Segment Output
AVREFM	: Analog Reference Voltage	SI00, SI10, SI20, SI30	Serial Data Input
	Minus	SO00, SO10, SO20, SO30	Serial Data Output
AVREFP	: Analog Reference Voltage	TIOO to TIO7	Timer Input
	Plus	TO00 to TO07	Timer Output
AVss	: Analog Ground	TKB000, TKBO01, TKBO10,	
CAPH, CAPL	Capacitor for LCD	TKBO11, TKBO20, TKBO21	
COM0 to COM7	: LCD Common Output	TOOLO	Data Input/Output for Tool
EXCLK	: External Clock Input (Main System Clock)	TOOLRxD, TOOLTxD	Data Input/Output for External Device
EXCLKS	: External Clock Input (Subsystem Clock)	UDM, UDP URegc	: USB Input/Output : USB Regulator Capacitance
INTP0 to INTP7	External Interrupt Input	UVbus	: USB Input/USB Power Supply
IVCMP0, IVCMP1	: Comparator Input	TxD0 to TxD3	Transmit Data
IVREF0, IVREF1	Comparator Reference Input	VCOUT0, VCOUT1	Comparator Output
KR0 to KR7	: Key Return	VDDo, VDD1	Power Supply
P00 to P07	Port 0	VL1 to VL4	LCD Power Supply
P10 to P17	: Port 1	Vsso, Vss1	Ground
P20 to P27	Port 2	X1, X2	Crystal Oscillator
P30 to P37	: Port 3		(Main System Clock)
P40 to P46	Port 4	XT1, XT2	Crystal Oscillator
P50 to P57	: Port 5		(Subsystem Clock)
P60 to P62	: Port 6		
P70 to P77	: Port 7		
P80 to P83	: Port 8		
P121 to P127	: Port 12		
P130, P137	: Port 13		
P140 to P143	: Port 14		
P150 to P156	: Port 15		
PCLBUZO, PCLBUZ1	: Programmable Clock Output/ Buzzer Output		
REGC	: Regulator Capacitance		
REMOOUT	: Remote Control Output		
$\overline{\text { RESET }}$: Reset		
RTC1HZ	Real-time Clock Correction Clock (1 Hz) Output		
RxD0 to RxD3	: Receive Data		
SCK00, SCK10, SCK20, SCK30	: Serial Clock Input/Output		
SCLAO	Serial Clock Input/Output		

1.5 Block Diagram

1.5.1 80/85-pin products (with USB)

1.5.2 80/85-pin products (without USB)

1.5.3 100-pin products (with USB)

1.5.4 100-pin products (without USB)

1.6 Outline of Functions

[80/85-pin, 100-pin products (with USB)]
(1/2)

Item		80/85-pin	100-pin
		R5F110Mx/R5F110Nx (x = E to H, J)	R5F110Px ($\mathrm{x}=\mathrm{E}$ to H, J)
Code flash memory (KB)		64 to 256	64 to 256
Data flash memory (KB)		8	8
RAM (KB)		8 to 16 Note 1	8 to 16 Note 1
Memory space		1 MB	
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) 1 to 20 MHz : VDD $=2.7$ to $3.6 \mathrm{~V}, 1$ to 8 MHz : $\mathrm{VDD}=1.8$ to $2.7 \mathrm{~V}, 1$ to 4 MHz : $\mathrm{VDD}=1.6$ to 1.8 V	
	High-speed on-chip oscillator clock	HS (high-speed main) operation mode: 1 to 24 MHz (VDD $=2.7$ to 3.6 V), HS (high-speed main) operation mode: 1 to 16 MHz (VDD $=2.4$ to 3.6 V), LS (low-speed main) operation mode: 1 to 8 MHz (VDD $=1.8$ to 3.6 V), LV (low-voltage main) operation mode: 1 to 4 MHz (VDD $=1.6$ to 3.6 V)	
	PLL clock	6, 12, 24 MHz Note 2: VdD $=2.4$ to 3.6 V	
Subsystem clock		XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz (TYP.): $\mathrm{VDD}=1.6$ to 3.6 V	
Low-speed on-chip oscillator clock		15 kHz (TYP.): VDD $=1.6$ to 3.6 V	
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)	
Minimum instruction execution time		0.04167μ s (High-speed on-chip oscillator clock: $\mathrm{fHOCO}=\mathrm{fIH}=24 \mathrm{MHz}$ operation)	
		$0.04167 \mu \mathrm{~s}$ (PLL clock: fPLL $=48 \mathrm{MHz} / \mathrm{fIIH}=24 \mathrm{MHz}$ Note 2 operation)	
		$0.05 \mu \mathrm{~s}$ (High-speed system clock: $\mathrm{fmX}=20 \mathrm{MHz}$ operation)	
		$30.5 \mu \mathrm{~s}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)	
Instruction set		- Data transfer (8/16 bits) - Adder and subtractor/logical operation (8/16 bits) - Multiplication (8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division (16 bits $\div 16$ bits, 32 bits $\div 32$ bits) - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits) - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.	
I/O port	Total	59	77
	CMOS I/O	51	69
	CMOS input	5	5
	CMOS output	1	1
	N -ch open-drain I/O (6 V tolerance)	2	2
Timer	16-bit timer TAU	8 channels (with 1 channel remote control output function) (Timer outputs: 8, PWM outputs: 7 Note 3)	
	16-bit timer KB2	3 channels (PWM outputs: 6)	
	Watchdog timer	1 channel	
	12-bit interval timer	1 channel	
	Real-time clock 2	1 channel	
	RTC output	1 1 Hz (subsystem clock: fsub $=32.768 \mathrm{kHz}$)	

Note 1. In the case of the 16 KB , this is about 15 KB when the self-programming function and data flash function are used (For details, see CHAPTER 3 in the RL78/L1C User's Manual).
Note 2. In the PLL clock 48 MHz operation, the system clock is $2 / 4 / 8$ dividing ratio.
Note 3. The number of outputs varies, depending on the setting of channels in use and the number of the master.

Item		80/85-pin	100-pin
		R5F110Mx/R5F110Nx ($\mathrm{x}=\mathrm{E}$ to H, J)	R5F110Px ($\mathrm{x}=\mathrm{E}$ to H, J)
Clock output/buzzer output		2	2
		- $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fmain $=20 \mathrm{MHz}$ operation) - $256 \mathrm{~Hz}, 512 \mathrm{~Hz}, 1.024 \mathrm{kHz}, 2.048 \mathrm{kHz}, 4.096 \mathrm{kHz}, 8.192 \mathrm{kHz}, 16.384 \mathrm{kHz}, 32.768 \mathrm{kHz}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)	
8/12-bit resolution A/D converter		9 channels	13 channels
D/A converter		2 channels	2 channels
Comparator		1 channel	2 channels
Serial interface		- Simplified SPI (CSI): 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel - Simplified SPI (CSI): 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel - Simplified SPI (CSI): 1 channel/UART: 1 channel/simplified ${ }^{2} \mathrm{C}: 1$ channel - Simplified SPI (CSI): 1 channel/UART: 1 channel/simplified ${ }^{2} \mathrm{C}$: 1 channel	
	$1^{2} \mathrm{C}$ bus	1 channel	1 channel
USB	Function		
LCD controller/driver		Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.	
Segment signal output		44 (40) Note 1	56 (52) Note 1
Common signal output		4 (8) Note 1	
Data transfer controller (DTC)		32 sources	33 sources
Event link controller (ELC)		Event input: 30, Event trigger output: 22	Event input: 31, Event trigger output: 22
Vectored interrupt sources	Internal	36	37
	External	9	9
Key interrupt		8	8
Reset		- Reset by RESET pin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution Note 2 - Internal reset by RAM parity error - Internal reset by illegal-memory access	
Power-on-reset circuit		- Power-on-reset: $1.51 \pm 0.03 \mathrm{~V}$ - Power-down-reset: $1.50 \pm 0.03 \mathrm{~V}$	
Voltage detector		- Rising edge: 1.67 V to 3.13 V (12 stages) - Falling edge: 1.63 V to 3.06 V (12 stages)	
On-chip debug function		Provided	
Power supply voltage		$\begin{aligned} & \text { VDD }=1.6 \text { to } 3.6 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \\ & \mathrm{VDD}=2.4 \text { to } 3.6 \mathrm{~V}\left(\mathrm{TA}^{2}=-40 \text { to }+105^{\circ} \mathrm{C}\right) \end{aligned}$	
Operating ambient temperature		TA $=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications), $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications)	

Note 1. The number in parentheses indicates the number of signal outputs when 8 coms are used.
Note 2. The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.
[80/85-pin, 100-pin products (without USB)]

Item		80/85-pin	100-pin
		R5F111Mx/R5F111Nx ($\mathrm{x}=\mathrm{E}$ to H, J)	R5F111Px ($\mathrm{x}=\mathrm{E}$ to H, J)
Code flash memory (KB)		64 to 256	64 to 256
Data flash memory (KB)		8	8
RAM (KB)		8 to 16 Note 1	8 to 16 Note 1
Memory space		1 MB	
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) 1 to 20 MHz : VDD $=2.7$ to $3.6 \mathrm{~V}, 1$ to 8 MHz : $\mathrm{VDD}=1.8$ to $2.7 \mathrm{~V}, 1$ to 4 MHz : $\mathrm{VDD}=1.6$ to 1.8 V	
	High-speed on-chip oscillator clock	HS (high-speed main) operation mode: 1 to 24 MHz (VDD $=2.7$ to 3.6 V), HS (high-speed main) operation mode: 1 to 16 MHz (VDD $=2.4$ to 3.6 V , LS (low-speed main) operation mode: 1 to 8 MHz (VDD $=1.8$ to 3.6 V), LV (low-voltage main) operation mode: 1 to 4 MHz (VDD $=1.6$ to 3.6 V)	
Subsystem clock		XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz (TYP.): VDD $=1.6$ to 3.6 V	
Low-speed on-chip oscillator clock		15 kHz (TYP.): VDD $=1.6$ to 3.6 V	
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)	
Minimum instruction execution time		0.04167μ s (High-speed on-chip oscillator clock: $\mathrm{fHOCO}=\mathrm{fIH}=24 \mathrm{MHz}$ operation)	
		$0.05 \mu \mathrm{~s}$ (High-speed system clock: $\mathrm{fmx}=20 \mathrm{MHz}$ operation)	
		$30.5 \mu \mathrm{~s}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)	
Instruction set		- Data transfer (8/16 bits) - Adder and subtractor/logical operation (8/16 bits) - Multiplication (8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division (16 bits $\div 16$ bits, 32 bits $\div 32$ bits) - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits) - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.	
I/O port	Total	63	81
	CMOS I/O	55	73
	CMOS input	5	5
	CMOS output	1	1
	N -ch open-drain I/O (6 V tolerance)	2	2
Timer	16-bit timer TAU	8 channels (with 1 channel remote control output function) (Timer outputs: 8, PWM outputs: 7 Note ${ }^{2}$)	
	16-bit timer KB2	3 channels (PWM outputs: 6)	
	Watchdog timer	1 channel	
	12-bit interval timer	1 channel	
	Real-time clock 2	1 channel	
	RTC output	```1 1 Hz (subsystem clock: fsuB = 32.768 kHz)```	

Note 1. In the case of the 16 KB , this is about 15 KB when the self-programming function and data flash function are used (For details, see CHAPTER 3 in the RL78/L1C User's Manual).
Note 2. The number of outputs varies, depending on the setting of channels in use and the number of the master.

Item		80/85-pin	100-pin
		R5F111Mx/R5F111Nx (x = E to H, J)	R5F111Px ($\mathrm{x}=\mathrm{E}$ to H, J)
Clock output/buzzer output		2	2
		- $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fMAIN $=20 \mathrm{MHz}$ operation) - $256 \mathrm{~Hz}, 512 \mathrm{~Hz}, 1.024 \mathrm{kHz}, 2.048 \mathrm{kHz}, 4.096 \mathrm{kHz}, 8.192 \mathrm{kHz}, 16.384 \mathrm{kHz}, 32.768 \mathrm{kHz}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)	
8/12-bit resolution A/D converter		11 channels	13 channels
D/A converter		2 channels	2 channels
Comparator		1 channel	2 channels
Serial interface		- Simplified SPI (CSI): 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}$: 1 channel - Simplified SPI (CSI): 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel - Simplified SPI (CSI): 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel - Simplified SPI (CSI): 1 channel/UART: 1 channel/simplified I²C: 1 channel	
	$1^{2} \mathrm{C}$ bus	1 channel	1 channel
LCD controller/driver		Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.	
Segment signal output		44 (40) Note 1	56 (52) Note 1
Common signal output		4 (8) Note 1	
Data transfer controller (DTC)		30 sources	31 sources
Event link controller (ELC)		Event input: 30, Event trigger output: 22	Event input: 31, Event trigger output: 22
Vectored interrupt sources	Internal	32	33
	External	9	9
Key interrupt		8	8
Reset		- Reset by RESET pin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution Note 2 - Internal reset by RAM parity error - Internal reset by illegal-memory access	
Power-on-reset circuit		- Power-on-reset: $1.51 \pm 0.03 \mathrm{~V}$ - Power-down-reset: $1.50 \pm 0.03 \mathrm{~V}$	
Voltage detector		- Rising edge: 1.67 V to 3.13 V (12 stages) - Falling edge: 1.63 V to 3.06 V (12 stages)	
On-chip debug function		Provided	
Power supply voltage		$\begin{aligned} & \text { VDD }=1.6 \text { to } 3.6 \mathrm{~V}\left(\mathrm{TA}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \\ & \mathrm{VDD}=2.4 \text { to } 3.6 \mathrm{~V}\left(\mathrm{TA}^{2}=-40 \text { to }+105^{\circ} \mathrm{C}\right) \end{aligned}$	
Operating ambient temperature		TA $=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications), $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications)	

Note 1. The number in parentheses indicates the number of signal outputs when 8 coms are used.
Note 2. The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS (TA $=-40$ to $+85^{\circ} \mathrm{C}$)

This chapter describes the electrical specifications for the products A: Consumer applications ($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$) and G: Industrial applications (when used in the range of $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$).

Caution 1. The RL78 microcontroller has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L1C User's Manual.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
(1/3)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	UVbus		-0.5 to +6.5	V
	AVDD	AVDD \leq VDD	-0.5 to + 4.6	V
REGC pin input voltage	Viregc	REGC	$\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 1 \end{gathered}$	V
UREGC pin input voltage	Viuregc	UREGC	-0.3 to UVBUS + 0.3 Note 2	V
Input voltage	VII	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, EXCLK, EXCLKS, $\overline{R E S E T}$	-0.3 to VDD + 0.3 Note 3	V
	V12	P60, P61 (N-ch open-drain)	-0.3 to +6.5	V
	VI3	UDP, UDM	-0.3 to + 6.5	V
	V14	P150 to P156	-0.3 to AVDD + 0.3 Note 4	V
Output voltage	Vo1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-0.3 to VDD +0.3 Note 3	V
	VO2	P150 to P156	-0.3 to AVDD + 0.3 Note 3	V
	Vo3	UDP, UDM	-0.3 to +3.8	V
Analog input voltage	VAI1	ANI16 to ANI21	$\begin{gathered} -0.3 \text { to VDD }+0.3 \\ \text { and } \operatorname{AVREF}(+)+0.3 \text { Notes } 3,5 \end{gathered}$	V
	VAI2	ANIO to ANI6	$\begin{gathered} -0.3 \text { to AVDD }+0.3 \\ \text { and } \operatorname{AVREF}(+)+0.3 \text { Notes } 3,5 \end{gathered}$	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
Note 2. Connect the UREGC pin to Vss via a capacitor ($0.33 \mu \mathrm{~F}$). This value regulates the absolute maximum rating of the UREGC pin. Do not use this pin with voltage applied to it.
Note 3. Must be 6.5 V or lower.
Note 4. Must be 4.6 V or lower.
Note 5. Do not exceed $\operatorname{AVREF}(+)+0.3 \mathrm{~V}$ in case of A / D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
Remark 2. AVREF (+): + side reference voltage of the A/D converter.
Remark 3. Vss: Reference voltage

Absolute Maximum Ratings ($\mathrm{TA}=\mathbf{2 5}^{\circ} \mathrm{C}$)
(2/3)

Parameter	Symbols	Conditions		Ratings	Unit
LCD voltage	VLII	VL1 input voltage Note 1		-0.3 to +2.8	V
	VLI2	VL2 input voltage Note 1		-0.3 to +6.5	V
	VLI3	VL3 input voltage Note 1		-0.3 to +6.5	V
	VLI4	VL4 input voltage Note 1		-0.3 to +6.5	V
	VLI5	CAPL, CAPH input voltage Note 1		-0.3 to +6.5	V
	VLO1	VL1 output voltage		-0.3 to +2.8	V
	VLO2	VL2 output voltage		-0.3 to +6.5	V
	VLO3	VL3 output voltage		-0.3 to +6.5	V
	VLO4	VL4 output voltage		-0.3 to +6.5	V
	VLO5	CAPL, CAPH output voltage		-0.3 to +6.5	V
	VLO6	COMO to COM7 SEG0 to SEG55 output voltage	External resistance division method	-0.3 to VDD + 0.3 Note 2	V
			Capacitor split method	-0.3 to VDD + 0.3 Note 2	V
			Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V

Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor ($0.47 \pm 30 \%$) and connect a capacitor ($0.47 \pm 30 \%$) between the CAPL and CAPH pins.
Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Ratings ($\mathrm{TA}=\mathbf{2 5}^{\circ} \mathrm{C}$)
(3/3)

Parameter	Symbols	Conditions		Ratings	Unit
Output current, high	IOH1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-40	mA
		Total of all pins -170 mA	P40 to P46	-70	mA
			P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-100	mA
	IOH2	Per pin	P150 to P156	-0.1	mA
		Total of all pins		-0.7	mA
	Іонз	Per pin	UDP, UDM	-3	mA
Output current, low	IOL1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	40	mA
		Total of all pins 170 mA	P40 to P46	70	mA
			P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	100	mA
	IOL2	Per pin	P150 to P156	0.4	mA
		Total of all pins		2.8	mA
	IoL3	Per pin	UDP, UDM	3	mA
Operating ambient temperature	TA	In normal operation mode		-40 to +85	${ }^{\circ} \mathrm{C}$
		In flash memory programming mode			
Storage temperature	Tstg			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.2 Oscillator Characteristics

2.2.1 X1 and XT1 oscillator characteristics

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/crystal resonator	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1.0		16.0	
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$	1.0		8.0	
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$	1.0		4.0	
XT1 clock oscillation frequency (fXT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.
Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/L1C User's Manual.

2.2.2 On-chip oscillator characteristics

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.
High-speed on-chip oscillator clock frequency Notes 1,2	fHoco		1		48	MHz
High-speed on-chip oscillator clock frequency accuracy						

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte $(000 \mathrm{C} 2 \mathrm{H})$ and bits 0 to 2 of the HOCODIV register.
Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.2.3 PLL oscillator characteristics

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.
Unit					
PLL input frequency Note	fPLLIN	High-speed system clock	6.00		16.00
PLL output frequency Note	fPLL			48.00	

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	$\mathrm{IOH1}$	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143				$\begin{aligned} & -10.0 \\ & \text { Note } 2 \end{aligned}$	mA
		```Total of P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143 (When duty \leq 70% Note 3)```	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			-15.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			-7.0	mA
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$			-3.0	mA
	IOH 2	Per pin for P150 to P156	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			$\begin{gathered} -0.1 \\ \text { Note } 2 \end{gathered}$	mA
		Total of all pins	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			-0.7	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.
Note 2. However, do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $\mathrm{n} \%$ ).

- Total output current of pins $=(\mathrm{IOH} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOH}=-10.0 \mathrm{~mA}$ Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \approx-8.7 \mathrm{~mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

## $\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $\left.=0 \mathrm{~V}\right)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57,   P70 to P77, P80 to P83,   P125 to P127, P130, P140 to P143				$\begin{gathered} 20.0 \\ \text { Note } 2 \end{gathered}$	mA
		Per pin for P60 and P61				$\begin{gathered} 15.0 \\ \text { Note } 2 \end{gathered}$	mA
		Total of P40 to P46, P130	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			15.0	mA
		(When duty $\leq 70 \%$ Note 3)	$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			9.0	mA
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$			4.5	mA
		Total of P00 to P07, P10 to P17, P20 to P27,	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			35.0	mA
		P30 to P37, P50 to P57, P60, P61,	$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			20.0	mA
		P140 to P143   (When duty $\leq 70 \%$ Note 3 )	$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$			10.0	mA
		Total of all pins   (When duty $\leq 70 \%$ Note 3 )				50.0	mA
	IOL2	Per pin for P150 to P156				$0.4$   Note 2	mA
		Total of all pins	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			2.8	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
Note 2. However, do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression
(when changing the duty factor from $70 \%$ to $n \%$ ).

- Total output current of pins $=(\mathrm{IOL} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOL}=10.0 \mathrm{~mA}$
Total output current of pins $=(10.0 \times 0.7) /(80 \times 0.01) \approx 8.7 \mathrm{~mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\left.\mathrm{Vss}=0 \mathrm{~V}\right)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{VIH}_{1}$	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	Normal input buffer	0.8 VDD		VDD	V
	VIH2	$\begin{aligned} & \text { P00, P01, P10, P11, P24, P25, } \\ & \text { P33, P34, P43, P44 } \end{aligned}$	TTL input buffer $3.3 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	2.0		VDD	V
			TTL input buffer   $1.6 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$	1.50		VDD	V
	Vінз	P150 to P156		0.7 AVDD		AVDD	v
	VIH4	P60, P61		0.7 VDD		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0.8 VDD		VDD	V
Input voltage, low	VIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	Normal input buffer	0		0.2 VDD	V
	VIL2	$\begin{aligned} & \text { P00, P01, P10, P11, P24, P25, } \\ & \text { P33, P34, P43, P44 } \end{aligned}$	TTL input buffer $3.3 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0		0.5	v
			TTL input buffer $1.6 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$	0		0.32	v
	VIL3	P150 to P156		0		0.3 AVDD	V
	VIL4	P60, P61		0		0.3 VDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0		0.2 VDD	V

Caution The maximum value of Viн of pins P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 is Vdd, even in the N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $\left.=0 \mathrm{~V}\right)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vor1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IOH} 1=-2.0 \mathrm{~mA} \end{aligned}$	VDD - 0.6			V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IOH} 1=-1.5 \mathrm{~mA} \end{aligned}$	VDD - 0.5			v
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & \mathrm{IOH} 1=-1.0 \mathrm{~mA} \end{aligned}$	VDD - 0.5			v
	Voh2	P150 to P156	$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IOH} 2=-100 \mu \mathrm{~A} \end{aligned}$	AVDD - 0.5			V
Output voltage, low	Vol1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IOLI}=3.0 \mathrm{~mA} \end{aligned}$			0.6	v
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{loL1}=1.5 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{loL1}=0.6 \mathrm{~mA} \end{aligned}$			0.4	v
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}, \\ & \mathrm{IOLL}=0.3 \mathrm{~mA} \end{aligned}$			0.4	V
	VoL2	P150 to P156	$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IOL2}=400 \mu \mathrm{~A} \end{aligned}$			0.4	v
	Vol3	P60, P61	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{loL} 3=3.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IoL3}=2.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 1.8 \mathrm{~V}, \\ & \mathrm{loL} 3=1.0 \mathrm{~mA} \end{aligned}$			0.4	v

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137,   P140 to P143, RESET	$\mathrm{VI}=\mathrm{VDD}$				1	$\mu \mathrm{A}$
	ILIH2	P20, P21, P140 to P143	V I $=\mathrm{VDD}$				1	$\mu \mathrm{A}$
	ILIH3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	V I $=\mathrm{VDD}$	In input port or external clock input			1	$\mu \mathrm{A}$
				In resonator connection			10	$\mu \mathrm{A}$
	ILIH4	P150 to P156	$\mathrm{VI}=\mathrm{AVDD}$				1	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	$\mathrm{V}_{\mathrm{I}}=\mathrm{Vss}$				-1	$\mu \mathrm{A}$
	ILIL2	P20, P21, P140 to P143	$\mathrm{V}_{1}=\mathrm{V} S \mathrm{~S}$				-1	$\mu \mathrm{A}$
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	$\mathrm{VI}=\mathrm{Vss}$	In input port or external clock input			-1	$\mu \mathrm{A}$
				In resonator connection			-10	$\mu \mathrm{A}$
	ILIL4	P150 to P156	$\mathrm{VI}=\mathrm{AVss}$				-1	$\mu \mathrm{A}$
On-chip pull-up resistance	RU1	P00 to P07, P10 to P17, P20 to P27,	$\mathrm{VI}=\mathrm{Vss}$	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	10	20	100	k $\Omega$
		P140 to P143, P125 to P127		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 2.4 \mathrm{~V}$	10	30	100	
	Ru2	P40 to P46, P80 to P83	$\mathrm{V} 1=\mathrm{Vss}$		10	20	100	k $\Omega$

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

### 2.3.2 Supply current characteristics

( $\mathrm{TA}^{2}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	Operating mode	$\begin{aligned} & \text { HS } \\ & \text { (high-speed main) } \\ & \text { mode Note } 5 \end{aligned}$	$\begin{aligned} & \text { fHoco }=48 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Basic operation	$\mathrm{VDD}=3.6 \mathrm{~V}$		2.2	2.8	mA
						VDD $=3.0 \mathrm{~V}$		2.2	2.8	
					Normal operation	$\mathrm{VDD}=3.6 \mathrm{~V}$		4.4	8.5	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.4	8.5	
				$\begin{aligned} & \text { fHOCO }=24 \mathrm{MHz} \text { Note } 3, \\ & \text { fiH }=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Basic operation	VDD $=3.6 \mathrm{~V}$		2.0	2.6	
						VDD $=3.0 \mathrm{~V}$		2.0	2.6	
					Normal operation	VDD $=3.6 \mathrm{~V}$		4.2	6.8	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.2	6.8	
				$\begin{aligned} & \mathrm{fHoco}=16 \mathrm{MHz} \text { Note 3, } \\ & \mathrm{fIH}=16 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=3.6 \mathrm{~V}$		3.1	4.9	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		3.1	4.9	
			LS	$\begin{aligned} & \mathrm{fHOCO}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{fIH}=8 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	$\mathrm{VDD}=3.0 \mathrm{~V}$		1.4	2.2	mA
			(low-speed main)   mode Note 5			$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		1.4	2.2	
				$\mathrm{fHOCO}=4 \mathrm{MHz} \text { Note 3, }$   $\mathrm{fIH}=4 \mathrm{MHz}$ Note 3	Normal operation	$\mathrm{VDD}=3.0 \mathrm{~V}$		1.3	1.8	mA
			(low-voltage main)   mode Note 5			$\mathrm{VDD}=2.0 \mathrm{~V}$		1.3	1.8	
				$\begin{aligned} & \mathrm{fMX}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.5	5.5	mA
			(high-speed main)			Resonator connection		3.6	5.7	
				$\begin{aligned} & \mathrm{fMX}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.5	5.5	
						Resonator connection		3.6	5.7	
				$\begin{aligned} & \text { fMX }=16 \mathrm{MHz} \text { Note } 2, \\ & \text { VDD }=3.6 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.9	4.5	
						Resonator connection		3.1	4.6	
				$\begin{aligned} & \mathrm{fMx}=16 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.9	4.5	
						Resonator connection		3.1	4.6	
				$\begin{aligned} & \mathrm{fMx}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.1	3.2	
						Resonator connection		2.2	3.2	
				$\begin{aligned} & \mathrm{fMX}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.1	3.2	
						Resonator connection		2.2	3.2	
			LS   (low-speed main) mode Note 5	$\begin{aligned} & \mathrm{fmX}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.2	2.0	mA
						Resonator connection		1.3	2.0	
				$\begin{aligned} & \mathrm{fmX}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.2	2.1	
						Resonator connection		1.3	2.2	
			HS   (High-speedmain) mode (PLL operation)	$\begin{aligned} & \text { fPLL }=48 \mathrm{MHz}, \\ & \text { fCLK }=24 \mathrm{MHz} \text { Note } 2 \end{aligned}$	Normal operation	$\mathrm{V} D \mathrm{D}=3.6 \mathrm{~V}$		4.7	7.5	mA
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.7	7.5	
				$\begin{aligned} & \text { fPLL }=48 \mathrm{MHz}, \\ & \text { fCLK }=12 \mathrm{MHz} \text { Note } 2 \end{aligned}$	Normal operation	VDD $=3.6 \mathrm{~V}$		3.1	5.1	
						VDD $=3.0 \mathrm{~V}$		3.1	5.1	
				$\begin{aligned} & \mathrm{fPLL}=48 \mathrm{MHz} \\ & \mathrm{fCLK}=6 \mathrm{MHz} \text { Note } 2 \end{aligned}$	Normal operation	$\mathrm{VDD}=3.6 \mathrm{~V}$		2.3	3.9	
						VDD $=3.0 \mathrm{~V}$		2.3	3.9	
			Subsystem clock operation	$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \text { TA }=-40^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.6	6.9	$\mu \mathrm{A}$
						Resonator connection		4.7	6.9	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \text { TA }=+25^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.9	7.0	
						Resonator connection		5.0	7.2	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \text { TA }=+50^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.2	7.6	
						Resonator connection		5.2	7.7	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.5	9.3	
						Resonator connection		5.6	9.4	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}^{2}=+85^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		6.2	13.3	
						Resonator connection		6.2	13.4	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or Vss. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.

- The currents in the "TYP." column do not include the operating currents of the peripheral modules.
- The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $\quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz
$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode: $\quad 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
LV (low-voltage main) mode $\quad 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Remark 1. $f m x$ : High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency ( 48 MHz max.)
Remark 3. fiH: Main system clock source frequency when the high-speed on-chip oscillator clock divided $1,2,4$, or 8 , or the PLL clock divided by 2,4 , or 8 is selected ( 24 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )
(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	$\begin{aligned} & \text { IDD2 } \\ & \text { Note } 2 \end{aligned}$	HALT mode	HS (high-speed main) mode Note 6	$\begin{aligned} & \text { fHOCO }=48 \mathrm{MHz} \text { Note } 4, \\ & \text { fiH }=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=3.6 \mathrm{~V}$		0.77	2.70	mA
					$\mathrm{VDD}=3.0 \mathrm{~V}$		0.77	2.70	
				$\begin{aligned} & \text { fHOCO }=24 \mathrm{MHz} \text { Note } 4, \\ & \mathrm{fIH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=3.6 \mathrm{~V}$		0.55	1.91	
					VDD $=3.0 \mathrm{~V}$		0.55	1.90	
				$\begin{aligned} & \mathrm{fHOCO}=16 \mathrm{MHz} \text { Note } 4, \\ & \mathrm{fIH}=16 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=3.6 \mathrm{~V}$		0.48	1.41	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.47	1.41	
			LS (low-speed main) mode Note 6	$\begin{aligned} & \mathrm{fHOCO}=8 \mathrm{MHz} \text { Note } 4, \\ & \mathrm{fIH}=8 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=3.0 \mathrm{~V}$		300	770	$\mu \mathrm{A}$
					$\mathrm{VDD}=2.0 \mathrm{~V}$		300	770	
			LV (low-voltage main) mode Note 6	$\begin{aligned} & \text { fHoco }=4 \mathrm{MHz} \text { Note } 4, \\ & \mathrm{fIH}=4 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=3.0 \mathrm{~V}$		440	770	$\mu \mathrm{A}$
					VDD $=2.0 \mathrm{~V}$		440	770	
			HS (high-speed main) mode Note 6	$\begin{aligned} & \mathrm{fmX}=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Square wave input		0.35	1.63	mA
					Resonator connection		0.51	1.68	
				$\begin{aligned} & \mathrm{fmX}=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.34	1.63	
					Resonator connection		0.51	1.68	
				$\begin{aligned} & \mathrm{fmX}=16 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Square wave input		0.30	1.22	
					Resonator connection		0.45	1.39	
				$\begin{aligned} & \mathrm{fmX}=16 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.29	1.20	
					Resonator connection		0.45	1.38	
				$\begin{aligned} & \mathrm{fMX}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Square wave input		0.23	0.82	
					Resonator connection		0.30	0.90	
				$\begin{aligned} & \mathrm{fMX}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.22	0.81	
					Resonator connection		0.30	0.89	
			LS (low-speed main) mode Note 6	$\begin{aligned} & \mathrm{fmX}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		120	510	$\mu \mathrm{A}$
					Resonator connection		170	560	
				$\begin{aligned} & \mathrm{fmX}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Square wave input		130	520	
					Resonator connection		170	570	
			HS   (High-speed main) mode (PLL operation)	$\begin{aligned} & \text { fmx }=48 \mathrm{MHz}, \\ & \text { fCLK }=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	VDD $=3.6 \mathrm{~V}$		0.99	2.89	mA
					VDD $=3.0 \mathrm{~V}$		0.99	2.88	
				$\begin{aligned} & \text { fMx }=48 \mathrm{MHz}, \\ & \text { fCLK }=12 \mathrm{MHz} \text { Note } 3 \end{aligned}$	VDD $=3.6 \mathrm{~V}$		0.89	2.48	
					VDD $=3.0 \mathrm{~V}$		0.89	2.47	
				$\begin{aligned} & \mathrm{fmX}=48 \mathrm{MHz} \\ & \mathrm{fCLK}=6 \mathrm{MHz} \text { Note } 3 \end{aligned}$	VDD $=3.6 \mathrm{~V}$		0.84	2.27	
					$\mathrm{VDD}=3.0 \mathrm{~V}$		0.84	2.27	
			Subsystem clock operation	$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \text { TA }=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.32	0.61	$\mu \mathrm{A}$
					Resonator connection		0.51	0.80	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.41	0.74	
					Resonator connection		0.62	0.91	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.52	2.30	
					Resonator connection		0.75	2.49	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.82	4.03	
					Resonator connection		1.08	4.22	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		1.38	8.04	
					Resonator connection		1.62	8.23	
	IDD3	STOP mode Note 7	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.18	0.52	$\mu \mathrm{A}$
			$\mathrm{TA}=+25^{\circ} \mathrm{C}$				0.25	0.52	
			$\mathrm{TA}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.34	2.21	
			$\mathrm{TA}=+70^{\circ} \mathrm{C}$				0.64	3.94	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				1.18	7.95	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.

- The currents in the "TYP." column do not include the operating currents of the peripheral modules.
- The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2.
In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
Note 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $\quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode: $\quad 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
LV (low-voltage main) mode $\quad 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz
Note 7. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency ( 48 MHz max.)
Remark 3. fiH: Main system clock source frequency when the high-speed on-chip oscillator clock divided $1,2,4$, or 8 , or the PLL clock divided by 2,4 , or 8 is selected ( 24 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA $=25^{\circ} \mathrm{C}$
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

(Notes and Remarks are listed on the next page.)

Note 1. Current flowing to VDD.
Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
Note 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode.
Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
Note 7. Current flowing to the AVDD.
Note 8. Current flowing from the reference voltage source of $A / D$ converter.
Note 9. Operation current flowing to the internal reference voltage.
Note 10. Current flowing to the AVREFP.
Note 11. Current flowing only to the D/A converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDA when the D/A converter operates in an operation mode or the HALT mode.
Note 12. Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates in the Operating, HALT or STOP mode.
Note 13. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
Note 14. Current flowing only during self-programming.
Note 15. Current flowing only during data flash rewrite.
Note 16. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/L1C User's Manual.
Note 17. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.
Note 18. Not including the current that flows through the external divider resistor divider resistor.
Note 19. Current flowing to the UVBus.
Note 20. Including the operating current when fPLL $=48 \mathrm{MHz}$.
Note 21. Including the current supplied from the pull-up resistor of the UDP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.

Remark 1. fil: Low-speed on-chip oscillator clock frequency
Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 3. fcLK: CPU/peripheral hardware clock frequency
Remark 4. Temperature condition of the TYP. value is $\mathrm{TA}^{2}=25^{\circ} \mathrm{C}$

### 2.4 AC Characteristics

### 2.4.1 Basic operation

( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fmain) operation	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0.0417		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
			LS (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0.125		1	$\mu \mathrm{s}$
			LV (low-voltage main) mode	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0.25		1	$\mu \mathrm{s}$
		Subsystem clock (fSUB) operation		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	28.5	30.5	31.3	$\mu \mathrm{s}$
		In the selfprogramming mode	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0.0417		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
			LS (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0.125		1	$\mu \mathrm{s}$
			LV (low-voltage main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0.25		1	$\mu \mathrm{s}$
External main system clock frequency	fex	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			1.0		16.0	MHz
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$			1.0		8.0	MHz
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$			1.0		4.0	MHz
	fExT				32		35	kHz
External main system clock input high-level width, low-level width	$\begin{aligned} & \text { tEXH, } \\ & \text { tEXL } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			24			ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			30			ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$			60			ns
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$			120			ns
	tEXHS, tEXLS				13.7			$\mu \mathrm{s}$
TIOO to TIO7 input high-level width, low-level width	tTIH, tTIL				$\begin{gathered} \text { 1/fMCK + } \\ 10 \end{gathered}$			ns

Remark fмск: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number ( $m=0$ ),
n : Channel number ( $\mathrm{n}=0$ to 7 ))
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )
(2/2)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
TO00 to TO07, TKBO00, TKBO01, TKBO10, TKBO11, TKBO20, TKBO21 output frequency	fto	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			8	MHz
			$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			8	MHz
		LS (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			4	MHz
		LV (low-voltage main) mode	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			2	MHz
PCLBUZO, PCLBUZ1 output frequency	fPCL	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			8	MHz
			$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			8	MHz
		LS (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			4	MHz
		LV (low-voltage main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			2	MHz
Interrupt input high-level width, low-level width	tINTH, tINTL	INTP0 to INTP7	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1			$\mu \mathrm{s}$
Key interrupt input low-level width	tKR	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		250			ns
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$		1			$\mu \mathrm{s}$
TMKB2 forced output stop input high-level width	tIHR	INTP0 to INTP7	fCLK > 16 MHz	125			ns
			fCLK $\leq 16 \mathrm{MHz}$	2			fCLK
$\overline{\text { RESET }}$ low-level width	tRSL			10			$\mu \mathrm{s}$

Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs VDD (HS (high-speed main) mode)


TcY vs VDD (LS (low-speed main) mode)


TCY vs VDD (LV (low-voltage main) mode)


AC Timing Test Points


External System Clock Timing


TI/TO Timing

TIOO to TI07, TI10 to TI17


TO00 to TO07, TO10 to TO17,


TKBO00, TKBO01,
TKBO10, TKBO11,
TKBO20, TKBO21

Interrupt Request Input Timing

INTPO to INTP7


Key Interrupt Input Timing


Timer KB2 Input Timing

$\overline{\text { RESET }}$ Input Timing


### 2.5 Peripheral Functions Characteristics

AC Timing Test Points


### 2.5.1 Serial array unit

(1) During communication at same potential (UART mode)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$   Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 3		fmCK/6 Note 2		fмск/6		fмск/6	bps
				4.0		1.3		0.6	Mbps
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$   Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 3		fmCK/6 Note 2		fМСК/6		fмск/6	bps
				2.6		1.3		0.6	Mbps
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$   Theoretical value of the maximum transfer rate fMCK $=\mathrm{fCLK}$ Note 3		-		fMCK/6 Note 2		fмск/6	bps
				-		1.3		0.6	Mbps
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \text { VDD } \leq 3.6 \mathrm{~V} \\ & \begin{array}{l} \text { Theoretical value of the } \\ \text { maximum transfer rate } \\ \text { fMCK }=\text { fCLK Note } 3 \end{array} \\ & \hline \end{aligned}$		-		-		fмск/6	bps
				-		-		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
Note 2. The following conditions are required for low voltage interface.
$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ : MAX. 2.6 Mbps
1.8 V $\leq$ VDD < 2.4 V: MAX. 1.3 Mbps
$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$ : MAX. 0.6 Mbps
Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:
HS (high-speed main) mode: $24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$

$$
16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})
$$

LS (low-speed main) mode: $\quad 8 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$
LV (low-voltage main) mode: $\quad 4 \mathrm{MHz}(1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register $g$ (PIMg) and port output mode register $g$ (POMg).

## UART mode connection diagram (during communication at same potential)



UART mode bit width (during communication at same potential) (reference)


Remark 1. $q$ : UART number ( $\mathrm{q}=0$ to 3 ), g : PIM and POM number ( $\mathrm{g}=0$ to 3 )
Remark 2. fМСК: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13) )
(2) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSIOO only)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tKCY1 $\geq$ fcLk/2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	167		250		500		ns
SCKp high-I low-level width	tKL1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		tKCy1/2-10		tKCY1/2-50		tKCy1/2-50		ns
SIp setup time (to SCKp $\uparrow$ ) Note 1	tSIK1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		33		110		110		ns
SIp hold time (from SCKp $\uparrow$ ) Note 2	tKSI1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		10		10		10		ns
Delay time from SCKp $\downarrow$ to SOp output Note 3	tKSO1	$\mathrm{C}=20 \mathrm{pF}$ Note 4			10		10		10	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn = 0 and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad \mathrm{C}$ is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register $\mathbf{g}$ ( PIMg ) and port output mode register $\mathbf{g}$ ( POMg ).

Remark 1. $p$ : CSI number $(p=00)$, m: Unit number $(m=0)$, $n$ : Channel number $(n=0), g$ : PIM number $(g=2)$
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number $(\mathrm{mn}=00)$ )
(3) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Sym bol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tKCY1 $\geq$ fCLK/4	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	167		500		1000		ns
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	250		500		1000		ns
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-		500		1000		ns
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-		-		1000		ns
SCKp high-/ low-level width	tKH1,   tKL1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		tKCY1/2-18		tKCY1/2-50		tKCY1/2-50		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		tK¢Y1/2-38		tKCY1/2-50		tк¢ү1/2-50		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		tKCYı/2-50		tксү1/2-50		ns
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		-		tкСү1/2-100		ns
Slp setup time (to SCKp $\uparrow$ ) Note 1	tsikı	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		44		110		110		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		75		110		110		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		110		110		ns
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		-		220		ns
Slp hold time (from SCKp $\uparrow$ ) Note 2	tKsı1	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		19		19		19		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		19		19		ns
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		-		19		ns
Delay time from SCKp $\downarrow$ to SOp output Note 3	tKso1	$\begin{aligned} & \mathrm{C}=30 \mathrm{pF} \\ & \text { Note } 4 \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		25		50		50	ns
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		25		50		50	ns
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		50		50	ns
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		-		50	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp $\downarrow$ " when DAPmn $=0$ and $C K P m n=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register $g$ (PIMg) and port output mode register $g$ (POMg).

Remark 1. p : CSI number ( $\mathrm{p}=00,10,20,30$ ), m : Unit number ( $\mathrm{m}=0,1$ ), n : Channel number ( $\mathrm{n}=0$ to 3 ),
g : PIM number ( $\mathrm{g}=0$ to 3 )
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m : Unit number,
n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13 ))
(4) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 5	tKCY2	$2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$	fmck > 16 MHz	8/fmск		-		-		ns
			fMCK $\leq 16 \mathrm{MHz}$	6/fmск		6/fmск		6/fmск		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$		6/fмск and 500		6/fmck and 500		6/fмck and 500		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$		-		6/fmck and 750		6/fmck and 750		ns
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$		-		-		6/fMCK and 1500		ns
SCKp high-/ low-level width	tKH2, tKL2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		tKCY2/2-8		tксү2/2-8		tксү2/2-8		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		tKСү2/2-18		tксү2/2-18		ns
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		-		tк¢ү1/2-66		ns
SIp setup time (to SCKp $\uparrow$ ) Note 1	tSIK2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1/fмск + 30		1/fмск + 30		1/fMck +30		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$		-		1/fмск +30		1/fмск + 30		ns
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$		-		-		1/fмск + 40		ns
SIp hold time (from SCKp $\uparrow$ ) Note 2	tKSI2	$2.4 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$		1/fmск + 31		1/fмск + 31		1/fмск + 31		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$		-		1/fmск + 31		1/fмск + 31		ns
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$		-		-		1/fмск + 250		ns
Delay time from SCKp $\downarrow$ to SOp output Note 3	tKSO2	$\mathrm{C}=30 \mathrm{pF}$ Note 4	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		$\begin{gathered} \text { 2/fмск } \\ +44 \end{gathered}$		$\begin{aligned} & \hline \text { 2/fмск } \\ & +110 \end{aligned}$		$\begin{gathered} \text { 2/fмск } \\ +110 \end{gathered}$	ns
			2.4 V S $\mathrm{VDD}<3.6 \mathrm{~V}$		$\begin{gathered} \text { 2/fмск } \\ +75 \end{gathered}$		$\begin{gathered} \text { 2/fmск } \\ +110 \end{gathered}$		$\begin{gathered} \text { 2/fmск } \\ +110 \end{gathered}$	ns
			$1.8 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$		-		$\begin{gathered} \text { 2/fmск } \\ +110 \end{gathered}$		$\begin{array}{\|c} \text { 2/fмск } \\ +110 \end{array}$	ns
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$		-		-		$\begin{aligned} & \text { 2/fmск } \\ & +220 \end{aligned}$	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn = 0 and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad$ is the load capacitance of the SOp output lines.
Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps .

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register $g$ (PIMg) and port output mode register $g$ (POMg).

Remark 1. p : CSI number $(\mathrm{p}=00,10,20,30)$, $m$ : Unit number $(\mathrm{m}=0,1), \mathrm{n}$ : Channel number $(\mathrm{n}=0$ to 3$)$,
g : PIM number ( $\mathrm{g}=0$ to 3 )
Remark 2. fМСК: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13 ))

## Simplified SPI (CSI) mode connection diagram (during communication at same potential)



Remark 1. $\mathrm{p}: \mathrm{CSI}$ number $(\mathrm{p}=00,10,20,30)$
Remark 2. m : Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn =1.)


Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn =0.)


Remark 1. p : CSI number ( $p=00,10,20,30$ )
Remark 2. m : Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13 )
(5) During communication at same potential (simplified ${ }^{2} \mathrm{C}$ mode)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & 1000 \\ & \text { Note } 1 \end{aligned}$		$\begin{gathered} 400 \\ \text { Note } 1 \end{gathered}$		$\begin{gathered} \hline 400 \\ \text { Note } 1 \end{gathered}$	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} 400 \\ \text { Note } 1 \end{gathered}$		$\begin{gathered} 400 \\ \text { Note } 1 \end{gathered}$		$\begin{gathered} 400 \\ \text { Note } 1 \end{gathered}$	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} 300 \\ \text { Note } 1 \end{gathered}$		$\begin{gathered} 300 \\ \text { Note } 1 \end{gathered}$		$\begin{gathered} \hline 300 \\ \text { Note } 1 \end{gathered}$	kHz
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$		-		-		250	kHz
Hold time when SCLr = " L "	tLow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1150		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	1150		1150		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	1550		1550		1550		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	-		-		1850		ns
Hold time when SCLr = " H "	thigh	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1150		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	1150		1150		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	1550		1550		1550		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	-		-		1850		ns
Data setup time (reception)	tsu: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	$\text { 1/fмСК + } 85$   Note 2		$1 / \mathrm{fMCK}+145$   Note 2		$\text { 1/fmск }+145$   Note 2		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	$\text { 1/fмck }+145$   Note 2		$\begin{gathered} \text { 1/fмCK }+145 \\ \text { Note } 2 \end{gathered}$		$\text { 1/fмск + } 145$   Note 2		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	$\text { 1/fмck }+230$   Note 2		$\begin{gathered} \text { 1/fmCK }+230 \\ \text { Note } 2 \end{gathered}$		$1 / \mathrm{fmck}+230$   Note 2		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	-		-		$1 / \mathrm{fmck}+290$   Note 2		ns
Data hold time (transmission)	tHD: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	0	305	0	305	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	0	355	0	355	0	355	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	0	405	0	405	0	405	ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	-		-		0	405	ns

Note 1. The value must be equal to or less than $\mathrm{fMCK} / 4$.
Note 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register $g$ ( PIMg ) and port output mode register $h$ (POMh).

## Simplified $\mathrm{I}^{2} \mathrm{C}$ mode connection diagram (during communication at same potential)



Simplified ${ }^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)


Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SDAr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line (SDAr, SCLr) load capacitance
Remark 2. r: IIC number ( $r=00,10,20,30$ ), $g$ : PIM number ( $g=0$ to 3 ),
h: POM number ( $\mathrm{h}=0$ to 3 )
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ( $m=0,1$ ),
n : Channel number $(\mathrm{n}=0$ to 3 ), $\mathrm{mn}=00$ to 03,10 to 13 )
(6) Communication at different potential (1.8 V, 2.5 V ) (UART mode)
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Notes 1, 2		reception	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$		fmCk/6 Note 1		fmck/6 Note 1		fmCk/6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 4		4.0		1.3		0.6	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V} D<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \end{aligned}$		fмСк/6   Notes 1, 2, 3		fMCK/6   Notes 1, 2, 3		fмСк/6   Notes 1, 2, 3	bps
			Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 4		4.0		1.3		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is $4,800 \mathrm{bps}$ only.
Note 2. Use it with $V D D \geq \mathrm{Vb}$.
Note 3. The following conditions are required for low voltage interface.

$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}:$	MAX. 2.6 Mbps
$1.8 \mathrm{~V} \leq$ VDD $<2.4 \mathrm{~V}:$	MAX. 1.3 Mbps
$1.6 \mathrm{~V} \leq$ VDD $<1.8 \mathrm{~V}:$	MAX. 0.6 Mbps

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: $24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$
LS (low-speed main) mode: $\quad 8 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$
LV (low-voltage main) mode: $\quad 4 \mathrm{MHz}(1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register $g$ ( PIMg ) and port output mode register $g$ ( POMg ). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $q$ : UART number ( $\mathrm{q}=0$ to 3 ), g : PIM and POM number ( $\mathrm{g}=0$ to 3 )
Remark 3. fМСК: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13))
(6) Communication at different potential ( $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ ) (UART mode)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 2		transmission	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega, \\ & \mathrm{Vb}=2.3 \mathrm{~V} \end{aligned}$		1.2 Note 2		1.2 Note 2		1.2 Note 2	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \end{aligned}$		Notes 3, 4		Notes 3, 4		Notes 3, 4	bps
			Theoretical value of the maximum transfer rate $\mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \text {, }$ $\mathrm{V} b=1.6 \mathrm{~V}$		0.43 Note 5		0.43 Note 5		0.43 Note 5	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$

1
Maximum transfer rate $=\frac{}{\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{2.0}{V_{b}}\right)\right\} \times 3}[b p s]$
Baud rate error (theoretical value $)=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{2.0}{\mathrm{Vb}_{b}}\right)\right\}}{} \times 100$ [\%]

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
Note 3. Use it with $V_{D D} \geq \mathrm{Vb}$.
Note 4. The smaller maximum transfer rate derived by using $f M C K / 6$ or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$ and $1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$


Baud rate error (theoretical value) $=$

$$
\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{1.5}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}
$$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

## UART mode connection diagram (during communication at different potential)



UART mode bit width (during communication at different potential) (reference)


Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line ( TxDq ) pull-up resistance, $\mathrm{Cb}[F]$ : Communication line ( TxDq ) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $q$ : UART number ( $q=0$ to 3 ), $g$ : PIM and POM number ( $g=0$ to 3 )
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13 )
(7) Communication at different potential (2.5 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSIOO only)

## ( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tKCY1 $\geq$ fcLk/2	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	300		1150		1150		ns
SCKp high-level width	tKH1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		tKCY1/2-120		tк¢ү1/2-120		tKCY1/2-120		ns
SCKp low-level width	tKL1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$		tKCY1/2-10		tкСү1/2-50		tKCY1/2-50		ns
Slp setup time (to SCKp $\uparrow$ ) Note 1	tSIK1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		121		479		479		ns
Slp hold time (from SCKp $\uparrow$ ) Note 1	tKSI1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$		10		10		10		ns
Delay time from SCKp $\downarrow$ to SOp output Note 1	tKSO1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$			130		130		130	ns
Slp setup time (to SCKp $\downarrow$ ) Note 2	tSIK1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		33		110		110		ns
SIp hold time (from SCKp $\downarrow$ ) Note 2	tKSI1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		10		10		10		ns
Delay time from SCKp $\uparrow$ to SOp output Note 2	tKSO1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$			10		10		10	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register $g$ ( PIMg ) and port output mode register $g$ ( POMg ). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SCKp, SOp) pull-up resistance, $\mathrm{Cb}[F]$ : Communication line (SCKp, SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $p$ : CSI number $(p=00), m$ : Unit number $(m=0)$,
n : Channel number $(\mathrm{n}=0)$, g : PIM and POM number $(\mathrm{g}=2)$
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number $(\mathrm{mn}=00)$ )
(8) Communication at different potential (1.8 V, 2.5 V ) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	$\begin{array}{\|l} \text { tKCY } 1 \geq \\ \text { fCLK/4 } \end{array}$	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	500 Note		1150		1150		ns
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 1.8 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	1150 Note		1150		1150		ns
SCKp highlevel width	tKH1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} \text { tKCY1/2 - } \\ 170 \end{gathered}$		$\begin{gathered} \text { tKCY } 1 / 2- \\ 170 \end{gathered}$		$\begin{gathered} \text { tKCY1/2 - } \\ 170 \end{gathered}$		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} \mathrm{tKCY} 1 / 2- \\ 458 \end{gathered}$		$\begin{gathered} \mathrm{tKCY} 1 / 2- \\ 458 \end{gathered}$		$\begin{gathered} \text { tKCY1/2 - } \\ 458 \end{gathered}$		ns
SCKp lowlevel width	tKL1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		tКСү1/2 -   18		$\begin{gathered} \mathrm{tKCY} 1 / 2- \\ 50 \end{gathered}$		$\begin{gathered} \mathrm{tKCY} 1 / 2- \\ 50 \end{gathered}$		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} \mathrm{tKCY} 1 / 2- \\ 50 \end{gathered}$		$\begin{gathered} \mathrm{tKCY} 1 / 2- \\ 50 \end{gathered}$		$\begin{gathered} \text { tKCY1/2 - } \\ 50 \end{gathered}$		ns

Note Use it with $\mathrm{VDD} \geq \mathrm{V}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register $g$ (PIMg) and port output mode register $g$ (POMg). For ViH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the page after the next page.)
(8) Communication at different potential (1.8 V, 2.5 V ) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Slp setup time (to SCKp $\uparrow$ ) Note 1	tSIK1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	177		479		479		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}^{2}=5.5 \mathrm{k} \Omega \end{aligned}$	479		479		479		ns
SIp hold time (from SCKp $\uparrow$ ) Note 1	tKSI1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
Delay time from SCKp $\downarrow$ to SOp output Note 1	tKSO1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		195		195		195	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		483		483		483	ns
SIp setup time (to SCKp $\downarrow$ ) Note 2	tSIK1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	44		110		110		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \vee \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	110		110		110		ns
Slp hold time (from SCKp $\downarrow$ ) Note 2	tKSI1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
Delay time from SCKp $\uparrow$ to SOp output Note 2	tKSO1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		25		25		25	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		25		25		25	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. Use it with $\mathrm{VDD} \geq \mathrm{Vb}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g ( PIMg ) and port output mode register $\mathbf{g}$ ( POMg ). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## Simplified SPI (CSI) mode connection diagram (during communication at different potential)



Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SCKp, SOp ) pull-up resistance, $\mathrm{Cb}[F]$ : Communication line (SCKp, SOp ) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $p$ : CSI number $(p=00,10,20,30)$, $m$ : Unit number $(m=0,1), n$ : Channel number $(n=0$ to 3$)$, g : PIM and POM number ( $\mathrm{g}=0$ to 3 )
Remark 3. fМСк: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number $(\mathrm{mn}=00)$ )

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)


Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn = 0.)


Remark p: CSI number $(\mathrm{p}=00,10,20,30)$, $m$ : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3$)$, g : PIM and POM number ( $\mathrm{g}=0$ to 3 )
(9) Communication at different potential (1.8 V, 2.5 V ) (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)
$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $\left.=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tKCY2	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$	$20 \mathrm{MHz}<\mathrm{fmCK} \leq 24 \mathrm{MHz}$	16/fмск		-		-		ns
			$16 \mathrm{MHz}<\mathrm{fmCK} \leq 20 \mathrm{MHz}$	14/ғмск		-		-		ns
			8 MHz < fMCK $\leq 16 \mathrm{MHz}$	12/ғмск		-		-		ns
			$4 \mathrm{MHz}<$ fmck $\leq 8 \mathrm{MHz}$	8/ғмск		16/ғмск		-		ns
			fmCk $\leq 4 \mathrm{MHz}$	6/fмск		10/fмск		10/fмск		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \end{aligned}$	$20 \mathrm{MHz}<\mathrm{fmCK} \leq 24 \mathrm{MHz}$	36/ғмск		-		-		ns
			$16 \mathrm{MHz}<\mathrm{fmCK} \leq 20 \mathrm{MHz}$	32/fмск		-		-		ns
			8 MHz < fMCK $\leq 16 \mathrm{MHz}$	26/ғмск		-		-		ns
			4 MHz < fмСК $\leq 8 \mathrm{MHz}$	16/ғмск		16/ғмск		-		ns
			fmck $\leq 4 \mathrm{MHz}$	10/ғмск		10/fмск		10/fмск		ns
SCKp high-/ low-level width	$\begin{aligned} & \text { tKH2, } \\ & \text { tKL2 } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		$\begin{gathered} \text { tксү2/2 } \\ -18 \end{gathered}$		$\begin{gathered} \text { tKCY2/2 } \\ -50 \end{gathered}$		$\begin{gathered} \text { tKCY2/2 } \\ -50 \end{gathered}$		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note 2		$\begin{gathered} \mathrm{tKCY} 2 / 2 \\ -50 \end{gathered}$		$\begin{gathered} \mathrm{tKCY} 2 / 2 \\ -50 \end{gathered}$		$\begin{gathered} \text { tKCY2/2 } \\ -50 \end{gathered}$		ns
Slp setup time (to SCKp $\uparrow$ ) Note 3	tsIK2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		$\begin{gathered} 1 / \mathrm{fmck} \\ +20 \end{gathered}$		$\begin{gathered} \text { 1/fмck } \\ +30 \end{gathered}$		$\begin{gathered} \text { 1/fмск } \\ +30 \end{gathered}$		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$		$\begin{gathered} 1 / \mathrm{fmck} \\ +30 \end{gathered}$		$\begin{gathered} 1 / \mathrm{fmck} \\ +30 \end{gathered}$		$\begin{gathered} 1 / \mathrm{fmck} \\ +30 \end{gathered}$		ns
SIp hold time (from SCKp $\uparrow$ ) Note 4	tKSI2			$\begin{gathered} \text { 1/fмck } \\ +31 \end{gathered}$		$\begin{gathered} 1 / \mathrm{fmck} \\ +31 \end{gathered}$		$\begin{gathered} \text { 1/fмск } \\ +31 \end{gathered}$		ns
Delay time from SCKp $\downarrow$ to SOp output Note 5	tKSO2	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$			$\begin{aligned} & \text { 2/fмск } \\ & +214 \end{aligned}$		$\begin{array}{r} 2 / f \mathrm{fmck} \\ +573 \end{array}$		$\begin{array}{r} 2 / f \mathrm{fmCK} \\ +573 \end{array}$	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$			$\begin{array}{r} \text { 2/fмск } \\ +573 \end{array}$		$\begin{gathered} \text { 2/fмск } \\ +573 \end{gathered}$		$\begin{array}{r} 2 / f m c k \\ +573 \end{array}$	ns

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
Note 2. Use it with $V D D \geq \mathrm{Vb}$.
Note 3. When DAPmn = 0 and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and $C K P m n=0$.
Note 4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 5. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VdD tolerance) mode for the SOp pin by using port input mode register $g$ (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## Simplified SPI (CSI) mode connection diagram (during communication at different potential)



Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SOp) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line (SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. p : CSI number ( $\mathrm{p}=00,10,20,30$ ), m : Unit number $(\mathrm{m}=0,1)$, n : Channel number ( $\mathrm{n}=0$ to 3 ), g : PIM and POM number ( $\mathrm{g}=0$ to 3 )
Remark 3. fМск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00,02,10,12$ )

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn =1.)


Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn = 0.)


Remark $\quad \mathrm{p}$ : CSI number ( $\mathrm{p}=00,10,20,30$ ), m : Unit number $(\mathrm{m}=0,1)$,
n : Channel number ( $\mathrm{n}=0$ to 3 ), g : PIM and POM number ( $\mathrm{g}=0$ to 3 )
(10) Communication at different potential (1.8 V, 2.5 V ) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & 1000 \\ & \text { Note } 1 \end{aligned}$		300 Note 1		300 Note 1	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		400 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1550		1550		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1150		1550		1550		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tHIGH	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	200		610		610		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	600		610		610		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	610		610		610		ns
Data setup time (reception)	tSU:DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \text { 1/fmck + } \\ & 135 \text { Note } 3 \end{aligned}$		1/fmCK + 190 Note 3		1/fMck + 190 Note 3		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} \text { 1/fmCK + } \\ 190 \text { Note } 3 \end{gathered}$		$\begin{aligned} & \text { 1/fmCK + } \\ & 190 \text { Note } 3 \end{aligned}$		1/fmCK +   190 Note 3		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \text { 1/fmCK + } \\ & 190 \text { Note } 3 \end{aligned}$		$\begin{aligned} & \text { 1/fmCK + } \\ & 190 \text { Note } 3 \end{aligned}$		1/fmCK +   190 Note 3		ns
Data hold time (transmission)	thD:DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	0	305	0	305	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	355	0	355	0	355	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	0	405	0	405	0	405	ns

Note 1. The value must be equal to or less than $\mathrm{fmCK} / 4$.
Note 2. Use it with VDD $\geq \mathrm{Vb}$.
Note 3. Set the fmCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register $\mathbf{g}$ (PIMg) and port output mode register $g$ (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## Simplified ${ }^{12} \mathrm{C}$ mode connection diagram (during communication at different potential)



Simplified ${ }^{2} \mathrm{C}$ mode serial transfer timing (during communication at different potential)


Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{Cb}[F]$ : Communication line (SDAr, SCLr) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. r: IIC number ( $r=00,10,20,30$ ), $g$ : PIM, POM number ( $g=0$ to 3 )
Remark 3. fМСк: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). $m$ : Unit number ( $m=0,1$ ),
n : Channel number $(\mathrm{n}=0,2), \mathrm{mn}=00,02,10,12)$

### 2.5.2 Serial interface IICA

(1) $\mathrm{I}^{2} \mathrm{C}$ standard mode
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLAO clock frequency	fscl	Standard mode: fcLK $\geq 1 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0	100	0	100	0	100	kHz
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-	0	100	0	100	kHz
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-	-	-	0	100	kHz
Setup time of restart condition	tSU: STA	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$				4.7		4.7		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		-		4.7		$\mu \mathrm{s}$
Hold time Note 1	thD: STA	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$				4.0		4.0		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-				4.0		$\mu \mathrm{s}$
Hold time when SCLAO = "L"	tLow	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$				4.7		4.7		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$						4.7		$\mu \mathrm{s}$
Hold time when SCLAO = "H"	tHIGH	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$				4.0		4.0		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$						4.0		$\mu \mathrm{s}$
Data setup time (reception)	tSU: DAT	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		250		250		250		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$				250		250		ns
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-				250		ns
Data hold time (transmission) Note 2	thD: DAT	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0	3.45	0	3.45	0	3.45	$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-	-	0	3.45	0	3.45	$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-	-	-	-	0	3.45	$\mu \mathrm{s}$
Setup time of stop condition	tsu: sto	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		4.0		4.0		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		-		4.0		$\mu \mathrm{s}$
Bus-free time	tBUF	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		4.7		4.7		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		-		4.7		$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD:DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Standard mode: $\mathrm{Cb}=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$

## (2) $\mathrm{I}^{2} \mathrm{C}$ fast mode

( $\mathrm{TA}^{2}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLAO clock frequency	fscl	Fast mode: fCLK $\geq 3.5 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0	400	0	400	0	400	kHz
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0	400	0	400	0	400	kHz
Setup time of restart condition	tsu: STA	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
Hold time Note 1	thD: STA	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
Hold time when SCLAO = "L"	tLow	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1.3		1.3		1.3		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1.3		1.3		1.3		$\mu \mathrm{s}$
Hold time when SCLAO = "H"	thigh	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
Data setup time (reception)	tsu: DAT	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		100		100		100		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		100		100		100		ns
Data hold time (transmission) Note 2	thD: DAT	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0	0.9	0	0.9	0	0.9	$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0	0.9	0	0.9	0	0.9	$\mu \mathrm{s}$
Setup time of stop condition	tsu: sto	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
Bus-free time	tBuF	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1.3		1.3		1.3		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1.3		1.3		1.3		$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Fast mode: $\mathrm{Cb}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$
(3) $1^{2} \mathrm{C}$ fast mode plus
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLAO clock frequency	fscL	Fast mode plus: fCLK $\geq 10 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0	1000		-		-	kHz
Setup time of restart condition	tSU: STA	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.26			-		-	$\mu \mathrm{s}$
Hold time Note 1	thD: STA	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.26			-		-	$\mu \mathrm{s}$
Hold time when SCLAO = "L"	tLow	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.5			-		-	$\mu \mathrm{s}$
Hold time when SCLAO = "H"	thigh	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.26			-		-	$\mu \mathrm{s}$
Data setup time (reception)	tSU: DAT	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		50			-		-	ns
Data hold time (transmission) Note 2	tHD: DAT	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0	0.45		-		-	$\mu \mathrm{s}$
Setup time of stop condition	tSU: STO	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.26			-		-	$\mu \mathrm{s}$
Bus-free time	tbuF	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.5			-		-	$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Fast mode plus: $\mathrm{Cb}=120 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$

IICA serial transfer timing


### 2.5.3 USB

(1) Electrical specifications
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, HS (High-speed main) mode only)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UREGC	UREGC output voltage characteristic	UREGC	UVBUS $=4.0$ to 5.5 V,   PXXCON = VDDUSBE $=1$	3.0	3.3	3.6	V
UVBUS	UVBUS input voltage characteristic	UVBUS	Function	4.35   $(4.02$ Note $)$	5.00	5.25	V

Note
Value of instantaneous voltage
(TA = -40 to $+85^{\circ} \mathrm{C}, 4.35 \mathrm{~V} \leq$ UVBUS $\leq 5.25 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss = 0 V , HS (High-speed main) mode only)

Parameter			Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input characteristic (FS/LS receiver)	Input voltage		VIH		2.0			V	
			VIL				0.8	V	
	Difference input sensitivity		VDI	\| UDP voltage - UDM voltage		0.2			V
	Difference common mode range		Vcm		0.8		2.5	V	
Output characteristic (FS driver)	Output voltage		VOH	$\mathrm{IOH}=-200 \mu \mathrm{~A}$	2.8		3.6	V	
			Vol	$\mathrm{IOL}=2 \mathrm{~mA}$	0		0.3	V	
	Transition time	Rising	tFR	Rising: From 10\% to 90\% of amplitude, Falling: From 90\% to 10\% of amplitude, $\mathrm{CL}=50 \mathrm{pF}$	4		20	ns	
		Falling	tFF		4		20	ns	
	Matching (TFR/TFF)		VFRFM		90		111.1	\%	
	Crossover voltage		VFCRS		1.3		2.0	V	
	Output Impedance		ZDRV		28		44	$\Omega$	
Output characteristic (LS driver)	Output voltage		VOH		2.8		3.6	V	
			VoL		0		0.3	V	
	Transition time	Rising	tLR	Rising: From 10\% to 90\% of amplitude, Falling: From 90\% to 10\% of amplitude, $\mathrm{CL}=250 \mathrm{pF}$ to 750 pF   The UDP and UDM pins are individually pulled down via $15 \mathrm{k} \Omega$	75		300	ns	
		Falling	tLF		75		300	ns	
	Matching (TFR/TFF)   Note		VLTFM		80		125	\%	
	Crossover voltage Note		VLCRS		1.3		2.0	V	
Pull-up, Pull-down	Pull-down resistor		RPD		14.25		24.80	k $\Omega$	
	Pull-up resistor	Idle	RpuI		0.9		1.575	$\mathrm{k} \Omega$	
		Reception	Rpua		1.425		3.09	k $\Omega$	
UVBus	UVbus pull-down resistor		Rvbus	UVBus voltage $=5.5 \mathrm{~V}$		1000		k $\Omega$	
	UVBus input voltage		VIH		3.20			V	
			VIL				0.8	V	

Note Excludes the first signal transition from the idle state.

## Timing of UDP and UDM


(2) BC standard
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 4.35 \mathrm{~V} \leq \mathrm{UVBus} \leq 5.25 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, HS (High-speed main) mode only)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB   standard BC1.2	UDP sink current	IDP_SINK		25	100	175	$\mu \mathrm{A}$
	UDM sink current	IDM_SINK		25	100	175	$\mu \mathrm{A}$
	DCD source current	IDP_SRC		7	10	13	$\mu \mathrm{A}$
	Data detection voltage	Vdat_REF		0.25	0.325	0.4	V
	UDP source voltage	VDP_SRC	Output current $250 \mu \mathrm{~A}$	0.5	0.6	0.7	V
	UDM source voltage	VDM_SRC	Output current $250 \mu \mathrm{~A}$	0.5	0.6	0.7	V

(3) BC option standard
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 4.35 \mathrm{~V} \leq \mathrm{UVBus} \leq 5.25 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, HS (High-speed main) mode only)

Parameter			Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDP/UDM input reference voltage (UVbus divider ratio)   (Function)	$\begin{aligned} & \text { VDSELi [3: 0] } \\ & (\mathrm{i}=0,1) \end{aligned}$	0000	VdDETO		27	32	37	\%UVBUS
		0001	VDDET1		29	34	39	\%UVBUS
		0010	VDDET2		32	37	42	\%UVBUS
		0011	Vddet3		35	40	45	\%UVBUS
		0100	VDDET4		38	43	48	\%UVBUS
		0101	Vddet5		41	46	51	\%UVBUS
		0110	Vddet6		44	49	54	\%UVBUS
		0111	VDDET7		47	52	57	\%UVBUS
		1000	VDDET8		51	56	61	\%UVBUS
		1001	Vddet9		55	60	65	\%UVBUS
		1010	VdDET10		59	64	69	\%UVBUS
		1011	VDDET11		63	68	73	\%UVBUS
		1100	VDDET12		67	72	73	\%UVBUS
		1101	Vddet13		71	76	81	\%UVBUS
		1110	VdDET14		75	80	85	\%UVBUS
		1111	Vddet15		79	84	89	\%UVBUS

### 2.6 Analog Characteristics

### 2.6.1 A/D converter characteristics

Classification of AID converter characteristics

Reference Voltage   Input Channel	Reference voltage (+) = AVREFP   Reference voltage (-) = AVREFM	Reference voltage ( + ) = AVDD   Reference voltage (-) = AVss	Reference voltage (+) = Internal reference voltage Reference voltage (-) = AVss
High-accuracy channel; ANIO to ANI6 (input buffer power supply: AVDD)	Refer to 2.6.1 (1).   Refer to 2.6.1 (2).	Refer to 2.6.1 (3).	Refer to 2.6.1 (6).
Standard channel; ANI16 to ANI21 (input buffer power supply: VDD)	Refer to 2.6.1 (4).	Refer to 2.6.1 (5).	
Internal reference voltage, Temperature sensor output voltage	Refer to 2.6.1 (4).	Refer to 2.6.1 (5).	-

(1) When reference voltage ( + ) = AVREFPIANIO (ADREFP1 $=0$, ADREFPO $=1$ ), reference voltage ( - ) = AVrefm/ANI1 (ADREFM = 1), target for conversion: ANI2 to ANI6
(TA $=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, AVss $=0 \mathrm{~V}$, reference voltage $(+)=$ AVREFP, reference voltage $(-)=$ AVREFM $=0 \mathrm{~V}$, HALT mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES				12	bit
Overall error Notes 1, 2,3	AINL	12-bit resolution		$\pm 1.7$	$\pm 3.3$	LSB
Conversion time	tconV	ADTYP $=0,12$-bit resolution	3.375			$\mu \mathrm{~s}$
Zero-scale error Notes 1, 2, 3	EzS	12-bit resolution		$\pm 1.3$	$\pm 3.2$	LSB
Full-scale error Notes 1, 2,3	EFS	12-bit resolution		$\pm 0.7$	$\pm 2.9$	LSB
Integral linearity error Notes 1, 2, 3	ILE	12-bit resolution		$\pm 1.0$	$\pm 1.4$	LSB
Differential linearity error Notes 1, 2,3	DLE	12-bit resolution	0		AVREFP	V
Analog input voltage	VAIN					

Note 1. TYP. Value is the average value at $A V D D=A V R E F P=3 V$ and $T_{A}=25^{\circ} \mathrm{C} . \mathrm{MAX}$. value is the average value $\pm 3 \sigma$ at normalized distribution.
Note 2. These values are the results of characteristic evaluation and are not checked for shipment.
Note 3. Excludes quantization error ( $\pm 1 / 2$ LSB).

Caution 1. Route the wiring so that noise will not be superimposed on each power line and ground line, and insert a capacitor to suppress noise.
In addition, separate the reference voltage line of AVREFP from the other power lines to keep it free from the influences of noise.
Caution 2. During A/D conversion, keep a pulse, such as a digital signal, that abruptly changes its level from being input to or output from the pins adjacent to the converter pins and P150 to P156.
(2) When reference voltage $(+)=$ AVREFPIANIO (ADREFP1 $=0$, ADREFPO $=1$ ), reference voltage $(-)=$ AVRefm/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI6
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss = 0 V , AVss = 0 V , Reference voltage ( + ) = AVREFP, Reference voltage ( - ) = AVREFM $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		12	bit
			$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		10 Note 1	
			$1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8 Note 2			
Overall error Note 3	AINL	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 6.0$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 5.0$	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.5$	
Conversion time	tconv	ADTYP = 0,   12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	3.375			$\mu \mathrm{s}$
		ADTYP $=0$,   10-bit resolution Note 1	$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	6.75			
		ADTYP $=0$,   8-bit resolution Note 2	$1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	13.5			
		ADTYP = 1,   8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	2.5625			
			$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	5.125			
			$1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 4.5$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 4.5$	
		8-bit resolution	$1.6 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 2.0$	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 4.5$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 4.5$	
		8-bit resolution	$1.6 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 2.0$	
Integral linearity error Note 3	ILE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.0$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 1.5$	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 1.0$	
Differential linearity error Note 3	DLE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 1.5$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 1.5$	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 1.0$	
Analog input voltage	VAIN			0		AVREFP	V

Note 1. Cannot be used for lower 2 bit of ADCR register
Note 2. Cannot be used for lower 4 bit of ADCR register
Note 3. Excludes quantization error ( $\pm 1 / 2$ LSB).

Caution Always use AVDD pin with the same potential as the VdD pin.
(3) When reference voltage $(+)=\operatorname{AVDD}(\operatorname{ADREFP} 1=0, \operatorname{ADREFP} 0=0$ ), reference voltage $(-)=$ AVss (ADREFM $=$ 0 ), conversion target: ANIO to ANI6
$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, AVss = 0 V , Reference voltage ( + ) = AVDD,
Reference voltage ( - ) = AVss = 0 V )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		12	bit
			$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		10 Note 1	
			$1.6 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$	8 Note 2			
Overall error Note 3	AINL	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 7.5$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 5.5$	
		8-bit resolution	$1.6 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 3.0$	
Conversion time	tconv	ADTYP = 0,   12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	3.375			$\mu \mathrm{s}$
		ADTYP = 0,   10-bit resolution Note 1	$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	6.75			
		ADTYP = 0,   8-bit resolution Note 2	$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	13.5			
		ADTYP = 1,   8-bit resolution	$2.4 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$	2.5625			
			$1.8 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$	5.125			
			$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 6.0$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 5.0$	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.5$	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 6.0$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 5.0$	
		8-bit resolution	$1.6 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 2.5$	
Integral linearity error Note 3	ILE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 3.0$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.0$	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 1.5$	
Differential linearity error Note 3	DLE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.0$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.0$	
		8-bit resolution	$1.6 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 1.5$	
Analog input voltage	VaIn	ANIO to ANI6		0		AVDD	V

Note 1. Cannot be used for lower 2 bit of ADCR register
Note 2. Cannot be used for lower 4 bit of ADCR register
Note 3. Excludes quantization error ( $\pm 1 / 2$ LSB).

Caution Always use AVDD pin with the same potential as the VdD pin.
(4) When reference voltage ( + ) = AVREFP/ANIO (ADREFP1 $=0$, ADREFPO $=1$ ), reference voltage ( - ) = AVREFm/ANI1 (ADREFM = 1), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss = 0 V , AVss $=0 \mathrm{~V}$, Reference voltage ( + ) = AVREfP, Reference voltage ( - ) = AVREFM $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \mathrm{~V} \leq$ AVREFP $\leq \operatorname{AVDD} \leq 3.6 \mathrm{~V}$	8		12	bit
			$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		10 Note 1	
			$1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8 Note 2			
Overall error Note 3	AINL	12-bit resolution	$2.4 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 7.0$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 5.5$	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 3.0$	
Conversion time	tconv	ADTYP $=0$,   12-bit resolution	$2.4 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$	4.125			$\mu \mathrm{s}$
		ADTYP $=0$,   10-bit resolution Note 1	$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	9.5			
		ADTYP $=0$,   8-bit resolution Note 2	$1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	57.5			
		ADTYP = 1,   8-bit resolution	$2.4 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$	3.3125			
			$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	7.875			
			$1.6 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 5.0$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 5.0$	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.5$	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 5.0$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 5.0$	
		8-bit resolution	$1.6 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 2.5$	
Integral linearity error Note 3	ILE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 3.0$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.0$	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 1.5$	
Differential linearity error Note 3	DLE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.0$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.0$	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 1.5$	
Analog input voltage	VAIN			0		AVREFP	V
		Internal reference voltage (2.4 V $\leq$ VDD $\leq 3.6 \mathrm{~V}$, HS (high-speed main) mode)		VBGR Note 4			
		Temperature sensor output voltage (2.4 V $\leq$ VDD $\leq 3.6 \mathrm{~V}$, HS (high-speed main) mode)		VTMP25 Note 4			

Note 1. Cannot be used for lower 2 bits of ADCR register
Note 2. Cannot be used for lower 4 bits of ADCR register
Note 3. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVdd pin with the same potential as the Vdd pin.
(5) When reference voltage ( + ) = AVDD (ADREFP1 $=0$, ADREFP0 $=0$ ), reference voltage $(-)=$ AVss (ADREFM $=$ 0 ), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, AVss = 0 V , Reference voltage ( + ) $=$ AVdd, Reference voltage ( - ) = AVss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		12	bit
			$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		10 Note 1	
			$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8 Note 2			
Overall error Note 3	AINL	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 8.5$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 6.0$	
		8-bit resolution	$1.6 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 3.5$	
Conversion time	tCONV	ADTYP = 0,   12-bit resolution	$2.4 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$	4.125			$\mu \mathrm{s}$
		ADTYP = 0,   10-bit resolution Note 1	$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	9.5			
		ADTYP = 0,   8-bit resolution Note 2	$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	57.5			
		ADTYP = 1,   8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	3.3125			
			$1.8 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$	7.875			
			$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 8.0$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 5.5$	
		8-bit resolution	$1.6 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 3.0$	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 8.0$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 5.5$	
		8-bit resolution	$1.6 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 3.0$	
Integral linearity error Note 3	ILE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 3.5$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.5$	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 1.5$	
Differential linearity error Note 3	DLE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.5$	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 2.5$	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.0$	
Analog input voltage	VAIN			0		AVDD	V
		Internal reference voltage (2.4 V $\leq$ VDD $\leq 3.6 \mathrm{~V}$, HS (high-speed main) mode)		VBGR Note 4			
		Temperature sensor output voltage (2.4 V $\leq$ VDD $\leq 3.6 \mathrm{~V}$, HS (high-speed main) mode)		VTMP25 Note 4			

Note 1. Cannot be used for lower 2 bits of ADCR register
Note 2. Cannot be used for lower 4 bits of ADCR register
Note 3. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVdD pin with the same potential as the Vdd pin.
(6) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 $=1$, ADREFPO $=0$ ), reference voltage $(-)=$ AVss (ADREFM $=0$ ), conversion target: ANIO to ANI6, ANI16 to ANI21
(TA = -40 to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{VDD}, 1.6 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD}, \mathrm{Vss}=0 \mathrm{~V}$, AVss = 0 V , Reference voltage
$(+)=$ internal reference voltage, Reference voltage ( - ) = AVss $=0 \mathrm{~V}$, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		8			bit
Conversion time	tconv	8-bit resolution	16			$\mu \mathrm{s}$
Zero-scale error Note	Ezs	8-bit resolution			$\pm 4.0$	LSB
Integral linearity error Note	ILE	8-bit resolution			$\pm 2.0$	LSB
Differential linearity error Note	DLE	8-bit resolution			$\pm 2.5$	LSB
Reference voltage (+)	AVREF(+)	= Internal reference voltage (VBGR)	1.38	1.45	1.5	V
Analog input voltage	VAIN		0		Vbgr	V

Note Excludes quantization error ( $\pm 1 / 2$ LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

### 2.6.2 Temperature sensor, internal reference voltage output characteristics

( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ (HS (high-speed main) mode))

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register $=80 \mathrm{H}, \mathrm{TA}=+25^{\circ} \mathrm{C}$		1.05		V
Internal reference voltage	VBGR	Setting ADS register $=81 \mathrm{H}$	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that   depends on the temperature	-3.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Operation stabilization wait time	tAMP		10		$\mu \mathrm{~s}$	

### 2.6.3 D/A converter characteristics

(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res					8	bit
Overall error	AINL	Rload $=4 \mathrm{M} \Omega$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			$\pm 2.5$	LSB
		Rload $=8 \mathrm{M} \Omega$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			$\pm 2.5$	LSB
Settling time	tSET	Cload $=20 \mathrm{pF}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			3	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			6	$\mu \mathrm{s}$

### 2.6.4 Comparator

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		VDD - 1.4	V
	Ivemp			-0.3		VDD + 0.3	V
Output delay	td	$\mathrm{VDD}=3.0 \mathrm{~V}$   Input slew rate $>50 \mathrm{mV} / \mu \mathrm{s}$	High-speed comparator mode, standard mode			1.2	$\mu \mathrm{s}$
			High-speed comparator mode, window mode			2.0	$\mu \mathrm{s}$
			Low-speed comparator mode, standard mode		3	5.0	$\mu \mathrm{s}$
High-electric-potential judgment voltage	VTW+	High-speed comparator m	, window mode		0.76 VDD		V
Low-electric-potential judgment voltage	VTW-	High-speed comparator mo	de, window mode		0.24 VDD		V
Operation stabilization wait time	tCMP			100			$\mu \mathrm{s}$
Internal reference voltage Note	VBGR			1.38	1.45	1.50	V

Note Not usable in LS (low-speed main) mode, LV (low-voltage main) mode, sub-clock operation, or STOP mode.

### 2.6.5 POR circuit characteristics

## $\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time Note	1.46	1.50	1.54	V
Minimum pulse width	TPW		300			$\mu \mathrm{~s}$

Note Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).


### 2.6.6 LVD circuit characteristics

$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} \leq \mathrm{Vss}=0 \mathrm{~V}$ )

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pulse width		tLw		300			$\mu \mathrm{s}$
Detection delay time						300	$\mu \mathrm{s}$

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$. The following shows the operating voltage range. HS (high-speed main) mode: VDD = 2.7 to 3.6 V at 1 MHz to 24 MHz

$$
\text { VDD }=2.4 \text { to } 3.6 \mathrm{~V} \text { at } 1 \mathrm{MHz} \text { to } 16 \mathrm{MHz}
$$

LS (low-speed main) mode: $\quad$ VDD $=1.8$ to 3.6 V at 1 MHz to 8 MHz
LV (low-voltage main) mode: VDD $=1.6$ to 3.6 V at 1 MHz to 4 MHz

## LVD Detection Voltage of Interrupt \& Reset Mode

(TA $=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Interrupt and reset mode	VlvDao	VPOC0, VPOC1, VPOC2 $=0,0,0$, falling reset voltage: 1.6 V		1.60	1.63	1.66	V
	VLVDA1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
			Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
			Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3	LVIS0, LVIS1 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	Vlvdbo	VPOC0, VPOC1, VPOC2 $=0,0,1$, falling reset voltage: 1.8 V		1.80	1.84	1.87	V
	VLVDB1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
			Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
			Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3	LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
			Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDCo	VPOC0, VPOC1, VPOC2 $=0,1,0$, falling reset voltage: 2.4 V		2.40	2.45	2.50	V
	VLVDC1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
			Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
			Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDDo	VPOC0, VPOC1, VPOC2 $=0,1,1$, falling reset voltage: 2.7 V		2.70	2.75	2.81	V
	VLVDD1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V

### 2.7 Power supply voltage rising slope characteristics

(TA $=-40$ to $+85^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$ )

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD			54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

### 2.8 LCD Characteristics

### 2.8.1 Resistance division method

(1) Static display mode
(TA = -40 to $+85^{\circ} \mathrm{C}, \mathrm{VL4}$ (MIN.) $\leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		VDD	V

(2) $1 / 2$ bias method, $1 / 4$ bias method
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, VL4 (MIN.) $\leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		VDD	V

(3) $1 / 3$ bias method
(TA = -40 to $+85^{\circ} \mathrm{C}$, VL4 (MIN.) $\leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss = 0 V )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		VDD	V

### 2.8.2 Internal voltage boosting method

(1) $1 / 3$ bias method
(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	$\begin{aligned} & \text { C1 to C4 Note } 1 \\ & =0.47 \mu \mathrm{~F} \text { Note } 2 \end{aligned}$	VLCD $=04 \mathrm{H}$	0.90	1.00	1.08	V
			VLCD $=05 \mathrm{H}$	0.95	1.05	1.13	V
			VLCD $=06 \mathrm{H}$	1.00	1.10	1.18	V
			VLCD $=07 \mathrm{H}$	1.05	1.15	1.23	V
			VLCD $=08 \mathrm{H}$	1.10	1.20	1.28	V
			VLCD $=09 \mathrm{H}$	1.15	1.25	1.33	V
			VLCD $=0 \mathrm{AH}$	1.20	1.30	1.38	V
			VLCD $=0 \mathrm{BH}$	1.25	1.35	1.43	V
			VLCD $=0 \mathrm{CH}$	1.30	1.40	1.48	V
			VLCD $=0 \mathrm{DH}$	1.35	1.45	1.53	V
			VLCD $=0 \mathrm{EH}$	1.40	1.50	1.58	V
			VLCD $=0 \mathrm{FH}$	1.45	1.55	1.63	V
			VLCD $=10 \mathrm{H}$	1.50	1.60	1.68	V
			VLCD $=11 \mathrm{H}$	1.55	1.65	1.73	V
			VLCD $=12 \mathrm{H}$	1.60	1.70	1.78	V
			VLCD $=13 \mathrm{H}$	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4Note $1=$	$0.47 \mu \mathrm{~F}$	2 VL1-0.1	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4Note $1=$	$0.47 \mu \mathrm{~F}$	3 VL1-0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tVWAIT1			5			ms
Voltage boost wait time Note 3	tVWAIT2	C1 to C4Note $1=$	$0.47 \mu \mathrm{~F}$	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL4 and GND
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=0.47 \mu \mathrm{~F} \pm 30 \%$
Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

## (2) $1 / 4$ bias method

## (TA = -40 to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss = 0 V )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	$\begin{aligned} & \text { C1 to C4 Note } 1 \\ & =0.47 \mu \mathrm{~F} \text { Note } 2 \end{aligned}$	VLCD $=04 \mathrm{H}$	0.90	1.00	1.08	V
			VLCD $=05 \mathrm{H}$	0.95	1.05	1.13	V
			VLCD $=06 \mathrm{H}$	1.00	1.10	1.18	V
			VLCD $=07 \mathrm{H}$	1.05	1.15	1.23	V
			VLCD $=08 \mathrm{H}$	1.10	1.20	1.28	V
			VLCD $=09 \mathrm{H}$	1.15	1.25	1.33	V
			$\mathrm{VLCD}=0 \mathrm{OH}$	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C4 Note $1=$	$0.47 \mu \mathrm{~F}$	2 VL1 - 0.08	2 VL1	$2 \mathrm{VL1}$	V
Tripler output voltage	VL3	C1 to C4 Note $1=$	$0.47 \mu \mathrm{~F}$	3 VL1-0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 Note $1=$	$0.47 \mu \mathrm{~F}$	4 VL1-0.16	$4 \mathrm{VL1}$	$4 \mathrm{VL1}$	V
Reference voltage setup time Note 2	tvWAIT1			5			ms
Voltage boost wait time Note 3	tvWAIT2	C1 to C5 Note $1=$	$0.47 \mu \mathrm{~F}$	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL3 and GND
C5: A capacitor connected between VL4 and GND
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=0.47 \mu \mathrm{~F} \pm 30 \%$
Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
Note 3. This is the wait time from when voltage boosting is started (VLCON =1) until display is enabled (LCDON = 1).

### 2.8.3 Capacitor split method

(1) $1 / 3$ bias method
(TA = -40 to $+85^{\circ} \mathrm{C}, 2.2 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss = 0 V )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 $=0.47 \mu \mathrm{~F}$ Note 2		VDD		V
VL2 voltage	VL2	C1 to C4 $=0.47 \mu \mathrm{~F}$ Note 2	$2 / 3 \mathrm{VL4}-0.1$	$2 / 3 \mathrm{VL4}$	$2 / 3 \mathrm{VL4}+0.1$	V
VL1 voltage	VL1	C1 to C4 $=0.47 \mu \mathrm{~F}$ Note 2	$1 / 3 \mathrm{VL4}-0.1$	$1 / 3 \mathrm{VL4}$	$1 / 3 \mathrm{VL4}+0.1$	V
Capacitor split wait time Note 1	tVWAIT		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON $=1$ ) until display is enabled (LCDON $=1$ ).
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD. C1: A capacitor connected between CAPH and CAPL
C 2 : A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND C4: A capacitor connected between VL4 and GND $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=0.47 \mu \mathrm{~F} \pm 30 \%$

### 2.9 RAM Data Retention Characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply   voltage	VDDDR		1.46 Note		3.6	V

Note $\quad$ This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.


### 2.10 Flash Memory Programming Characteristics

( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fCLK	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years $\mathrm{TA}=85^{\circ} \mathrm{C}$	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year $\mathrm{TA}=25^{\circ} \mathrm{C}$		1,000,000		
		Retained for 5 years $\mathrm{TA}=85^{\circ} \mathrm{C}$	100,000			
		Retained for 20 years $\mathrm{TA}=85^{\circ} \mathrm{C}$	10,000			

Note 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
Note 2. When using flash memory programmer and Renesas Electronics self programming library
Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

### 2.11 Dedicated Flash Memory Programmer Communication (UART)

( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		$1,000,000$	bps

### 2.12 Timing of Entry to Flash Memory Programming Modes

$$
\left(\mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tSUINIT	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOLO pin is placed at the low level until an external reset ends	tSU	POR and LVD reset must end before the external reset ends.	10			$\mu \mathrm{S}$
Time to hold the TOOLO pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory)	tHD	POR and LVD reset must end before the external reset ends.	1			ms


$<1>$ The low level is input to the TOOLO pin.
$<2>$ The external reset ends (POR and LVD reset must end before the external reset ends.).
$<3>$ The TOOLO pin is set to the high level.
$<4>$ Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
tsu: How long from when the TOOLO pin is placed at the low level until a external reset ends
thD: How long to keep the TOOLO pin at the low level from when the external and internal resets end (except soft processing time)

## 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = 40 to $+105^{\circ} \mathrm{C}$ )

This chapter describes the following electrical specifications.
Target products G: Industrial applications TA $=-40$ to $+105^{\circ} \mathrm{C}$
R5F110xxGxx, R5F111xxGxx

Caution 1. The RL78 microcontroller has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L1C User's Manual.
Caution 3. Please contact Renesas Electronics sales office for derating of operation under $\mathrm{T}_{\mathrm{A}}=+\mathbf{8 5}{ }^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When the RL78 microcontroller is used in the range of TA $=-40$ to $+85^{\circ} \mathrm{C}$, see 2. ELECTRICAL SPECIFICATIONS (TA $=-40$ to $+85^{\circ} \mathrm{C}$ ).

The following functions differ between the products " G : Industrial applications ( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}$ )" and the products " A : Consumer applications and G: Industrial applications (when used in the range of $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ )".

Parameter	A: Consumer applications	G: Industrial applications
Operating ambient temperature	$\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$	TA $=-40$ to $+105^{\circ} \mathrm{C}$
Operating mode Operating voltage range	HS (high-speed main) mode:   $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz   $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz LS (low-speed main) mode:   $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz LV (low-voltage main) mode:   $1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz	HS (high-speed main) mode only:   2.7 V $\leq$ VDD $\leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz   2.4 V $\leq$ VDD $\leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
High-speed on-chip oscillator clock accuracy	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}: \\ & \pm 1.0 \% @ \mathrm{TA}=-20 \text { to }+85^{\circ} \mathrm{C} \\ & \pm 1.5 \% @ \mathrm{TA}=-40 \text { to }-20^{\circ} \mathrm{C} \\ & 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 1.8 \mathrm{~V}: \\ & \pm 5.0 \% @ \mathrm{TA}=-20 \text { to }+85^{\circ} \mathrm{C} \\ & \pm 5.5 \% @ \mathrm{TA}=-40 \text { to }-20^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}: \\ & \pm 2.0 \% @ \mathrm{TA}_{\mathrm{A}}=+85 \text { to }+105^{\circ} \mathrm{C} \\ & \pm 1.0 \% @ \mathrm{TA}^{2}=-20 \text { to }+85^{\circ} \mathrm{C} \\ & \pm 1.5 \% @ \mathrm{TA}^{\circ}=-40 \text { to }-20^{\circ} \mathrm{C} \end{aligned}$
Serial array unit	UART   Simplified SPI (CSI): fcLK/4   Simplified $I^{2} \mathrm{C}$ communication	UART   Simplified SPI (CSI): fcLk/4   Simplified $I^{2} \mathrm{C}$ communication
IICA	Normal mode   Fast mode   Fast mode plus	Normal mode Fast mode
Voltage detector	- Rise detection: 1.67 V to 3.13 V (12 levels)   - Fall detection: 1.63 V to 3.06 V (12 levels)	- Rise detection: 2.61 V to 3.13 V (6 levels)   - Fall detection: 2.55 V to 3.06 V ( 6 levels)

Remark The electrical characteristics of the products G: Industrial applications ( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}$ ) are different from those of the products "A: Consumer applications". For details, refer to $\mathbf{3 . 1}$ to $\mathbf{3 . 1 2}$.

### 3.1 Absolute Maximum Ratings

Absolute Maximum Ratings ( $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )
(1/3)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	UVbus		-0.5 to +6.5	V
	AVDD	AVDD $\leq$ VDD	-0.5 to + 4.6	V
REGC pin input voltage	Viregc	REGC	$\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 1 \end{gathered}$	V
UREGC pin input voltage	Viuregc	UREGC	-0.3 to UVBUS + 0.3 Note 2	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, EXCLK, EXCLKS, $\overline{R E S E T}$	-0.3 to VDD +0.3 Note 3	V
	VI2	P60, P61 (N-ch open-drain)	-0.3 to +6.5	V
	VI3	UDP, UDM	-0.3 to +6.5	V
	V14	P150 to P156	-0.3 to AVDD + 0.3 Note 4	V
Output voltage	Vo1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-0.3 to VDD +0.3 Note 3	V
	Vo2	P150 to P156	-0.3 to AVDD + 0.3 Note 3	V
	Vo3	UDP, UDM	-0.3 to +3.8	V
Analog input voltage	VAI1	ANI16 to ANI21	$\begin{gathered} -0.3 \text { to } \operatorname{VDD}+0.3 \\ \text { and } \operatorname{AVREF}(+)+0.3 \text { Notes } 3,5 \end{gathered}$	V
	VAI2	ANIO to ANI6	$\begin{gathered} -0.3 \text { to AVDD }+0.3 \\ \text { and } \operatorname{AVREF}(+)+0.3 \text { Notes } 3,5 \end{gathered}$	V

Note 1. Connect the REGC pin to Vss via a capacitor ( 0.47 to $1 \mu \mathrm{~F}$ ). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
Note 2. Connect the UREGC pin to Vss via a capacitor ( $0.33 \mu \mathrm{~F}$ ). This value regulates the absolute maximum rating of the UREGC pin. Do not use this pin with voltage applied to it.
Note 3. Must be 6.5 V or lower.
Note 4. Must be 4.6 V or lower.
Note 5. Do not exceed $\operatorname{AVREF}(+)+0.3 \mathrm{~V}$ in case of $\mathrm{A} / \mathrm{D}$ conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
Remark 2. AVREF (+): + side reference voltage of the A/D converter.
Remark 3. Vss: Reference voltage

Absolute Maximum Ratings ( $\mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ )
(2/3)

Parameter	Symbols	Conditions		Ratings	Unit
LCD voltage	VLII	VL1 input voltage Note 1		-0.3 to +2.8	V
	VLI2	VL2 input voltage Note 1		-0.3 to +6.5	V
	VLI3	VL3 input voltage Note 1		-0.3 to +6.5	V
	VLI4	VL4 input voltage Note 1		-0.3 to +6.5	V
	VL15	CAPL, CAPH input voltage Note 1		-0.3 to +6.5	V
	VLO1	VL1 output voltage		-0.3 to +2.8	V
	VLO2	VL2 output voltage		-0.3 to +6.5	V
	VLO3	VL3 output voltage		-0.3 to +6.5	V
	VLO4	VL4 output voltage		-0.3 to +6.5	V
	VLO5	CAPL, CAPH output voltage		-0.3 to +6.5	V
	VLO6	COMO to COM7 SEG0 to SEG55 output voltage	External resistance division method	-0.3 to VDD +0.3 Note 2	V
			Capacitor split method	-0.3 to VDD + 0.3 Note 2	V
			Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V

Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor ( $0.47 \pm 30 \%$ ) and connect a capacitor ( $0.47 \pm 30 \%$ ) between the CAPL and CAPH pins.
Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Ratings ( $\mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ )
(3/3)

Parameter	Symbols	Conditions		Ratings	Unit
Output current, high	IOH1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-40	mA
		Total of all pins -170 mA	P40 to P46	-70	mA
			P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-100	mA
	IOH 2	Per pin	P150 to P156	-0.1	mA
		Total of all pins		-0.7	mA
	IOH 3	Per pin	UDP, UDM	-3	mA
Output current, low	IOL1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	40	mA
		Total of all pins 170 mA	P40 to P46	70	mA
			P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	100	mA
	IOL2	Per pin	P150 to P156	0.4	mA
		Total of all pins		2.8	mA
	IOL3	Per pin	UDP, UDM	3	mA
Operating ambient temperature	TA	In normal operation mode		-40 to +105	${ }^{\circ} \mathrm{C}$
		In flash memory programming mode		-40 to +105	
Storage temperature	Tstg			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

### 3.2 Oscillator Characteristics

### 3.2.1 X1 and XT1 oscillator characteristics

( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.
U1	Unit				
X1 clock oscillation frequency (fx)   Note	Ceramic resonator/crystal resonator	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1.0		20.0
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1.0		16.0
XT1 clock oscillation frequency   (fxT) Note	Crystal resonator		32	32.768	35

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/L1C User's Manual.

### 3.2.2 On-chip oscillator characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator   clock frequency Notes 1,2	fHoco		1		24	MHz
High-speed on-chip oscillator   clock frequency accuracy		-20 to $+85^{\circ} \mathrm{C}$	-1.0		+1.0	$\%$
		-40 to $-20^{\circ} \mathrm{C}$	-1.5		+1.5	$\%$
	+85 to $+105^{\circ} \mathrm{C}$	-2.0		+2.0	$\%$	
Low-speed on-chip oscillator   clock frequency	fiL			15		kHz
Low-speed on-chip oscillator   clock frequency accuracy			-15		+15	$\%$

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte $(000 \mathrm{C} 2 \mathrm{H})$ and bits 0 to 2 of the HOCODIV register
Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

### 3.2.3 PLL oscillator characteristics

( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.
Unit					
PLL input frequency Note	fPLLIN	High-speed system clock	6.00		16.00
PLL output frequency Note	fPLL			48.00	

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

### 3.3 DC Characteristics

### 3.3.1 Pin characteristics

$\left(\mathrm{TA}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	IOH1	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143				-3.0 Note 2	mA
		Total of P00 to P07, P10 to P17, P20 to P27,	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			-15.0	mA
		```P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143 (When duty \leq 70% Note 3)```	$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			-7.0	mA
	IOH 2	Per pin for P150 to P156				-0.1 Note 2	mA
		Total of all pins	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			-0.7	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.
Note 2. However, do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $n \%$).

- Total output current of pins $=(\mathrm{IOH} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOH}=-10.0 \mathrm{~mA}$
Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \approx-8.7 \mathrm{~mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow Note 1	IOL1	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143				$\begin{gathered} 8.5 \\ \text { Note } 2 \end{gathered}$	mA
		Per pin for P60 and P61				$\begin{gathered} 15.0 \\ \text { Note } 2 \end{gathered}$	mA
		Total of P40 to P46, P130	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			15.0	mA
		(When duty $\leq 70 \%$ Note 3)	$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			9.0	mA
		Total of P00 to P07, P10 to P17, P20 to P27,	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			35.0	mA
		```P30 to P37, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P140 to P143 (When duty \leq 70% Note 3)```	$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			20.0	mA
		Total of all pins   (When duty $\leq 70 \%$ Note 3 )				50.0	mA
	IOL2	Per pin for P150 to P156				$0.4$   Note 2	mA
		Total of all pins	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			2.8	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
Note 2. However, do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression
(when changing the duty factor from $70 \%$ to $\mathrm{n} \%$ ).

- Total output current of pins $=(\mathrm{IOL} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOL}=10.0 \mathrm{~mA}$
Total output current of pins $=(10.0 \times 0.7) /(80 \times 0.01) \approx 8.7 \mathrm{~mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P20 to P27,   P30 to P37, P40 to P46, P50 to P57,   P70 to P77, P80 to P83, P125 to P127,   P140 to P143	Normal input buffer	0.8 VDD		VDD	V
	VIH2	$\begin{aligned} & \text { P00, P01, P10, P11, P24, P25, } \\ & \text { P33, P34, P43, P44 } \end{aligned}$	TTL input buffer $3.3 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	2.0		VDD	V
			TTL input buffer $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$	1.50		VDD	V
	Vінз	P150 to P156		0.7 AVDD		AVDD	V
	VIH 4	P60, P61		0.7 VdD		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0.8 VDD		VDD	V
Input voltage, low	VIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	Normal input buffer	0		0.2 VDD	V
	VIL2	$\begin{aligned} & \text { P00, P01, P10, P11, P24, P25, } \\ & \text { P33, P34, P43, P44 } \end{aligned}$	TTL input buffer $3.3 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0		0.5	v
			TTL input buffer $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$	0		0.32	v
	VIL3	P150 to P156		0		0.3 AVDD	V
	VIL4	P60, P61		0		0.3 VDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0		0.2 VDD	V

Caution The maximum value of Viн of pins P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 is Vdd, even in the N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vor1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{loH} 1=-2.0 \mathrm{~mA} \end{aligned}$	VDD - 0.6			V
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{OH} 1=-1.5 \mathrm{~mA} \end{aligned}$	VDD - 0.5			v
	VOH2	P150 to P156	$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IOH} 2=-100 \mu \mathrm{~A} \end{aligned}$	AVDD - 0.5			V
Output voltage, low	VoL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{loL} 1=3.0 \mathrm{~mA} \end{aligned}$			0.6	V
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{loL} 1=1.5 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{loL} 1=0.6 \mathrm{~mA} \end{aligned}$			0.4	V
	Vol2	P150 to P156	$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{loL} 2=400 \mu \mathrm{~A} \end{aligned}$			0.4	V
	VoL3	P60, P61	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{loL} 3=3.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{loL} 3=2.0 \mathrm{~mA} \end{aligned}$			0.4	V

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, $\overline{\text { RESET }}$	V I $=$ VDD				1	$\mu \mathrm{A}$
	ILIH2	P20, P21, P140 to P143	$\mathrm{V}_{1}=\mathrm{VDD}$				1	$\mu \mathrm{A}$
	ILIH3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	$\mathrm{V}_{1}=\mathrm{VDD}$	In input port or external clock input			1	$\mu \mathrm{A}$
				In resonator connection			10	$\mu \mathrm{A}$
	ILIH4	P150 to P156	$\mathrm{V}_{\mathrm{I}}=\mathrm{AVDD}$				1	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	V I $=\mathrm{Vss}$				-1	$\mu \mathrm{A}$
	ILIL2	P20, P21, P140 to P143	$\mathrm{V}_{1}=\mathrm{Vss}$				-1	$\mu \mathrm{A}$
	ILLL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	V I $=\mathrm{Vss}$	In input port or external clock input			-1	$\mu \mathrm{A}$
				In resonator connection			-10	$\mu \mathrm{A}$
	ILIL4	P150 to P156	$\mathrm{V}_{\mathrm{l}}=\mathrm{AVss}$				-1	$\mu \mathrm{A}$
On-chip pull-up resistance	Ru1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P140 to P143, P125 to P127	$\mathrm{V}_{\mathrm{I}}=\mathrm{Vss}$	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	10	20	100	$\mathrm{k} \Omega$
	Ru2	P40 to P46, P80 to P83	V I $=\mathrm{Vss}$		10	20	100	k $\Omega$

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

### 3.3.2 Supply current characteristics

( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss = 0 V )

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	Operating mode	HS   (high-speed main) mode Note 5	$\begin{aligned} & \text { fHoco }=48 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Basic operation	$\mathrm{VDD}=3.6 \mathrm{~V}$		2.2	2.9	mA
						VDD $=3.0 \mathrm{~V}$		2.2	2.9	
					Normal operation	VDD $=3.6 \mathrm{~V}$		4.4	9.2	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.4	9.2	
				$\begin{aligned} & \text { fHoco }=24 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Basic operation	$\mathrm{VDD}=3.6 \mathrm{~V}$		2.0	2.6	
						VDD $=3.0 \mathrm{~V}$		2.0	2.6	
					Normal operation	$\mathrm{VDD}=3.6 \mathrm{~V}$		4.2	7.0	
						VDD $=3.0 \mathrm{~V}$		4.2	7.0	
				$\begin{aligned} & \mathrm{fHOCO}=16 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{fIH}=16 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	$\mathrm{VDD}=3.6 \mathrm{~V}$		3.1	5.0	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		3.1	5.0	
			$\begin{array}{\|l} \hline \text { HS } \\ \text { (high-speed main) } \\ \text { mode Note } 5 \end{array}$	$\begin{aligned} & \mathrm{fMx}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.5	5.9	mA
						Resonator connection		3.6	6.0	
				$\begin{aligned} & \mathrm{fMx}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.5	5.9	
						Resonator connection		3.6	6.0	
				$\begin{aligned} & \mathrm{fMx}=16 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.9	4.5	
						Resonator connection		3.1	4.6	
				$\begin{aligned} & \mathrm{fMX}=16 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.9	4.5	
						Resonator connection		3.1	4.6	
				$\begin{aligned} & \mathrm{fMx}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.1	3.5	
						Resonator connection		2.2	3.5	
				$\begin{aligned} & \mathrm{fMx}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.1	3.5	
						Resonator connection		2.2	3.5	
			HS   (High-speed main) mode   (PLL operation)	$\begin{aligned} & \text { fPLL }=48 \mathrm{MHz}, \\ & \text { fCLK }=24 \mathrm{MHz} \text { Note } 2 \end{aligned}$	Normal operation	$\mathrm{V} D \mathrm{~L}=3.6 \mathrm{~V}$		4.7	7.6	mA
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.7	7.6	
				$\begin{aligned} & \text { fPLL }=48 \mathrm{MHz}, \\ & \text { fCLK }=12 \mathrm{MHz} \text { Note } 2 \end{aligned}$	Normal operation	$\mathrm{VDD}=3.6 \mathrm{~V}$		3.1	5.2	
						VDD $=3.0 \mathrm{~V}$		3.1	5.1	
				$\begin{aligned} & \mathrm{fPLL}=48 \mathrm{MHz}, \\ & \mathrm{fCLK}=6 \mathrm{MHz} \text { Note } 2 \end{aligned}$	Normal operation	$\mathrm{VDD}=3.6 \mathrm{~V}$		2.3	3.9	
						VDD $=3.0 \mathrm{~V}$		2.3	3.9	
			Subsystem clock operation	$\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \text { TA }=-40^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.6	6.9	$\mu \mathrm{A}$
						Resonator connection		4.7	6.9	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.9	7.0	
						Resonator connection		5.0	7.2	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.2	7.6	
						Resonator connection		5.2	7.7	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.5	9.3	
						Resonator connection		5.6	9.4	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \text { TA }=+85^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		6.2	13.3	
						Resonator connection		6.2	13.4	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}=+105^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		8.3	46.0	
						Resonator connection		8.4	46.0	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or Vss. The following points apply in the HS (high-speed main) mode.

- The currents in the "TYP." column do not include the operating currents of the peripheral modules.
- The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $\quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz 2.4 V $\leq$ VDD $\leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency ( 48 MHz max.)
Remark 3. fIH: Main system clock source frequency when the high-speed on-chip oscillator clock divided $1,2,4$, or 8 , or the PLL clock divided by 2,4 , or 8 is selected ( 24 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	$\begin{array}{\|l\|} \hline \text { IDD2 } \\ \text { Note } 2 \\ \hline \end{array}$	HALT mode	HS (high-speed main) mode Note 6	$\begin{aligned} & \mathrm{fHOCO}=48 \mathrm{MHz} \text { Note } 4, \\ & \mathrm{fIH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=3.6 \mathrm{~V}$		0.77	3.4	mA
					VDD $=3.0 \mathrm{~V}$		0.77	3.4	
				$\begin{aligned} & \text { fHoco }=24 \mathrm{MHz} \text { Note } 4, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=3.6 \mathrm{~V}$		0.55	2.7	
					$\mathrm{VDD}=3.0 \mathrm{~V}$		0.55	2.7	
				$\begin{aligned} & \text { fHOCO }=16 \mathrm{MHz} \text { Note } 4, \\ & \mathrm{fIH}=16 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=3.6 \mathrm{~V}$		0.48	1.9	
					VDD $=3.0 \mathrm{~V}$		0.47	1.9	
			HS (high-speed main) mode Note 6	$\begin{aligned} & \mathrm{fMx}=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Square wave input		0.35	2.10	mA
					Resonator connection		0.51	2.20	
				$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.34	2.10	
					Resonator connection		0.51	2.20	
				$\begin{aligned} & \mathrm{fmX}=16 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Square wave input		0.30	1.25	
					Resonator connection		0.45	1.41	
				$\begin{aligned} & \mathrm{fmx}=16 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.29	1.23	
					Resonator connection		0.45	1.41	
				$\begin{aligned} & \mathrm{fmX}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Square wave input		0.23	1.10	
					Resonator connection		0.30	1.20	
				$\begin{aligned} & \mathrm{fMx}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.22	1.10	
					Resonator connection		0.30	1.20	
			HS   (High-speed main) mode (PLL operation)	$\begin{aligned} & \mathrm{fmx}=48 \mathrm{MHz}, \\ & \mathrm{fCLK}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	VDD $=3.6 \mathrm{~V}$		0.99	2.93	mA
					$\mathrm{VDD}=3.0 \mathrm{~V}$		0.99	2.92	
				$\begin{aligned} & \mathrm{fmx}=48 \mathrm{MHz}, \\ & \text { fCLK }=12 \mathrm{MHz} \text { Note } 3 \end{aligned}$	VDD $=3.6 \mathrm{~V}$		0.89	2.51	
					VDD $=3.0 \mathrm{~V}$		0.89	2.50	
				$\begin{aligned} & \mathrm{fmX}=48 \mathrm{MHz}, \\ & \mathrm{fCLK}=6 \mathrm{MHz} \text { Note } 3 \end{aligned}$	VDD $=3.6 \mathrm{~V}$		0.84	2.30	
					VDD $=3.0 \mathrm{~V}$		0.84	2.29	
			Subsystem clock operation	$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.32	0.61	$\mu \mathrm{A}$
					Resonator connection		0.51	0.80	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.41	0.74	
					Resonator connection		0.62	0.91	
				$\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \text { TA }=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.52	2.30	
					Resonator connection		0.75	2.49	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.82	4.03	
					Resonator connection		1.08	4.22	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \text { TA }=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		1.38	8.04	
					Resonator connection		1.62	8.23	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}_{\mathrm{A}}=+105^{\circ} \mathrm{C} \end{aligned}$	Square wave input		3.29	41.00	
					Resonator connection		3.63	41.00	
	IDD3	STOP mode Note 7	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.18	0.52	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.25	0.52	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.34	2.21	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.64	3.94	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				1.18	7.95	
			$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$				2.92	40.00	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The following points apply in the HS (high-speed main) mode.

- The currents in the "TYP." column do not include the operating currents of the peripheral modules.
- The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the real-time clock 2.
In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
Note 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $\quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz
$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
Note 7. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fMx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency ( 48 MHz max.)
Remark 3. fIH: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2,4 , or 8 is selected ( 24 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA $=25^{\circ} \mathrm{C}$
$\left(\mathrm{TA}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{VsS}=0 \mathrm{~V}\right)$

(Notes and Remarks are listed on the next page.)

Note 1. Current flowing to VDD.
Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
Note 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode.
Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
Note 7. Current flowing to the AVDD.
Note 8. Current flowing from the reference voltage source of $A / D$ converter.
Note 9. Operation current flowing to the internal reference voltage.
Note 10. Current flowing to the AVREFP.
Note 11. Current flowing only to the D/A converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDA when the D/A converter operates in an operation mode or the HALT mode.
Note 12. Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates in the Operating, HALT or STOP mode.
Note 13. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
Note 14. Current flowing only during self-programming.
Note 15. Current flowing only during data flash rewrite.
Note 16. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/L1C User's Manual..
Note 17. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.
Note 18. Not including the current that flows through the external divider resistor divider resistor.
Note 19. Current flowing to the UVbus.
Note 20. Including the operating current when fPLL $=48 \mathrm{MHz}$.
Note 21. Including the current supplied from the pull-up resistor of the UDP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.

Remark 1. fil: Low-speed on-chip oscillator clock frequency
Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 3. fcLk: CPU/peripheral hardware clock frequency
Remark 4. Temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$

### 3.4 AC Characteristics

### 3.4.1 Basic operation

$\left(\mathrm{TA}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $\left.=0 \mathrm{~V}\right)$

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	TCY	Main system clock (fmain) operation	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0.0417		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
		Subsystem clock (fsub) operation		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	28.5	30.5	31.3	$\mu \mathrm{s}$
		In the selfprogramming mode	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0.0417		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
External main system clock frequency	fex	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			1.0		16.0	MHz
	fExt				32		35	kHz
External main system clock input high-level width, low-level width	$\begin{aligned} & \text { tEXH, } \\ & \text { tEXL } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			24			ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			30			ns
	teXhs, tEXLS				13.7			$\mu \mathrm{s}$
TIOO to TIO7 input high-level width, low-level width	tтin, tTIL				$\begin{gathered} \text { 1/fMCK + } \\ 10 \end{gathered}$			ns

Remark fмск: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number ( $m=0$ ),
n : Channel number ( $\mathrm{n}=0$ to 7 ))

$\left(\mathrm{TA}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}\right)$							$\begin{aligned} & (2 / 2) \\ & \hline \text { Unit } \end{aligned}$
Items	Symbol	Conditions		MIN.	TYP.	MAX.	
TO00 to TO07, TKBO00, TKBO01, TKBO10, TKBO11, TKBO20, TKBO21 output frequency	fto	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			8	MHz
			2.4 V S $\mathrm{VDD}<2.7 \mathrm{~V}$			8	MHz
PCLBUZO, PCLBUZ1 output frequency	$f P C L$	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			8	MHz
			$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			8	MHz
Interrupt input high-level width, low-level width	tINTH, tINTL	INTP0 to INTP7	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1			$\mu \mathrm{s}$
Key interrupt input low-level width	tKR	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		250			ns
TMKB2 forced output stop input high-level width	tIHR	INTP0 to INTP7	fCLK > 16 MHz	125			ns
			fCLK $\leq 16 \mathrm{MHz}$	2			fclk
$\overline{\text { RESET }}$ low-level width	tRSL			10			$\mu \mathrm{s}$

Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs VDD (HS (high-speed main) mode)


AC Timing Test Points


External System Clock Timing


TI/TO Timing

TIOO to TIO7, TI10 to TI17


TO00 to TO07, TO10 to TO17,


TKBO00, TKBO01,
TKBO10, TKBO11,
TKBO20, TKBO21

Interrupt Request Input Timing


Key Interrupt Input Timing


Timer KB2 Input Timing

$\overline{\text { RESET }}$ Input Timing


### 3.5 Peripheral Functions Characteristics



### 3.5.1 Serial array unit

(1) During communication at same potential (UART mode)
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode	

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
Note 2. The following conditions are required for low voltage interface.
$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ : MAX. 1.3 Mbps
Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: $24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register $g$ (PIMg) and port output mode register $g$ (POMg).

UART mode connection diagram (during communication at same potential)


UART mode bit width (during communication at same potential) (reference)


Remark 1. $q$ : UART number ( $\mathrm{q}=0$ to 3 ), g : PIM and POM number ( $\mathrm{g}=0$ to 3 )
Remark 2. fМск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13 )
(2) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tKCY1	tKCY1 $\geq$ fcLk/4	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	250		ns
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	500		ns
SCKp high-/low-level width	tKH1, tKL1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		tKCY1/2-36		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		tкCY1/2-76		ns
SIp setup time (to SCKp $\uparrow$ ) Note 1	tSIK1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		66		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		133		ns
SIp hold time (from SCKp $\uparrow$ ) Note 2	tKSI1			38		ns
Delay time from SCKp $\downarrow$ to SOp output Note 3	tKSO1	$\mathrm{C}=30 \mathrm{pF}$ Note			50	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn = 0 and CKPmn $=0$, or DAPmn $=1$ and CKPmn = 1. The Slp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad$ C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register $\mathbf{g}$ ( PIMg ) and port output mode register $\mathbf{g}$ ( POMg ).

Remark 1. p : CSI number $(\mathrm{p}=00,10,20,30)$, m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3$)$,
g : PIM number ( $\mathrm{g}=0$ to 3 )
Remark 2. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13))
(3) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss = 0 V )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 5	tKCY2	$2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$	fмск > 16 MHz	16/fmск		ns
			fмСк $\leq 16 \mathrm{MHz}$	12/fmсk		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$		12/fmck and 1000		ns
SCKp high-/low-level width	tKH2, tKL2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		tксү2/2-16		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		tксу2/2-36		ns
SIp setup time (to SCKp $\uparrow$ ) Note 1	tsIK2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1/fmск +40		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1/fmck +60		ns
SIp hold time (from SCKp $\uparrow$ ) Note 2	tKSI2			1/fmck +62		ns
Delay time from SCKp $\downarrow$ to SOp output Note 3	tKSO2	$\mathrm{C}=30 \mathrm{pF}$ Note 4	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		2/fмск + 66	ns
			$2.4 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$		2/fmck + 113	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn $=1$. The delay time to SOp output becomes "from $\operatorname{SCKp} \uparrow "$ when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad$ C is the load capacitance of the SOp output lines.
Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps .

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register $g$ (PIMg) and port output mode register $g$ (POMg).

Remark 1. p : CSI number $(\mathrm{p}=00,10,20,30)$, m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3$)$,
g : PIM number ( $\mathrm{g}=0$ to 3 )
Remark 2. fМСк: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13) )

## Simplified SPI (CSI) mode connection diagram (during communication at same potential)



Remark 1. $\mathrm{p}: \mathrm{CSI}$ number $(\mathrm{p}=00,10,20,30)$
Remark 2. m : Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13 )

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn =1.)


Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn =0.)


Remark 1. p : CSI number ( $p=00,10,20,30$ )
Remark 2. m : Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13 )
(4) During communication at same potential (simplified ${ }^{2} \mathrm{C}$ mode)
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1	kHz
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1200		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	4600		ns
Hold time when SCLr $=$ " H "	tHIGH	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1200		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	4600		ns
Data setup time (reception)	tsu: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmck + 200 Note 2		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	1/fmck + 580 Note 2		ns
Data hold time (transmission)	thD: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	770	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	0	1420	ns

Note 1. The value must be equal to or less than fMCK/4.
Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

## Simplified $\mathrm{I}^{2} \mathrm{C}$ mode connection diagram (during communication at same potential)



Simplified ${ }^{2}{ }^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)


Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SDAr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line (SDAr, SCLr) load capacitance
Remark 2. r: IIC number ( $r=00,10,20,30$ ), g: PIM number ( $g=0$ to 3 ),
$h$ : POM number ( $\mathrm{h}=0$ to 3 )
Remark 3. fМСк: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register $m n(S M R m n)$. $m$ : Unit number $(m=0,1)$, n : Channel number ( $\mathrm{n}=0$ to 3 ), $\mathrm{mn}=00$ to 03,10 to 13 )
(5) Communication at different potential (1.8 $\mathrm{V}, 2.5 \mathrm{~V}$ ) (UART mode)
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
Transfer rate Notes 1, 2		Reception	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$		fMCK/12 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 4		2.0	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \end{aligned}$		fmCk/12 Notes 1, 2, 3	bps
			Theoretical value of the maximum transfer rate fmck $=$ fclk Note 4		1.3	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.
Note 2. Use it with $V D D \geq V_{b}$.
Note 3. The following conditions are required for low voltage interface.

$$
2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}: \quad \mathrm{MAX} .2 .6 \mathrm{Mbps}
$$

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: $\quad 24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register $g$ ( PIMg ) and port output mode register $g$ ( POMg ). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $q$ : UART number ( $q=0$ to 3 ), $g$ : PIM and POM number ( $g=0$ to 3 )
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13 ))
(5) Communication at different potential ( $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ ) (UART mode)


Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
Transfer rate Note 2		Transmission	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$		Note 1	bps
			Theoretical value of the maximum transfer rate $\mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega, \mathrm{Vb}=2.3 \mathrm{~V}$		1.2 Note 2	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \end{aligned}$		Notes 3, 4	bps
			Theoretical value of the maximum transfer rate $\mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega, \mathrm{Vb}=1.6 \mathrm{~V}$		0.43 Note 5	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$

1

Baud rate error (theoretical value $)=\xrightarrow[\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \operatorname{Rb} \times \ln \left(1-\frac{2.0}{\mathrm{Vb}_{b}}\right)\right\}]{ } \times 100[\%]$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
Note 3. Use it with $\mathrm{VDD} \geq \mathrm{Vb}$.
Note 4. The smaller maximum transfer rate derived by using $\mathrm{fMCK} / 6$ or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$ and $1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$

1

Baud rate error (theoretical value $)=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \operatorname{Rb} \times \ln \left(1-\frac{1.5}{\mathrm{Vb}_{b}}\right)\right\}}{} \times 100[\%]$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register $g$ ( PIMg ) and port output mode register $g$ ( POMg ). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

## UART mode connection diagram (during communication at different potential)



UART mode bit width (during communication at different potential) (reference)


Remark 1. $R b[\Omega]$ : Communication line ( $T x D q$ ) pull-up resistance, $C b[F]$ : Communication line $(T x D q)$ load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $\mathrm{q}:$ UART number ( $\mathrm{q}=0$ to 3 ), g : PIM and POM number ( $\mathrm{g}=0$ to 3 )
Remark 3. fMck: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13) )
(6) Communication at different potential (1.8 V, 2.5 V ) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tKCY1	tKCY1 $\geq$ fcLK/4	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1000 Note		ns
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 1.8 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	2300 Note		ns
SCKp high-level width	tKH1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		tк¢ү1/2-340		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		tKCY1/2-916		ns
SCKp low-level width	tKL1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		tкСү1/2-36		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		tкCY1/2-100		ns

Note Use it with VDD $\geq \mathrm{Vb}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register $g$ (PIMg) and port output mode register $g$ (POMg). For $\mathrm{VIH}^{\mathrm{V}}$ and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the page after the next page.)
(6) Communication at different potential (1.8 V, 2.5 V ) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SIp setup time (to SCKp $\uparrow$ ) Note 1	tSIK1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	354		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	958		ns
SIp hold time (from SCKp $\uparrow$ ) ${ }^{\text {Note } 1}$	tKSI1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	38		ns
Delay time from SCKp $\downarrow$ to SOp output Note 1	tKSO1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		390	ns
		$\begin{aligned} & \text { 2.4 } \mathrm{V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		966	ns
SIp setup time (to SCKpl) Note 2	tSIK1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	88		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	220		ns
SIp hold time (from SCKpl ${ }^{\text {) }}$ Note 2	tKsI1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	38		ns
Delay time from SCKp $\uparrow$ to SOp output Note 2	tKSO1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		50	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		50	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. Use it with $\mathrm{VDD}_{\mathrm{D}} \geq \mathrm{Vb}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register $g$ ( PIMg ) and port output mode register $\mathbf{g}$ ( POMg ). For Vit and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## Simplified SPI (CSI) mode connection diagram (during communication at different potential)



Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SCKp, SOp ) pull-up resistance, $\mathrm{Cb}[F]$ : Communication line (SCKp, SOp ) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $p$ : CSI number $(p=00,10,20,30)$, $m$ : Unit number $(m=0,1)$, $n$ : Channel number $(n=0$ to 3$)$, g : PIM and POM number ( $\mathrm{g}=0$ to 3 )
Remark 3. fМСК: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number $(\mathrm{mn}=00)$ )

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)


Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn = 0.)


Remark $\quad \mathrm{p}$ : CSI number $(\mathrm{p}=00,10,20,30)$, m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3$)$, g : PIM and POM number $(\mathrm{g}=0$ to 3 )
(7) Communication at different potential (1.8 V, 2.5 V ) (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss = 0 V )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tKCY2	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$	20 MHz < fMCK $\leq 24 \mathrm{MHz}$	32/fмск		ns
			16 MHz < fMCK $\leq 20 \mathrm{MHz}$	28/fмск		ns
			$8 \mathrm{MHz}<\mathrm{fmCK} \leq 16 \mathrm{MHz}$	24/fмск		ns
			$4 \mathrm{MHz}<\mathrm{fmCK} \leq 8 \mathrm{MHz}$	16/fмск		ns
			fmCk $\leq 4 \mathrm{MHz}$	12/fмск		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \end{aligned}$	20 MHz < fMCK $\leq 24 \mathrm{MHz}$	72/fмск		ns
			16 MHz < fMCK $\leq 20 \mathrm{MHz}$	64/fмск		ns
			$8 \mathrm{MHz}<\mathrm{fmCK} \leq 16 \mathrm{MHz}$	52/fмск		ns
			$4 \mathrm{MHz}<$ fмСК $\leq 8 \mathrm{MHz}$	32/fмск		ns
			fmCk $\leq 4 \mathrm{MHz}$	20/fмск		ns
SCKp high-/low-level width	tKH2, tKL2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		tксү2/2-36		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note 2		tксү2/2-100		ns
SIp setup time (to SCKp $\uparrow$ ) Note 3	tsIK2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1/fмск + 40		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$		1/fмск + 60		ns
SIp hold time (from SCKp $\uparrow$ ) Note 4	tKSI2			1/fмck + 62		ns
Delay time from SCKp $\downarrow$ to SOp output Note 5	tKSO2	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$			2/fмск + 428	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$			2/fmCk + 1146	ns

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
Note 2. Use it with VDD $\geq \mathrm{Vb}$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 5. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register $\mathbf{g}$ (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## Simplified SPI (CSI) mode connection diagram (during communication at different potential)



Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SOp) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line (SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. p : CSI number ( $\mathrm{p}=00,10,20,30$ ), m : Unit number $(\mathrm{m}=0,1)$, n : Channel number ( $\mathrm{n}=0$ to 3 ), g : PIM and POM number ( $\mathrm{g}=0$ to 3 )
Remark 3. fMCK : Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00,02,10,12$ )

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn =1.)


Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn = 0.)


Remark p: CSI number ( $p=00,10,20,30$ ), m: Unit number ( $m=0,1$ ),
n : Channel number ( $\mathrm{n}=0$ to 3 ), g : PIM and POM number $(\mathrm{g}=0$ to 3 )
(8) Communication at different potential ( $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ ) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss = 0 V )

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1200		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	4600		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	4650		ns
Hold time when SCLr = " H "	thigh	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	500		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	2400		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	1830		ns
Data setup time (reception)	tsu:dAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmCK + 340 Note 3		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmCK + 760 Note 3		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	1/fmCK + 570 Note 3		ns
Data hold time (transmission)	tHD:DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	770	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	1420	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	0	1215	ns

Note 1. The value must be equal to or less than fMCK/4.
Note 2. Use it with $V_{D D} \geq \mathrm{Vb}_{\mathrm{b}}$.
Note 3. Set the fMCK value to keep the hold time of $\operatorname{SCLr}=$ " L " and $\mathrm{SCLr}=$ " H ".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register $\mathbf{g}$ (PIMg) and port output mode register $g$ (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## Simplified ${ }^{12} \mathrm{C}$ mode connection diagram (during communication at different potential)



Simplified ${ }^{2} \mathrm{C}$ mode serial transfer timing (during communication at different potential)


Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{Cb}[F]$ : Communication line (SDAr, SCLr) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. r: IIC number ( $r=00,10,20,30$ ), $g$ : PIM, POM number ( $g=0$ to 3 )
Remark 3. fМск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register $m$ n (SMRmn). m: Unit number ( $m=0,1$ ), n : Channel number ( $\mathrm{n}=0$ to 3 ), $\mathrm{mn}=00,02,10,12$ )

### 3.5.2 Serial interface IICA

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) Mode				Unit
			Standard mode		Fast mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode: fcLK $\geq 3.5 \mathrm{MHz}$	-	-	0	400	kHz
		Standard mode: fcLk $\geq 1 \mathrm{MHz}$	0	100	-	-	kHz
Setup time of restart condition	tsu: STA		4.7		0.6		$\mu \mathrm{s}$
Hold time Note 1	thD: STA		4.0		0.6		$\mu \mathrm{s}$
Hold time when SCLAO $=$ "L"	tlow		4.7		1.3		$\mu \mathrm{s}$
Hold time when SCLAO = "H"	tHIGH		4.0		0.6		$\mu \mathrm{s}$
Data setup time (reception)	tsu: DAT		250		100		ns
Data hold time (transmission) Note 2	thD: DAT		0	3.45	0	0.9	$\mu \mathrm{s}$
Setup time of stop condition	tsu: sto		4.0		0.6		$\mu \mathrm{s}$
Bus-free time	tBuF		4.7		1.3		$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD:DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows
$\begin{array}{ll}\text { Standard mode: } & \mathrm{Cb}=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \\ \text { Fast mode: } & \mathrm{Cb}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega\end{array}$

IICA serial transfer timing


### 3.5.3 USB

(1) Electrical specifications
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss = 0 V )

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UREGC	UREGC output voltage characteristic	UREGC	$\begin{aligned} & \text { UVBUS }=4.0 \text { to } 5.5 \mathrm{~V}, \\ & \text { PXXCON }=\text { VDDUSBE }=1 \end{aligned}$	3.0	3.3	3.6	V
UVBus	UVBus input voltage characteristic	UVbus	Function	$\begin{gathered} 4.35 \\ (4.02 \text { Note }) \end{gathered}$	5.00	5.25	V

Note
Value of instantaneous voltage
(TA $=-40$ to $+105^{\circ} \mathrm{C}, 4.35 \mathrm{~V} \leq$ UVBUS $\leq 5.25 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter			Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input characteristic (FS/LS receiver)	Input voltage		VIH		2.0			V	
			VIL				0.8	V	
	Difference input sensitivity		VDI	\| UDP voltage - UDM voltage		0.2			V
	Difference common mode range		Vcm		0.8		2.5	V	
Output characteristic (FS driver)	Output voltage		VOH	$\mathrm{IOH}=-200 \mu \mathrm{~A}$	2.8		3.6	V	
			Vol	$\mathrm{IOL}=2 \mathrm{~mA}$	0		0.3	V	
	Transition time	Rising	tFR	Rising: From 10\% to 90\% of amplitude, Falling: From 90\% to 10\% of amplitude, $C L=50 \mathrm{pF}$	4		20	ns	
		Falling	tFF		4		20	ns	
	Matching (TFR/TFF)		VFRFM		90		111.1	\%	
	Crossover voltage		VFCRS		1.3		2.0	V	
	Output Impedance		ZDRV		28		44	$\Omega$	
Output characteristic (LS driver)	Output voltage		VOH		2.8		3.6	V	
			VoL		0		0.3	V	
	Transition time	Rising	tLR	Rising: From 10\% to 90\% of amplitude, Falling: From 90\% to 10\% of amplitude, $C L=250 \mathrm{pF}$ to 750 pF   The UDP and UDM pins are individually pulled down via $15 \mathrm{k} \Omega$	75		300	ns	
		Falling	tLF		75		300	ns	
	Matching (TFR/TFF)   Note		VLTFM		80		125	\%	
	Crossover voltage Note		VLCRS		1.3		2.0	V	
Pull-up, Pull-down	Pull-down resistor		RPD		14.25		24.80	k $\Omega$	
	Pull-up resistor	Idle	RpuI		0.9		1.575	$\mathrm{k} \Omega$	
		Reception	Rpua		1.425		3.09	k $\Omega$	
UVBus	UVBus pull-down resistor		Rvbus	UVBus voltage $=5.5 \mathrm{~V}$		1000		k $\Omega$	
	UVBus input voltage		VIH		3.20			V	
			VIL				0.8	V	

Note Excludes the first signal transition from the idle state.

## Timing of UDP and UDM



## (2) BC standard

( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 4.35 \mathrm{~V} \leq$ UVBus $\leq 5.25 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss = 0 V )

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB standard BC1.2	UDP sink current	IDP_SINK		25	100	175	$\mu \mathrm{A}$
	UDM sink current	IDM_SINK		25	100	175	$\mu \mathrm{A}$
	DCD source current	IDP_SRC		7	10	13	$\mu \mathrm{A}$
	Data detection voltage	VDAT_REF		0.25	0.325	0.4	V
	UDP source voltage	VDP_SRC	Output current $250 \mu \mathrm{~A}$	0.5	0.6	0.7	V
	UDM source voltage	VDM_SRC	Output current $250 \mu \mathrm{~A}$	0.5	0.6	0.7	V

(3) BC option standard
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 4.35 \mathrm{~V} \leq \mathrm{UVBus} \leq 5.25 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Parameter			Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDP/UDM input reference voltage (UVBus divider ratio)   (Function)	$\begin{aligned} & \text { VDSELi [3: 0] } \\ & (\mathrm{i}=0,1) \end{aligned}$	0000	VdDETO		27	32	37	\%UVBUS
		0001	VDDET1		29	34	39	\%UVBUS
		0010	VDDET2		32	37	42	\%UVBUS
		0011	VDDET3		35	40	45	\%UVBUS
		0100	VDDET4		38	43	48	\%UVBUS
		0101	Vddet5		41	46	51	\%UVBUS
		0110	Vddet6		44	49	54	\%UVBUS
		0111	VDDET7		47	52	57	\%UVBUS
		1000	Vddet8		51	56	61	\%UVBUS
		1001	Vddet9		55	60	65	\%UVBUS
		1010	VdDET10		59	64	69	\%UVBUS
		1011	VDDET11		63	68	73	\%UVBUS
		1100	VDDET12		67	72	73	\%UVBUS
		1101	Vddet13		71	76	81	\%UVBUS
		1110	VDDET14		75	80	85	\%UVBUS
		1111	Vddet15		79	84	89	\%UVBUS

### 3.6 Analog Characteristics

### 3.6.1 A/D converter characteristics

Classification of AID converter characteristics

$\qquad$	Reference voltage ( + ) = AVREFP   Reference voltage (-) = AVREFM	Reference voltage ( + ) = AVDD   Reference voltage (-) = AVss	Reference voltage ( + ) = Internal reference voltage Reference voltage ( - ) = AVss
High-accuracy channel; ANIO to ANI6 (input buffer power supply: AVDD)	Refer to 3.6.1 (1).	Refer to 3.6.1 (2).	Refer to 3.6.1 (5).
Standard channel; ANI16 to ANI21 (input buffer power supply: VDD)	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).	
Internal reference voltage, Temperature sensor output voltage	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).	-

(1) When reference voltage $(+)=$ AVREFPIANIO (ADREFP1 $=0$, ADREFPO $=1$ ), reference voltage $(-)=$ AVrefm/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI6
(TA $=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD}=\mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, AVss $=0 \mathrm{~V}$, Reference voltage (+)=AVREFP, Reference voltage ( - ) = AVREFM $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Resolution	RES		$2.4 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$	8		12	bit
Overall error Note	AINL	12 -bit resolution	$2.4 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 6.0$	LSB
Conversion time	tcoNV	ADTYP $=0$,   $12-b i t ~ r e s o l u t i o n ~$	$2.4 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$	3.375			$\mu \mathrm{~s}$
Zero-scale error Note	EzS	12 -bit resolution	$2.4 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 4.5$	LSB
Full-scale error Note	EFS	12 -bit resolution	$2.4 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 4.5$	LSB
Integral linearity error Note	ILE	12 -bit resolution	$2.4 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 2.0$	LSB
Differential linearity error Note	DLE	12 -bit resolution	$2.4 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 1.5$	LSB
Analog input voltage	VAIN			0		AVREFP	V

Note Excludes quantization error ( $\pm 1 / 2$ LSB).

Caution Always use AVdd pin with the same potential as the VdD pin.
(2) When reference voltage $(+)=\operatorname{AVDD}(\operatorname{ADREFP} 1=0$, ADREFP0 $=0$ ), reference voltage $(-)=$ AVss (ADREFM $=$ 0 ), conversion target: ANIO to ANI6
$\left(\mathrm{TA}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$, AVss = 0 V , Reference voltage $(+)=\mathrm{AVDD}$,
Reference voltage ( - ) = AVss = 0 V )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Resolution	RES		$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		12	bit
Overall error Note	AINL	12 -bit resolution	$2.4 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 7.5$	LSB
Conversion time	tCONV	ADTYP $=0$,   $12-b i t ~ r e s o l u t i o n ~$	$2.4 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$	3.375			$\mu \mathrm{~s}$
Zero-scale error Note	EzS	12 -bit resolution	$2.4 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 6.0$	LSB
Full-scale error Note	EFS	12 -bit resolution	$2.4 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 6.0$	LSB
Integral linearity error Note	ILE	12 -bit resolution	$2.4 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 3.0$	LSB
Differential linearity error Note	DLE	12 -bit resolution	$2.4 \mathrm{~V} \leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 2.0$	LSB
Analog input voltage	VAIN			0		AVDD	V

Note Excludes quantization error ( $\pm 1 / 2$ LSB).
Caution Always use AVDD pin with the same potential as the VDD pin.
(3) When reference voltage $(+)=$ AVREFP/ANIO (ADREFP1 $=0$, ADREFPO $=1$ ), reference voltage $(-)=$ AVREFm/ANI1 (ADREFM = 1), conversion target ANI16 to ANI21, internal reference voltage, temperature sensor output voltage
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{AV}$ ReFP $\leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$, $\mathrm{AVss}=0 \mathrm{~V}$,
Reference voltage ( + ) = AVREFP, Reference voltage ( - ) = AVREFM $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		12	bit
Overall error Note 1	AINL	12-bit resolution	$2.4 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 7.0$	LSB
Conversion time	tCONV	ADTYP = 0,   12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	4.125			$\mu \mathrm{s}$
Zero-scale error Note 1	Ezs	12-bit resolution	$2.4 \mathrm{~V} \leq$ AVREFP $\leq$ AVDD $\leq 3.6 \mathrm{~V}$			$\pm 5.0$	LSB
Full-scale error Note 1	Efs	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 5.0$	LSB
Integral linearity error Note 1	ILE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 3.0$	LSB
Differential linearity error Note 1	DLE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.0$	LSB
Analog input voltage	VAIN			0		AVREFP	V
		Internal reference voltage   (2.4 V $\leq$ VDD $\leq 3.6 \mathrm{~V}$, HS (high-speed main) mode)		VBGR Note 2			
		Temperature sensor output voltage (2.4 V $\leq$ VDD $\leq 3.6 \mathrm{~V}$, HS (high-speed main) mode)		VTMP25 Note 2			

Note 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 2. Refer to 3.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.
(4) When reference voltage $(+)=\operatorname{AVDD}(\operatorname{ADREFP} 1=0, \operatorname{ADREFP} 0=0)$, reference voltage $(-)=$ AVss (ADREFM $=$ 0 ), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{AVDD}=\mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$, AVss $=0 \mathrm{~V}$, Reference voltage ( + ) $=$ AVDd, Reference voltage ( - ) = AVss = 0)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		12	bit
Overall error Note 1	AINL	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 8.5$	LSB
Conversion time	tConv	ADTYP $=0$,   12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	4.125			$\mu \mathrm{s}$
Zero-scale error Note 1	Ezs	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 8.0$	LSB
Full-scale error Note 1	Efs	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 8.0$	LSB
Integral linearity error Note 1	ILE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 3.5$	LSB
Differential linearity error Note 1	DLE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			$\pm 2.5$	LSB
Analog input voltage	VAIN			0		AVDD	V
		Internal reference voltage   (2.4 V $\leq$ VDD $\leq 3.6 \mathrm{~V}$, HS (high-speed main) mode)		VBGR Note 2			
		Temperature sensor output voltage (2.4 V $\leq$ VDD $\leq 3.6 \mathrm{~V}$, HS (high-speed main) mode)		VTMP25 Note 2			

Note 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 2. Refer to 3.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVdd pin with the same potential as the Vdd pin.
(5) When reference voltage $(+)=$ Internal reference voltage ( 1.45 V ) (ADREFP1 $=1$, ADREFPO $=0$ ), reference voltage $(-)=$ AVss (ADREFM $=0$ ), conversion target: ANIO to ANI6, ANI16 to ANI21
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{VdD}, 2.4 \mathrm{~V} \leq \mathrm{AVdD}=\mathrm{VdD}, \mathrm{Vss}=0 \mathrm{~V}$, AVss = 0 V ,
Reference voltage ( + ) = internal reference voltage, Reference voltage ( - ) = AVss = 0 V , HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		8			bit
Conversion time	tCONV	8-bit resolution	16.0			$\mu \mathrm{S}$
Zero-scale error Note	Ezs	8-bit resolution			$\pm 4.0$	LSB
Integral linearity error Note	ILE	8-bit resolution			$\pm 2.0$	LSB
Differential linearity error Note	DLE	8-bit resolution			$\pm 2.5$	LSB
Reference voltage (+)	AVREF(+)	= Internal reference voltage (VBGR)	1.38	1.45	1.5	V
Analog input voltage	VAIN		0		VBGR	V

Note Excludes quantization error ( $\pm 1 / 2$ LSB).
Caution Always use AVDD pin with the same potential as the VDD pin.

### 3.6.2 Temperature sensor, internal reference voltage output characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss = 0 V (HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register $=80 \mathrm{H}, \mathrm{TA}=+25^{\circ} \mathrm{C}$		1.05		V
Internal reference voltage	VBGR	Setting ADS register $=81 \mathrm{H}$	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that   depends on the temperature		-3.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Operation stabilization wait time	tAMP		10			$\mu \mathrm{~s}$

### 3.6.3 D/A converter characteristics

( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss = 0 V )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res					8	bit
Overall error	AINL	Rload $=4 \mathrm{M} \Omega$	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			$\pm 2.5$	LSB
		Rload $=8 \mathrm{M} \Omega$	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			$\pm 2.5$	LSB
Settling time	tSET	Cload $=20 \mathrm{pF}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			3	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			6	$\mu \mathrm{s}$

### 3.6.4 Comparator

$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		VDD - 1.4	V
	Ivcmp			-0.3		VDD +0.3	V
Output delay	td	$\text { VDD }=3.0 \mathrm{~V}$   Input slew rate $>50 \mathrm{mV} / \mu \mathrm{s}$	High-speed comparator mode, standard mode			1.2	$\mu \mathrm{s}$
			High-speed comparator mode, window mode			2.0	$\mu \mathrm{s}$
			Low-speed comparator mode, standard mode		3	5.0	$\mu \mathrm{s}$
High-electric-potential judgment voltage	VTW+	High-speed comparator mo	de, window mode		0.76 VDD		v
Low-electric-potential judgment voltage	VTW-	High-speed comparator mo	de, window mode		0.24 VDD		v
Operation stabilization wait time	tCMP			100			$\mu \mathrm{s}$
Internal reference voltage Note	Vbgr	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{HS}$ (hig	h-speed main) mode	1.38	1.45	1.50	V

Note $\quad$ Not usable in sub-clock operation or STOP mode.

### 3.6.5 POR circuit characteristics

( $\mathrm{TA}=-\mathbf{4 0}$ to $+105^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time Note	1.44	1.50	1.56	V
Minimum pulse width	TPW		300			$\mu \mathrm{~s}$

Note Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).


### 3.6.6 LVD circuit characteristics

( $\mathrm{T} A=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} \leq \mathrm{Vss}=0 \mathrm{~V}$ )

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.71	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width		tLw		300			$\mu \mathrm{s}$
Detection delay time						300	$\mu \mathrm{S}$

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$. The following shows the operating voltage range. HS (high-speed main) mode: VDD = 2.7 to 3.6 V at 1 MHz to 24 MHz

VDD $=2.4$ to 3.6 V at 1 MHz to 16 MHz

LVD Detection Voltage of Interrupt \& Reset Mode
(TA $=-40$ to $+105^{\circ} \mathrm{C}$, VPDR $\leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Interrupt and reset mode	Vlvddo	VPOC0, VPOC1, VPOC2 $=0,1,1$, falling reset voltage: 2.7 V		2.64	2.75	2.86	V
	VLVDD1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
			Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V

### 3.7 Power supply voltage rising slope characteristics

( $\mathrm{TA}=\mathbf{- 4 0}$ to $+105^{\circ} \mathrm{C}$, Vss $=\mathbf{0} \mathrm{V}$ )

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD			54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.

### 3.8 LCD Characteristics

### 3.8.1 Resistance division method

(1) Static display mode
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{VL4}(\mathrm{MIN}) \leq .\mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		VDD	V

(2) $1 / 2$ bias method, $1 / 4$ bias method
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}$, $\mathrm{VL4}(\mathrm{MIN}) \leq .\mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		VDD	V

(3) $1 / 3$ bias method
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{VL4}(\mathrm{MIN}) \leq .\mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		VDD	V

### 3.8.2 Internal voltage boosting method

(1) $1 / 3$ bias method
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1 $=0.47 \mu \mathrm{~F}$ Note 2	VLCD $=04 \mathrm{H}$	0.90	1.00	1.08	V
			VLCD $=05 \mathrm{H}$	0.95	1.05	1.13	V
			VLCD $=06 \mathrm{H}$	1.00	1.10	1.18	V
			VLCD $=07 \mathrm{H}$	1.05	1.15	1.23	V
			VLCD $=08 \mathrm{H}$	1.10	1.20	1.28	V
			VLCD $=09 \mathrm{H}$	1.15	1.25	1.33	V
			VLCD $=0 \mathrm{AH}$	1.20	1.30	1.38	V
			VLCD $=0 \mathrm{OBH}$	1.25	1.35	1.43	V
			VLCD $=0 \mathrm{CH}$	1.30	1.40	1.48	V
			VLCD $=0 \mathrm{DH}$	1.35	1.45	1.53	V
			VLCD $=0 \mathrm{EH}$	1.40	1.50	1.58	V
			VLCD $=0 \mathrm{FH}$	1.45	1.55	1.63	V
			VLCD $=10 \mathrm{H}$	1.50	1.60	1.68	V
			VLCD $=11 \mathrm{H}$	1.55	1.65	1.73	V
			VLCD $=12 \mathrm{H}$	1.60	1.70	1.78	V
			VLCD $=13 \mathrm{H}$	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4Note $1=$	$0.47 \mu \mathrm{~F}$	2 VL1-0.1	$2 \mathrm{VL1}$	2 VL1	V
Tripler output voltage	VL3	C1 to C4Note $1=$	$0.47 \mu \mathrm{~F}$	3 VL1-0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tVWAIT1			5			ms
Voltage boost wait time Note 3	tVWAIT2	C1 to C4Note $1=$	$0.47 \mu \mathrm{~F}$	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL4 and GND
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=0.47 \mu \mathrm{~F} \pm 30 \%$
Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
Note 3. This is the wait time from when voltage boosting is started ( $\mathrm{VLCON}=1$ ) until display is enabled $(\mathrm{LCDON}=1)$.

## (2) $1 / 4$ bias method

( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	$\begin{aligned} & \text { C1 to C4 Note } 1 \\ & =0.47 \mu \mathrm{~F} \text { Note } 2 \end{aligned}$	VLCD $=04 \mathrm{H}$	0.90	1.00	1.08	V
			VLCD $=05 \mathrm{H}$	0.95	1.05	1.13	V
			VLCD $=06 \mathrm{H}$	1.00	1.10	1.18	V
			VLCD $=07 \mathrm{H}$	1.05	1.15	1.23	V
			VLCD $=08 \mathrm{H}$	1.10	1.20	1.28	V
			VLCD $=09 \mathrm{H}$	1.15	1.25	1.33	V
			VLCD $=0 \mathrm{AH}$	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C4 Note $1=$	$0.47 \mu \mathrm{~F}$	2 VL1-0.08	2 VL1	2 V L1	V
Tripler output voltage	VL3	C1 to C4 Note $1=$	$0.47 \mu \mathrm{~F}$	3 VL1-0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 Note $1=$	$0.47 \mu \mathrm{~F}$	4 VL1 - 0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tVWAIT1			5			ms
Voltage boost wait time Note 3	tVWAIT2	C1 to C5 Note $1=$	$0.47 \mu \mathrm{~F}$	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL3 and GND
C5: A capacitor connected between VL4 and GND
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=0.47 \mu \mathrm{~F} \pm 30 \%$
Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
Note 3. This is the wait time from when voltage boosting is started (VLCON =1) until display is enabled (LCDON = 1).

### 3.8.3 Capacitor split method

(1) $1 / 3$ bias method
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss = 0 V )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to $\mathrm{C} 4=0.47 \mu \mathrm{~F}$ Note 2		VDD		V
VL2 voltage	VL2	C 1 to $\mathrm{C} 4=0.47 \mu \mathrm{~F}$ Note 2	$2 / 3 \mathrm{VL4}-0.07$	$2 / 3 \mathrm{VL4}$	$2 / 3 \mathrm{VL4}+0.07$	V
VL1 voltage	VL1	C 1 to $\mathrm{C} 4=0.47 \mu \mathrm{~F}$ Note 2	$1 / 3 \mathrm{VL4}-0.08$	$1 / 3 \mathrm{VL4}$	$1 / 3 \mathrm{VL4}+0.08$	V
Capacitor split wait time Note 1	tVWAIT		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON $=1$ ) until display is enabled ( $\mathrm{LCDON}=1$ ).
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL4 and GND
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=0.47 \mu \mathrm{~F} \pm 30 \%$

### 3.9 RAM Data Retention Characteristics

$\left(\mathrm{TA}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply   voltage	VDDDR		1.44 Note		3.6	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.


### 3.10 Flash Memory Programming Characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fCLK	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years $\mathrm{T} \mathrm{~A}=85^{\circ} \mathrm{C} \text { Note } 4$	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year $\mathrm{TA}=25^{\circ} \mathrm{C}$		1,000,000		
		Retained for 5 years $\mathrm{TA}=85^{\circ} \mathrm{C}^{\text {Note }} 4$	100,000			
		Retained for 20 years $\mathrm{TA}=85^{\circ} \mathrm{C} \text { Note } 4$	10,000			

Note 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
Note 2. When using flash memory programmer and Renesas Electronics self programming library
Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
Note 4. This temperature is the average value at which data are retained.

### 3.11 Dedicated Flash Memory Programmer Communication (UART)

$\left(\mathrm{TA}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{VsS}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		$1,000,000$	bps

### 3.12 Timing of Entry to Flash Memory Programming Modes

$$
\left(\mathrm{T}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} \text {, Vss }=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tSUINIT	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOLO pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			$\mu \mathrm{s}$
Time to hold the TOOLO pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory)	tHD	POR and LVD reset must end before the external reset ends.	1			ms


$<1>$ The low level is input to the TOOLO pin.
$<2>$ The external reset ends (POR and LVD reset must end before the external reset ends.).
$<3>$ The TOOLO pin is set to the high level.
$<4>$ Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
Remark tSUINIT: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
tsu: How long from when the TOOLO pin is placed at the low level until a external reset ends
thD: How long to keep the TOOLO pin at the low level from when the external and internal resets end (except soft processing time)

## 4. PACKAGE DRAWINGS

### 4.1 80-pin products

R5F110MEAFB, R5F110MFAFB, R5F110MGAFB, R5F110MHAFB, R5F110MJAFB R5F111MEAFB, R5F111MFAFB, R5F111MGAFB, R5F111MHAFB, R5F111MJAFB R5F110MEGFB, R5F110MFGFB, R5F110MGGFB, R5F110MHGFB, R5F110MJGFB R5F111MEGFB, R5F111MFGFB, R5F111MGGFB, R5F111MHGFB, R5F111MJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
P-LFQFP80-12×12-0.50	PLQP0080KB-B	-	0.5



Detail F

[^0]| JEITA Package code | RENESAS code | MASS(TYP.)[g] |
| :---: | :---: | :---: |
| P-LFQFP80-12×12-0.50 | PLQP0080KJ-A | 0.49 |



### 4.2 85-pin products

R5F110NEALA, R5F110NFALA, R5F110NGALA, R5F110NHALA, R5F110NJALA R5F111NEALA, R5F111NFALA, R5F111NGALA, R5F111NHALA, R5F111NJALA R5F110NEGLA, R5F110NFGLA, R5F110NGGLA, R5F110NHGLA, R5F110NJGLA R5F111NEGLA, R5F111NFGLA, R5F111NGGLA, R5F111NHGLA, R5F111NJGLA

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-VFLGA85-7x7-0.65	PVLG0085JA-A	P85FC-65-BN4	0.1



Referance   Symbol	Dimension in Millimeters		
	Min	Nom	Max
D	6.90	7.00	7.10
E	6.90	7.00	7.10
A	-	-	1.00
e	-	0.65	-
b	0.30	0.35	0.40
x	-	-	0.08
y	-	-	0.10
$\mathrm{y}_{1}$	-	-	0.20
$\mathrm{Z}_{\mathrm{D}}$	-	0.575	-
$\mathrm{Z}_{\mathrm{E}}$	-	0.575	-
w	-	-	0.20

(C) 2013 Renesas Electronics Corporation. All rights reserved.

### 4.3 100-pin products

R5F110PEAFB, R5F110PFAFB, R5F110PGAFB, R5F110PHAFB, R5F110PJAFB
R5F111PEAFB, R5F111PFAFB, R5F111PGAFB, R5F111PHAFB, R5F111PJAFB
R5F110PEGFB, R5F110PFGFB, R5F110PGGFB, R5F110PHGFB, R5F110PJGFB
R5F111PEGFB, R5F111PFGFB, R5F111PGGFB, R5F111PHGFB, R5F111PJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS[Typ.]
P-LFQFP100-14×14-0.50	PLQP0100KB-B	-	0.6 g




Reference   Symbol	Dimension in Millimeters		
	Min	Nom	Max
D	13.9	14.0	14.1
E	13.9	14.0	14.1
A2	-	1.4	-
$H D$	15.8	16.0	16.2
HE	15.8	16.0	16.2
A	-	-	1.7
A1	0.05	-	0.15
bp	0.15	0.20	0.27
c	0.09	-	0.20
$\theta$	$0^{\circ}$	$3.5^{\circ}$	$8{ }^{\circ}$
$e$	-	0.5	-
$\times$	-	-	0.08
$y$	-	-	0.08
Lp	0.45	0.6	0.75
$L 1$	-	1.0	-


JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LFQFP100-14×14-0.50	PLQP0100KP-A	0.67



Reference   Symbol	Dimension in Millimeters		
	Min.	Nom.	Max.
A	-	-	1.60
$\mathrm{~A}_{1}$	0.05	-	0.15
$\mathrm{~A}_{2}$	1.35	1.40	1.45
D	-	16.00	-
$\mathrm{D}_{1}$	-	14.00	-
E	-	16.00	-
$\mathrm{E}_{1}$	-	14.00	-
N	-	100	-
e	-	0.50	-
b	0.17	0.22	0.27
c	0.09	-	0.20
$\theta$	$0^{\circ}$	$3.5^{\circ}$	$7^{\circ}$
L	0.45	0.60	0.75
$\mathrm{~L}_{1}$	-	1.00	-
aaa	-	-	0.20
bbb	-	-	0.20
ccc	-	-	0.08
ddd	-	-	0.08


Rev.	Date	Description	
		Page	Summary
0.01	Oct 15, 2012	-	First Edition issued
1.00	Nov 18, 2013	1, 2	Modification of 1.1 Features
		3, 4	Modification of 1.2 Ordering Information
		5 to 8	Modification of package type in 1.3 Pin Configuration (Top View)
		14 to 17	Modification of vectored interrupt sources in 1.6 Outline of Functions
		14 to 17	Modification of operating ambient temperature in 1.6 Outline of Functions
		19 to 21	Modification of description in tables in 2.1 Absolute Maximum Ratings
		22, 23	Modification of description in 2.2 Oscillator Characteristics
		25	Modification of low-level output current in 2.3.1 Pin characteristics
		26	Modification of error of high-level input voltage conditions in 2.3.1 Pin characteristics
		26	Modification of error of low-level input voltage conditions in 2.3.1 Pin characteristics
		27	Modification of low-level output voltage in 2.3.1 Pin characteristics
		28	Modification of error of internal pull-up resistor conditions in 2.3.1 Pin characteristics
		29 to 34	Modification of 2.3.2 Supply current characteristics
		35, 36	Modification of 2.4 AC Characteristics
		37, 38	Addition of minimum instruction execution time during main system clock operation
		41 to 63	Addition of LS mode and LV mode characteristics in 2.5.1 Serial array unit
		64 to 66	Addition of LS mode and LV mode characteristics in 2.5.2 Serial interface IICA
		67, 68	Modification of conditions in 2.5.3 USB
		69	Addition of (3) BC option standard in 2.5.3 USB
		70 to 75	Addition of characteristics about conversion of internal reference voltage and temperature sensor in 2.6.1 A/D converter characteristics
		76	Addition of characteristic in 2.6.4 Comparator
		76	Deletion of detection delay in 2.6.5 POR circuit characteristics
		78	Modification of 2.7 Power supply voltage rising slope characteristics
		79 to 82	Modification of 2.8 LCD Characteristics
		83	Modification of 2.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics
		83	Modification of 2.10 Flash Memory Programming Characteristics
		84	Addition of 2.12 Timing Specs for Switching Modes
		85 to 144	Addition of 3. ELECTRICAL SPECIFICATIONS (G: TA $=-40$ to $+105^{\circ} \mathrm{C}$ )
2.00	Feb 21, 2014	All	Addition of 85-pin product information
		All	Modification from 80-pin to 80/85-pin
		All	Modification from $\mathrm{x}=\mathrm{M}, \mathrm{P}$ to $\mathrm{x}=\mathrm{M}, \mathrm{N}, \mathrm{P}$
		All	Modification from high-accuracy real-time clock to real-time clock 2
		All	Modification from RTC to RTC2
		1	Modification of 1.1 Features
		3	Modification of 1.2 Ordering Information

## REVISION HISTORY

RL78/L1C Datasheet

Rev.	Date	Description	
		Page	Summary
2.00	Feb 21, 2014	4	Modification of Figure 1-1 Part Number, Memory Size, and Package of RL78/L1C
		69	Modification of (1) Electrical specifications in 2.5.3 USB
		82	Modification of note 1 in (1) $1 / 3$ bias method in 2.8.2 Internal voltage boosting method
		130	Modification of (1) Electrical specifications in 3.5.3 USB
		142	Modification of note 1 in (1) 1/3 bias method in 3.8.2 Internal voltage boosting method
2.10	Aug 12, 2016	5	Addition of product name (RL78/L1C) and description (Top View) in 1.3.1 80-pin products (with USB)
		6	Addition of product name (RL78/L1C) and description (Top View) in 1.3.2 80-pin products (without USB)
		9	Addition of product name (RL78/L1C) and description (Top View) in 1.3.5 100-pin products (with USB)
		10	Addition of product name (RL78/L1C) and description (Top View) in 1.3.6 100-pin products (without USB)
		17, 19	Modification of 1.6 Outline of Functions
		23	Modification of description in Absolute Maximum Ratings ( $\mathrm{TA}^{\text {a }} 25^{\circ} \mathrm{C}$ )
		26, 27	Modification of description in 2.3.1 Pin characteristics
		39, 40	Modification of the graph for Minimum Instruction Execution Time during Main System Clock Operation
		72	Modification of conditions in (1) of 2.6.1 A/D converter characteristics
		85	Modification of the title and note in 2.9 RAM Data Retention Characteristics
		85	Modification of conditions in 2.10 Flash Memory Programming Characteristics
		87	Modification of description in 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA $=-40$ to $+105^{\circ} \mathrm{C}$ )
		88, 90	Modification of description in Absolute Maximum Ratings ( $\mathrm{TA}^{\text {a }}=25^{\circ} \mathrm{C}$ )
		93, 94, 96	Modification of description in 3.3.1 Pin characteristics
		106	Modification of the graph for Minimum Instruction Execution Time during Main System Clock Operation
		144	Modification of the title and note in 3.9 RAM Data Retention Characteristics
		145	Modification of conditions and addition of note 4 in 3.10 Flash Memory Programming Characteristics
2.20	Dec 28, 2017	13	Modification of figure in 1.5.2 80/85-pin products (without USB)
		17, 19	Modification of tables in 1.6 Outline of Functions
		26, 27	Modification of table and note 3 in 2.3.1 Pin characteristics
		85	Modification of figure in 2.12 Timing of Entry to Flash Memory Programming Modes
		89	Modification of table in 3.1 Absolute Maximum Ratings
		92, 93	Modification of table and note 3 in 3.3.1 Pin characteristics
		144	Modification of figure in 3.12 Timing of Entry to Flash Memory Programming Modes


REVISION HISTORY			RL78/L1C Datasheet
Rev.	Date		Description
		Page	Summary
2.21	Nov 30, 2022	All	The module name for CSI was changed to Simplified SPI(CSI)
		All	"wait" for IIC was modified to "clock stretch"
		3	Modification of description in two tables in 1.2 Ordering Information
		4	Modification of packaging specification in Figure1-1
		146	Addition of package drawing in 4.1 80-pin Package
		149	Addition of package drawing in 4.3 100-pin Package
2.30	Mar 20, 2023	32	Modification of notes in 2.3.2 Supply current characteristics (TA $=-40$ to $+85^{\circ} \mathrm{C}$, $1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{VSS}=0 \mathrm{~V})(1 / 2)$
		34	Modification of notes and remark in 2.3.2 Supply current characteristics (TA =-40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ ) (2/2)
		98	Modification of notes in 3.3.2 Supply current characteristics ( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$, $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, VSS $=0 \mathrm{~V})(1 / 2)$
		100	Modification of notes and remark in 3.3.2 Supply current characteristics (TA =-40 to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $\left.=0 \mathrm{~V}\right)(2 / 2)$
		145	Modification of package drawing of PLQP0080KB-B in 4.1 80-pin products
		148	Modification of package drawing of PLQP0100KB-B in 4.3 100-pin products

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash ${ }^{\circledR}$ technology licensed from Silicon Storage Technology, Inc.
All trademarks and registered trademarks are the property of their respective owners.

## General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $\mathrm{V}_{\text {IL }}$ (Max.) and $\mathrm{V}_{\mathrm{IH}}$ (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $\mathrm{V}_{\mathrm{IL}}$ (Max.) and $\mathrm{V}_{\mathrm{IH}}$ (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

## Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

## Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

## Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

## Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

## Mouser Electronics

Authorized Distributor

## Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

nesas Electronics:				
R5F111NHALA\#U0	0 R5F110PFAFB\#	R5F110PHAFB\#	AL	U
R5F111NFALA\#U0	R5F110NEALA\#U0	R5F111PHAFB\#30	R5F110NHALA\#U0 R5F110MJGFB\#30	
R5F110MFAFB\#30	R5F110PJAFB\#30	R5F110PEAFB\#30	R5F110PGAFB\#30	R5F110NGALA\#U0
R5F111PFAFB\#30	R5F110MEGFB\#30	R5F110MGAFB\#30	R5F111MFAFB\#30	R5F111NGALA\#U0
R5F110MFGFB\#30	R5F111MHAFB\#30	R5F110NJALA\#U0	R5F110MEAFB\#30	R5F111PGAFB\#30
R5F110MHAFB\#30	R5F111NJGLA\#U0	R5F111MEAFB\#30	R5F110MHGFB\#30	B\#30
R5F111PEAFB\#30	R5F111MJAFB\#30	R5F111PJAFB\#30	R5F111MGAFB\#30	GGFB\#30
R5F111NJALA\#U0	R5F111NJALA\#W0	R5F111MJGFB\#30	R5F110MEAFB\#50	5F110MEGFB\#50
R5F110MFAFB\#50	R5F110MFGFB\#50	R5F110MGAFB\#50	R5F110MGGFB\#50	R5F111PHGFB\#50
R5F111PJAFB\#50 R	R5F111PJGFB\#30	R5F111PJGFB\#50 R	R5F111PFGFB\#50 R	F111PGAFB\#50
R5F111PGGFB\#30	R5F111PGGFB\#50	R5F111PHAFB\#50	R5F111PHGFB\#30	R5F111NJGLA\#W0
R5F111PEAFB\#50	R5F111PEGFB\#30	R5F111PEGFB\#50	R5F111PFAFB\#50	GFB\#30
R5F111NGALA\#W0	R5F111NGGLA\#U0	R5F111NGGLA\#	vo R5F111NHALA\#	GLA\#U0
R5F111NHGLA\#W0	R5F111NEALA\#W0	0 R5F111NEGLA\#	0 R5F111NEGLA\#W0	R5F111NFALA\#W0
R5F111NFGLA\#U0	R5F111NFGLA\#W0	R5F111MGGFB\#50	R5F111MHAFB\#50	R5F111MHGFB\#30
R5F111MHGFB\#50	R5F111MJAFB\#50	R5F111MJGFB\#50	R5F111MEGFB\#50	R5F111MFAFB\#50
R5F111MFGFB\#30	R5F111MFGFB\#50	R5F111MGAFB\#50	R5F111MGGFB\#30	R5F110PHGFB\#50
R5F110PJAFB\#50	R5F110PJGFB\#30	R	R5F111MEAFB\#50 R	F111MEGFB\#30
R5F110PFGFB\#50	R5F110PGAFB\#50	R5F110PGGFB\#30	R5F110PGGFB\#50	R5F110PHAFB\#50
R5F110PHGFB\#30	R5F110NJGLA\#W0	R5F110PEAFB\#50	R5F110PEGFB\#30	R5F110PEGFB\#50


[^0]:    © 2017 Renesas Electronics Corporation. All rights reserved

