Data Sheet

FEATURES

0.58Ω typical on resistance

0.82Ω maximum on resistance at $85^{\circ} \mathrm{C}$
1.8 V to 5.5 V single supply

High current carrying capability: $\mathbf{2 5 0} \mathbf{~ m A}$ continuous
Rail-to-rail switching operation
Fast-switching times: <20 ns
Typical power consumption: <0.1 $\mu \mathrm{W}$
2.1 mm $\times 2.1$ mm mini LFCSP

APPLICATIONS

Cellular phones

PDAs
MP3 players
Power routing
Battery-powered systems
PCMCIA cards
Modems
Audio and video signal routing
Communication systems

GENERAL DESCRIPTION

The ADG858 is a low voltage CMOS device containing four single-pole, double-throw (SPDT) switches. This device offers ultralow on resistance of less than 0.82Ω over the full temperature range. The ADG858 is fully specified for 4.2 V to 5.5 V and 2.7 V to 3.6 V supply operation.
Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG858 exhibits break-before-make switching action.

The ADG858 is available in a $2.1 \mathrm{~mm} \times 2.1 \mathrm{~mm}$, 16-lead mini LFCSP. This tiny package makes the device ideal for spaceconstrained applications, such as handsets, PDAs, and MP3s.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 1 INPUT

Figure 1.

PRODUCT HIGHLIGHTS

1. $<0.82 \Omega$ over the full temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
2. Single 1.8 V to 5.5 V operation.
3. Compatible with 1.8 V CMOS logic.
4. High current handling capability (250 mA continuous current per channel).
5. Low THD $+\mathrm{N}: 0.06 \%$ typical.
6. $2.1 \mathrm{~mm} \times 2.1 \mathrm{~mm}, 16$-lead mini LFCSP.

Rev. B

TABLE OF CONTENTS

8/08—Revision 0: Initial Version

ESD Caution 5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics 7
Test Circuits 10
Terminology 12
Outline Dimensions 13
Ordering Guide 13

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}$ to 5.5 V, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (on)	$\begin{aligned} & 0.58 \\ & 0.72 \\ & 0.04 \\ & \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0 \text { to } V_{D D} \\ & 0.82 \\ & 0.14 \\ & 0.26 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{D D}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD},} \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \text {, see Figure } 16 \\ & \mathrm{~V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Channel On Leakage, ID, Is (On)	$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$		$\begin{aligned} & \text { pA typ } \\ & \text { pA typ } \end{aligned}$	$\begin{aligned} & \hline V_{D D}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0.6 \mathrm{~V} / 4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.2 \mathrm{~V} / 0.6 \mathrm{~V} \text {, see Figure } 17 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V} \text { or } 4.2 \mathrm{~V} \text {, see Figure } 18 \\ & \hline \end{aligned}$
DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current linl or $l_{\text {INH }}$ Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	0.004 2	$\begin{aligned} & 2.0 \\ & 0.8 \\ & \\ & 0.05 \end{aligned}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, tввм Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion, THD + N Insertion Loss -3 dB Bandwidth C_{s} (Off) $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	20 27 8 12 14 45 -67 -85 -67 0.06 -0.05 70 25 75	36 13 9	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ dB typ \% dB typ MHz typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 0 \mathrm{~V} \text {, see Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \text { see Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=1.5 \mathrm{~V} \text {, see Figure } 20 \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {, see Figure } 21 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \text {, see Figure } 22 \\ & \mathrm{~S} 1 \mathrm{~A} \text { to } \mathrm{S} 2 \mathrm{~A} / \mathrm{S} 1 \mathrm{~B} \text { to } \mathrm{S} 2 \mathrm{~B} / \mathrm{S} 3 \mathrm{~A} \text { to } \mathrm{S} 4 \mathrm{~A} / \mathrm{S} 3 \mathrm{~B} \text { to } \mathrm{S} 4 \mathrm{~B}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \text {, see Figure } 25 \\ & \mathrm{~S} 1 \mathrm{~A} \text { to } \mathrm{S} 1 \mathrm{~B} / \mathrm{S} 2 \mathrm{~A} \text { to } \mathrm{S} 2 \mathrm{~B} / \mathrm{S} 3 \mathrm{~A} \text { to } \mathrm{S3B} / \mathrm{S} 4 \mathrm{~A} \text { to } \mathrm{S} 4 \mathrm{~B}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \text {, see Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {, see Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {, see Figure } 23 \end{aligned}$
POWER REQUIREMENTS ID	0.003		$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V} \mathrm{VD}=5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^0]
ADG858

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
V $_{D D}$ to GND	-0.3 V to +6 V
Analog Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs 1	-0.3 V to V_{DD} or 10 mA,
	whichever occurs first
Peak Current, S or D	500 mA (pulsed at 1 ms,
	10% duty cycle max)
Continuous Current, S or D	250 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
16-Lead Mini LFCSP	$84.9^{\circ} \mathrm{C} / \mathrm{W}$
$\quad \theta_{\mathrm{JA}}$ Thermal Impedance, 3 -Layer Board	
Reflow Soldering, Pb-Free	$260(+0 /-5)^{\circ} \mathrm{C}$
\quad Peak Temperature	10 sec to 40 sec
Time at Peak Temperature	

[^2]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,3,4,6,8,10,11,13$	S1A, S1B, S2A, S2B, S3A, S3B, S4A, S4B	Source Terminal. Can be an input or output.
$2,5,9,12$	D1, D2, D3, D4	Drain Terminal. Can be an input or output.
7	GND	Ground (0V) Reference.
14,16	IN2, IN1	Logic Control Input.
15	V $_{\text {DD }}$	Most Positive Power Supply Potential.

Table 5. ADG858 Truth Table

Logic (IN1/IN2)	Switch A (S1A/S2A/S3A/S4A)	Switch B (S1B/S2B/S3B/S4B)
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. $V_{D}\left(V_{s}\right), V_{D D}=4.2 \mathrm{~V}$ to 5.5 V

Figure 4. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=2.7 \mathrm{~V}$ to 3.6 V

Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=5 \mathrm{~V}$

Figure 6. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=3.3 \mathrm{~V}$

Figure 7. Leakage Current vs. Temperature, $V_{D D}=5 \mathrm{~V}$

Figure 8. Leakage Current vs. Temperature, VDD $=3.3 \mathrm{~V}$

Figure 9. Charge Injection vs. Source Voltage

Figure 10. ton/toff Times vs. Temperature

Figure 11. Bandwidth

Figure 12. Off Isolation vs. Frequency

Figure 13. Crosstalk vs. Frequency

Figure 14. Total Harmonic Distortion + Noise $(T H D+N)$ vs. Frequency

Figure 15. PSRR vs. Frequency

TEST CIRCUITS

Data Sheet

OFF ISOLATION $=20 \log \frac{v_{\text {OUT }}}{V S}$

Figure 22. Off Isolation

Figure 23. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{VS}}$ 佥
Figure 24. Channel-to-Channel Crosstalk (S1A to S1B)

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{VS}}$

Figure 25. Channel-to-Channel Crosstalk (S1A to S2A)

ADG858

TERMINOLOGY

\mathbf{I}_{DD}
Positive supply current.
$V_{D}\left(V_{s}\right)$
Analog voltage on Terminal D and Terminal S.
Ron
Ohmic resistance between Terminal D and Terminal S.
$\mathbf{R}_{\text {Flat (on) }}$
The difference between the maximum and minimum values of on resistance as measured on the switch.
$\Delta \mathbf{R}_{\text {ON }}$
On resistance match between any two channels.
Is (Off)
Source leakage current with the switch off.
I_{D} (Off)
Drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}$ (On)
Channel leakage current with the switch on.
$V_{\text {INL }}$
Maximum input voltage for Logic 0.
$\mathbf{V}_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
Input current of the digital input.
Cs (Off)
Off switch source capacitance. Measured with reference to ground.
CD (Off)
Off switch drain capacitance. Measured with reference to ground.
C_{D}, C_{s} (On)
On switch capacitance. Measured with reference to ground.
CIN
Digital input capacitance.
$t_{\text {ON }}$
Delay time between the 50% and 90% points of the digital input and switch on condition.
toff
Delay time between the 50% and 90% points of the digital input and switch off condition.
$\mathbf{t}_{\text {BBM }}$
On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

Measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.

Off Isolation

Measure of unwanted signal coupling through an off switch.

Crosstalk

Measure of unwanted signal that is coupled from one channel to another because of parasitic capacitance.
-3 dB Bandwidth
Frequency at which the output is attenuated by 3 dB .

On Response

Frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
THD + N
Ratio of the harmonics amplitude plus noise of a signal to the fundamental.

OUTLINE DIMENSIONS

..
骨
©
Figure 26. 16-Lead Lead Frame Chip Scale Package [LFCSP_UQ] $2.10 \mathrm{~mm} \times 2.10 \mathrm{~mm}$ Body, Ultra Thin Quad (CP-16-15)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG858BCPZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_UQ]	CP-16-15	11

[^3]NOTES
Data Sheet

NOTES

NOTES

[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current must be limited to the maximum ratings given.

[^3]: ${ }^{1} Z=$ RoHS Compliant Part.

