

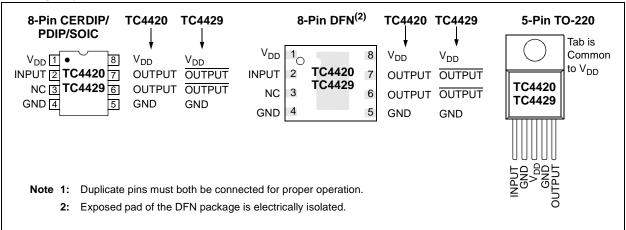
6A High-Speed MOSFET Drivers

Features

- Latch-Up Protected: Will Withstand >1.5A Reverse Output Current
- Logic Input Will Withstand Negative Swing Up To 5V
- ESD Protected: 4 kV
- Matched Rise and Fall Times:
 25 ns (2500 pF load)
- High Peak Output Current: 6A
- Wide Input Supply Voltage Operating Range:
 4.5V to 18V
- High Capacitive Load Drive Capability: 10,000 pF
- Short Delay Time: 55 ns (typ.)
- CMOS/TTL Compatible Input
- Low Supply Current With Logic '1' Input:
- 450 µA (typ.)
- Low Output Impedance: 2.5Ω
- Output Voltage Swing to Within 25 mV of Ground or V_{DD}
- Space-Saving 8-Pin SOIC and 8-Pin 6x5 DFN Packages

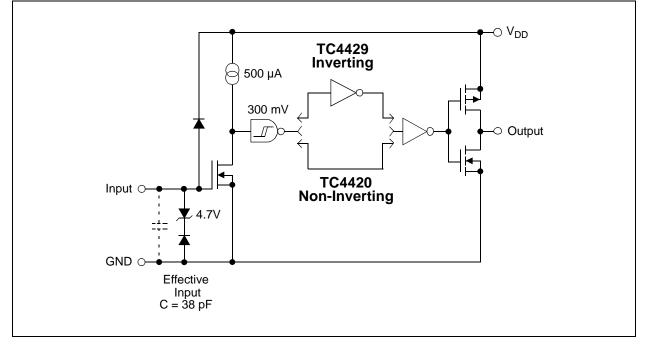
Applications

- Switch-Mode Power Supplies
- Motor Controls
- Pulse Transformer Driver
- · Class D Switching Amplifiers


Package Types⁽¹⁾

General Description

The TC4420/TC4429 are 6A (peak), single-output MOSFET drivers. The TC4429 is an inverting driver (pin-compatible with the TC429), while the TC4420 is a non-inverting driver. These drivers are fabricated in CMOS for lower power and more efficient operation versus bipolar drivers.


Both devices have TTL/CMOS compatible inputs that can be driven as high as V_{DD} + 0.3V or as low as -5V without upset or damage to the device. This eliminates the need for external level-shifting circuitry and its associated cost and size. The output swing is rail-to-rail, ensuring better drive voltage margin, especially during power-up/power-down sequencing. Propagational delay time is only 55 ns (typ.) and the output rise and fall times are only 25 ns (typ.) into 2500 pF across the usable power supply range.

Unlike other drivers, the TC4420/TC4429 are virtually latch-up proof. They replace three or more discrete components, saving PCB area, parts and improving overall system reliability.

© 2002-2012 Microchip Technology Inc.

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Input Voltage – 5V to V _{DD} + 0.3V
- Point and Bo - DD - and - DD - and -
Input Current (V _{IN} > V _{DD})50 mA
Power Dissipation ($T_A \le 70^{\circ}C$)
5-Pin TO-2201.6W
CERDIP
DFN Note 2
PDIP
SOIC
Package Power Dissipation ($T_A \le 25^{\circ}C$)
5-Pin TO-220 (With Heatsink) 12.5W
Thermal Impedances (To Case)
5-Pin TO-220 R _{θJ-C} 10°C/W

† Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: U	nless oth	erwise noted,	$T_A = +25$	5°C with 4.5	$V \leq V_D$	D ≤ 18V.
Parameters	Sym	Min	Тур	Max	Units	Conditions
Input						
Logic '1', High Input Voltage	V _{IH}	2.4	1.8	—	V	
Logic '0', Low Input Voltage	V _{IL}	—	1.3	0.8	V	
Input Voltage Range	V _{IN}	-5		V _{DD} +0.3	V	
Input Current	I _{IN}	-10	_	+10	μA	$0V \le V_{IN} \le V_{DD}$
Output						
High Output Voltage	V _{OH}	$V_{DD} - 0.025$		—	V	DC TEST
Low Output Voltage	V _{OL}	_		0.025	V	DC TEST
Output Resistance, High	R _{OH}	—	2.1	2.8	Ω	I _{OUT} = 10 mA, V _{DD} = 18V
Output Resistance, Low	R _{OL}	—	1.5	2.5	Ω	I _{OUT} = 10 mA, V _{DD} = 18V
Peak Output Current	I _{PK}	—	6.0	—	А	V _{DD} = 18V
Latch-Up Protection Withstand Reverse Current	I _{REV}	_	> 1.5	—	A	Duty cycle \leq 2%, t \leq 300 µsec
Switching Time (Note 1)						
Rise Time	t _R		25	35	ns	Figure 4-1 , C _L = 2,500 pF
Fall Time	t _F	—	25	35	ns	Figure 4-1 , C _L = 2,500 pF
Delay Time	t _{D1}	_	55	75	ns	Figure 4-1
Delay Time	t _{D2}	_	55	75	ns	Figure 4-1
Power Supply						
Power Supply Current	ا _S	_	0.45	1.5	mA	V _{IN} = 3V
		—	55	150	μA	$V_{IN} = 0V$
Operating Input Voltage	V_{DD}	4.5	—	18	V	

Note 1: Switching times ensured by design.

2: Package power dissipation is dependent on the copper pad area on the PCB.

^{© 2002-2012} Microchip Technology Inc.

DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)

Electrical Specifications: U	nless oth	erwise noted,	over ope	erating temp	perature	range with 4.5V \leq V _{DD} \leq 18V.
Parameters	Sym	Min	Тур	Max	Units	Conditions
Input						
Logic '1', High Input Voltage	V _{IH}	2.4	_	—	V	
Logic '0', Low Input Voltage	V _{IL}	—	_	0.8	V	
Input Voltage Range	V _{IN}	-5	_	$V_{DD} + 0.3$	V	
Input Current	I _{IN}	-10	_	+10	μA	$0V \leq V_{IN} \leq V_{DD}$
Output						
High Output Voltage	V _{OH}	$V_{DD} - 0.025$	_	—	V	DC TEST
Low Output Voltage	V _{OL}	—	_	0.025	V	DC TEST
Output Resistance, High	R _{OH}	—	3	5	Ω	I _{OUT} = 10 mA, V _{DD} = 18V
Output Resistance, Low	R _{OL}	—	2.3	5	Ω	I_{OUT} = 10 mA, V_{DD} = 18V
Switching Time (Note 1)						
Rise Time	t _R	—	32	60	ns	Figure 4-1 , C _L = 2,500 pF
Fall Time	t _F	—	34	60	ns	Figure 4-1 , C _L = 2,500 pF
Delay Time	t _{D1}	—	50	100	ns	Figure 4-1
Delay Time	t _{D2}	—	65	100	ns	Figure 4-1
Power Supply						
Power Supply Current	۱ _S	—	0.45	3	mA	V _{IN} = 3V
		—	60	400	μA	$V_{IN} = 0V$
Operating Input Voltage	V_{DD}	4.5	—	18	V	

Note 1: Switching times ensured by design.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless othe	rwise note	d, all para	meters a	pply with	$4.5V \leq V$	′ _{DD} ≤ 18V.
Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Ranges						
Specified Temperature Range (C)	T _A	0	—	+70	°C	
Specified Temperature Range (I)	T _A	-25	—	+85	°C	
Specified Temperature Range (E)	T _A	-40	—	+85	°C	
Specified Temperature Range (V)	Τ _Α	-40	_	+125	°C	
Maximum Junction Temperature	TJ	—	—	+150	°C	
Storage Temperature Range	T _A	-65	_	+150	°C	
Package Thermal Resistances						·
Thermal Resistance, 5L-TO-220	θ_{JA}	_	71		°C/W	
Thermal Resistance, 8L-CERDIP	θ_{JA}	_	150		°C/W	
Thermal Resistance, 8L-6x5 DFN	θ_{JA}	—	33.2	—	°C/W	Typical four-layer board with vias to ground plane.
Thermal Resistance, 8L-PDIP	θ_{JA}	_	125		°C/W	
Thermal Resistance, 8L-SOIC	θ_{JA}	_	155		°C/W	

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$ with $4.5V \le V_{DD} \le 18V$.

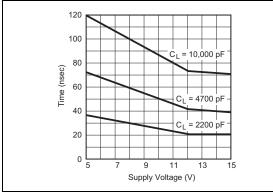
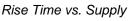



FIGURE 2-1: Voltage.

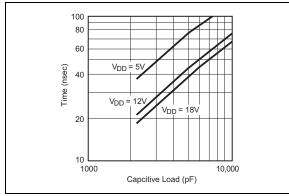


FIGURE 2-2: Rise Time vs. Capacitive Load.

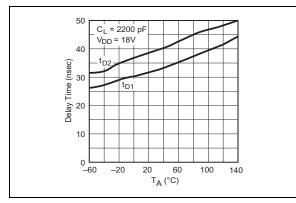


FIGURE 2-3: Temperature.

Propagation Delay Time vs.

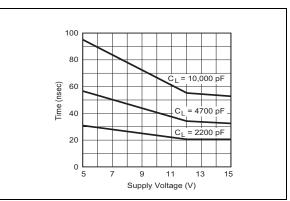


FIGURE 2-4: Voltage.

Fall Time vs. Supply

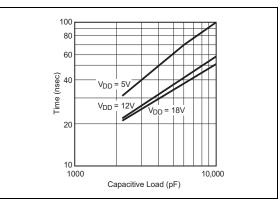


FIGURE 2-5: Fall Time vs. Capacitive Load.

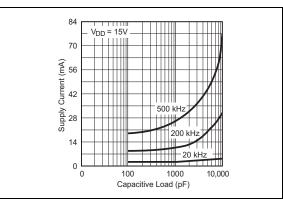
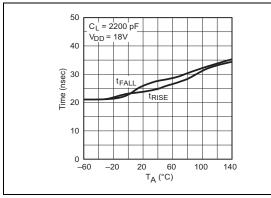



FIGURE 2-6: Capacitive Load.

Supply Current vs.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$ with $4.5V \leq V_{DD} \leq 18V$.

FIGURE 2-7: Rise and Fall Times vs. Temperature.

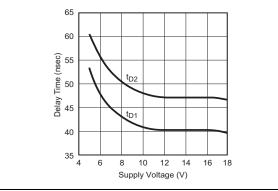


FIGURE 2-8: Propagation Delay Time vs. Supply Voltage.

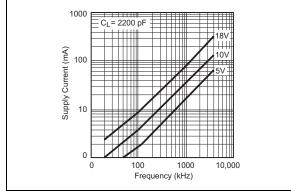


FIGURE 2-9: Frequency.

Supply Current vs.

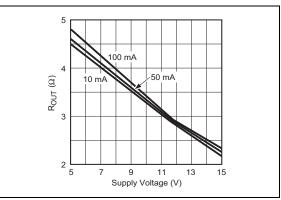
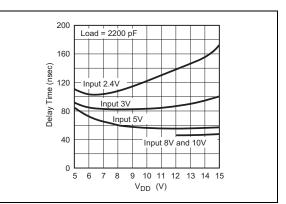



FIGURE 2-10: High-State Output Resistance vs Supply Voltage.

FIGURE 2-11: Effect of Input Amplitude on Propagation Delay.

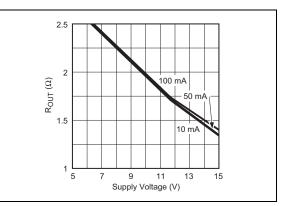
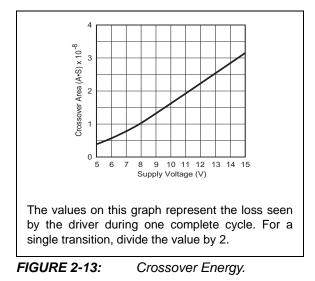



FIGURE 2-12: Low-State Output Resistance vs. Supply Voltage.

Note: Unless otherwise indicated, T_A = +25°C with 4.5V $\,\leq V_{DD} \leq$ 18V.

^{© 2002-2012} Microchip Technology Inc.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Pin No. 8-Pin CERDIP/ PDIP/SOIC	Pin No. 8-Pin DFN	Pin No. 5-Pin TO-220	Symbol	Description
1	1	—	V _{DD}	Supply input, 4.5V to 18V
2	2	1	INPUT	Control input, TTL/CMOS compatible input
3	3	—	NC	No Connection
4	4	2	GND	Ground
5	5	4	GND	Ground
6	6	5	OUTPUT	CMOS push-pull output
7	7	—	OUTPUT	CMOS push-pull output
8	8	3	V _{DD}	Supply input, 4.5V to 18V
—	PAD	—	NC	Exposed Metal Pad
		TAB	V _{DD}	Metal Tab is at the V_{DD} Potential

3.1 Supply Input (V_{DD})

The V_{DD} input is the bias supply for the MOSFET driver and is rated for 4.5V to 18V with respect to the ground pins. The V_{DD} input should be bypassed to ground with a local ceramic capacitor. The value of the capacitor should be chosen based on the capacitive load that is being driven. A minimum value of 1.0 μ F is suggested.

3.2 Control Input

The MOSFET driver input is a high-impedance, TTL/CMOS compatible input. The input circuitry of the TC4420/TC4429 MOSFET driver also has a "speedup" capacitor. This helps to decrease the propagation delay times of the driver. Because of this, input signals with slow rising or falling edges should not be used, as this can result in double-pulsing of the MOSFET driver output.

3.3 CMOS Push-Pull Output

The MOSFET driver output is a low-impedance, CMOS, push-pull style output capable of driving a capacitive load with 6.0A peak currents. The MOSFET driver output is capable of withstanding 1.5A peak reverse currents of either polarity.

3.4 Ground

The ground pins are the return path for the bias current and the high peak currents that discharge the load capacitor. The ground pins should be tied into a ground plane or have very short traces to the bias supply source return.

3.5 Exposed Metal Pad

The exposed metal pad of the 6x5 DFN package is not internally connected to any potential. Therefore, this pad can be connected to a ground plane or other copper plane on a printed circuit board (PCB) to aid in heat removal from the package.

4.0 APPLICATIONS INFORMATION

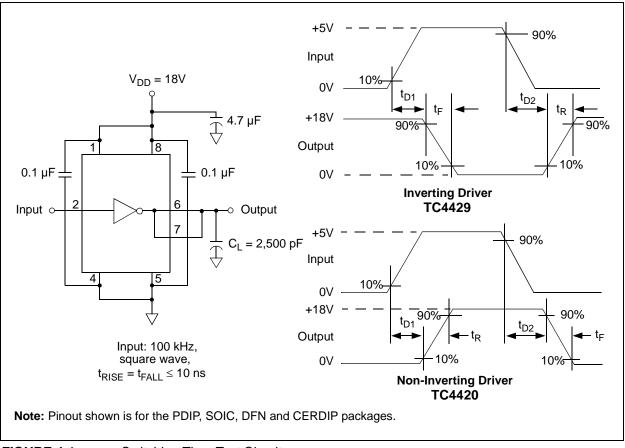
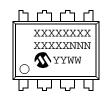


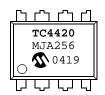
FIGURE 4-1: Switching Time Test Circuits.

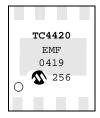

^{© 2002-2012} Microchip Technology Inc.

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

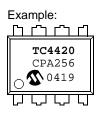
8-Lead CERDIP (300 mil)

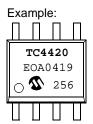

8-Lead DFN


Example:

Example:

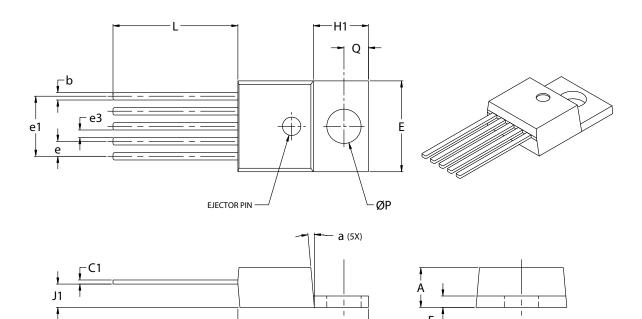
Example:


Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.


Package Marking Information (Continued)

8-Lead PDIP (300 mil)

8-Lead SOIC (150 mil)



^{© 2002-2012} Microchip Technology Inc.

5-Lead Plastic Transistor Outline (AT) (TO-220)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

D

	Units	INCHI	ES*	MILLIMETERS		
Dimensi	on Limits	MIN	MAX	MIN	MAX	
Lead Pitch	e	.060	.072	1.52	1.83	
Overall Lead Centers	e1	.263	.273	6.68	6.93	
Space Between Leads	e3	.030	.040	0.76	1.02	
Overall Height	A	.160	.190	4.06	4.83	
Overall Width	E	.385	.415	9.78	10.54	
Overall Length	D	.560	.590	14.22	14.99	
Flag Length	H1	.234	.258	5.94	6.55	
Flag Thickness	F	.045	.055	1.14	1.40	
Through Hole Center	Q	.103	.113	2.62	2.87	
Through Hole Diameter	Р	.146	.156	3.71	3.96	
Lead Length	L	.540	.560	13.72	14.22	
Base to Bottom of Lead	J1	.090	.115	2.29	2.92	
Lead Thickness	C1	.014	.022	0.36	0.56	
Lead Width	b	.025	.040	0.64	1.02	
Mold Draft Angle	a	3°	7°	3°	7°	

F

*Controlling Parameter


Notes:

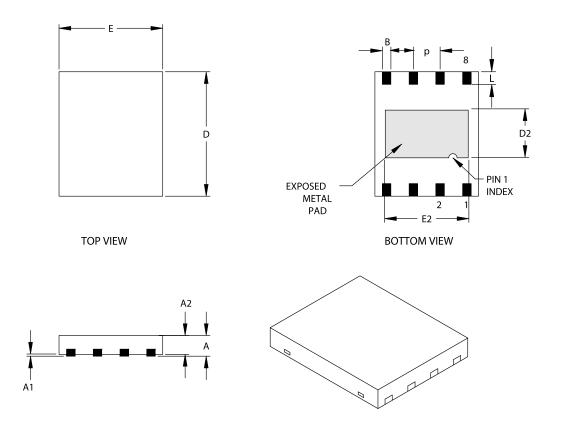
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC equivalent: TO-220

Drawing No. C04-036

8-Lead Ceramic Dual In-line – 300 mil (JA) (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		Ν	IILLIMETERS	6
Dimensior	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.160	.180	.200	4.06	4.57	5.08
Standoff §	A1	.020	.030	.040	0.51	0.77	1.02
Shoulder to Shoulder Width	E	.290	.305	.320	7.37	7.75	8.13
Ceramic Pkg. Width	E1	.230	.265	.300	5.84	6.73	7.62
Overall Length	D	.370	.385	.400	9.40	9.78	10.16
Tip to Seating Plane	L	.125	.163	.200	3.18	4.13	5.08
Lead Thickness	с	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.055	.065	1.14	1.40	1.65
Lower Lead Width	В	.016	.018	.020	0.41	0.46	0.51
Overall Row Spacing	eB	.320	.360	.400	8.13	9.15	10.16


*Controlling Parameter

JEDEC Equivalent: MS-030

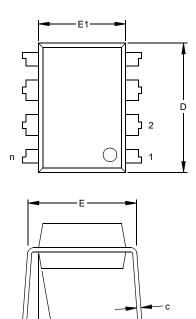
Drawing No. C04-010

8-Lead Plastic Dual Flat No Lead Package (MF) 6x5 mm Body (DFN-S) – Saw Singulated

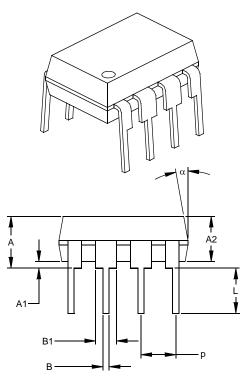
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		М	ILLIMETERS*	
Dimension Limi	ts	MIN	NOM MAX		MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.050 BSC			1.27 BSC	
Overall Height	A	.033	.035	.037	0.85	0.90	0.95
Package Thickness	A2	.031	.035	.037	0.80	0.89	0.95
Standoff	A1	.000	.0004	.002	0.00	0.01	0.05
Base Thickness	A3	.007	.008	.009	0.17	0.20	0.23
Overall Length	E	.195	.197	.199	4.95	5.00	5.05
Exposed Pad Length	E2	.152	.157	.163	3.85	4.00	4.15
Overall Width	D	.234	.236	.238	5.95	6.00	6.05
Exposed Pad Width	D2	.089	.091	.093	2.25	2.30	2.35
Lead Width	В	.014	.016	.019	0.35	0.40	0.47
Lead Length	L	.024		.026	0.60		0.65

Notes:


JEDEC equivalent: MO-220

Drawing No. C04-122

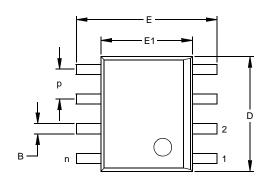

Revised 11/3/03

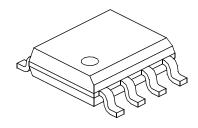
8-Lead Plastic Dual In-line (PA) – 300 mil (PDIP)

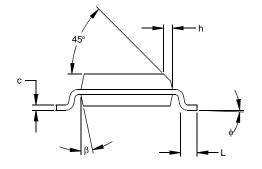
For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

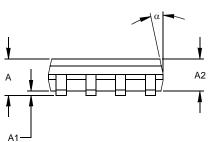
eВ

	Units		INCHES*		N	1ILLIMETERS	
Dimens	ion Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.360	.373	.385	9.14	9.46	9.78
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing	§ eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15


* Controlling Parameter § Significant Characteristic


Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-018


8-Lead Plastic Small Outline (OA) – Narrow, 150 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	1ILLIMETERS	
Dimens	ion Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.050			1.27	
Overall Height	Α	.053	.061	.069	1.35	1.55	1.75
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25
Overall Width	E	.228	.237	.244	5.79	6.02	6.20
Molded Package Width	E1	.146	.154	.157	3.71	3.91	3.99
Overall Length	D	.189	.193	.197	4.80	4.90	5.00
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51
Foot Length	L	.019	.025	.030	0.48	0.62	0.76
Foot Angle	¢	0	4	8	0	4	8
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25
Lead Width	В	.013	.017	.020	0.33	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15
Controlling Parameter							

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-012

Drawing No. C04-057

6.0 **REVISION HISTORY**

Revision D (December 2012)

Added a note to each package outline drawing.

^{© 2002-2012} Microchip Technology Inc.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>x</u>	<u>XX</u>	<u>xxx</u>	<u>x</u>	Ex	amples:	
Device Te	emperature Range	Package	Tape and Reel	PB Free	a)	TC4420CAT:	6A High-Speed MOSFET Driver, Non-inverting, TO-220 package, 0°C to +70°C.
Device:	TC4420: TC4429:	6A High-Speed	MOSFET Drive	r, Inverting	b)	TC4420EOA:	6A High-Speed MOSFET Driver, Non-inverting, SOIC package, -40°C to +85°C.
Temperature Range:	E =			d TO-220 Only)	c)	TC4420VMF:	6A High-Speed MOSFET Driver, Non-inverting, DFN package, -40°C to +125°C.
Package:	JA = MF =	(I-Temp Only) Dual, Flat, No-L	(C-Temp Only) n-line (300 mil Bo lead (6X5 mm Bo lead (6X5 mm Bo	ody), 8-lead	a)	TC4429CAT:	6A High-Speed MOSFET Driver, Inverting, TO-220 package, 0°C to +70°C
	PA = OA = OA713 =	(Tape and Reel Plastic DIP (300 Plastic SOIC, (1)) mil Body), 8-lea 50 mil Body), 8- 50 mil Body), 8-	ad lead	b)	TC4429EPA:	6A High-Speed MOSFET Driver, Inverting, PDIP package, -40°C to +85°C
PB Free		Lead-Free devi Blank	ce*		c)	TC4429VMF:	6A High-Speed MOSFET Driver, Inverting, DFN package,
		on selected pac tative for availal	ckages. Contact bility	your local sales			-40°C to +125°C

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2002-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Rinted on recycled paper.

ISBN: 9781620767948

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

© 2002-2012 Microchip Technology Inc.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820