‘— AN4593
,’ life.augmented

Application note

CR95HF C++ Library for Linux User

April 2015

Introduction

This application note explains how to use CR95HF C++ Library for Linux user
(STSW-95HF004). CR95HF library is developed on Linux platform to expose a number of
APIs that can be used by Linux users to communicate with CR95HF RF transceiver board.

This board is delivered with the M24LR-DISCOVERY Kkit.

The CR95HF RF transceiver board is powered through the USB port and no external power
supply is required. It is made up of a CR95HF contactless transceiver, a 48 x 34 mm 13.56
MHz inductive etched antenna and its associated tuning components. The CR95HF
communicates with the STM32F103CB 32-bit core MCU via the SPI bus.

A dynamic link library (.so) file is available that can be used by Linux host computer to
manage several functions and communicate with the STM32 MCU and the CR95HF IC.

A Linux command line test application is also available to validate and test the functionality
of developed library.

Figure 1. CR95HF RF transceiver board

MBIB54B
CRYSHF

%
%
£
z

= FCCIO:YCPOENOCRISH
1C1 P97 6A-DENOCRISHE

Table 1. Applicable tools and software

Type Root Part numbers
Evaluation Tools M24LR-DISCOVERY
Software STSW-95HF004
DoclD026956 Rev 1 1/45

www.st.com

http://www.st.com

Contents AN4593

Contents
1 Gettingstarted i i 5
1.1 Connecting the board to yourcomputer 5
1.2 Usingthe Linux Library i 6
1.2.1 Library creation: 6
1.2.2 Test application compilation and execution: 6
2 Function Description ¢ iiiiiiiiiiiiiinnnns 8
2.1 Functions to check USB connection 9
211 CR95HFIlib_USBConnect 9
2.2 Functions to communicate with the STM32MCU 10
2.2.1 CRBHFIlib_ECho 10
222 CRO5HFIlib_ MCUrev e 11
223 CR95HFIlib_getinterfacePinState 13
2.3 Functions to communicate with the CR95HF IC 15
2.3.1 CRO5HFIib_Idn 15
2.3.2 CRO95HFIlib _Select 17
2.3.3 CR95HFIlib_SendReceive 19
2.34 CR95HFIlib_ Read Block 21
2.3.5 CR95HFIlib_Write Block 23
2.3.6 CRO5HFIlib_FieldOff 25
2.3.7 CRO95HFIlib_ ResetSPI 26
2.3.8 CR95HFIlib_SendIRQPulse 28
2.3.9 CR95HFIlib_SendNSSPulse, 30
2310 CRO95HFIib_STCmd e 32
Appendix A Errorcodes.t e 34
Appendix B TestApp executionscreenshot. 35
3 Revision history i i ittt e eiennns 44
2/45 DoclD026956 Rev 1 ‘W

AN4593 List of tables

List of tables

Table 1. Applicable tools and software. 1
Table 2. ErrOr COOES e 34
Table 3. Document revision history 44
Kys DoclD026956 Rev 1 3/45

List of figures AN4593

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.

4/45

CR95HF RF transceiverboard 1
Connection of board with Linux Machine 5
TestApp USER MENU screenshot e 35
Option “@” TeStAPp eXECULION e 35
Option “b” TestApp eXeCUtion. 36
Option “C” TestApPp eXeCULION 36
Option “d” TeStApPp eXeCULiON 37
Option “€” TestApPp eXeCULION 37
Option “F" TestApp eXeCUtion e 38
Option “r" TestApp eXeCUtioN 38
Option “W” TestApp execution e e 39
Option “r" TestApp execution afterwrite. 40
Option “g” TeStAPp eXECULION e 40
Option “h” TestApp eXeCUtioN e e 41
Option “I” TestApp eXecution i e e 41
Option “” TestApp eXeCUtion 42
Option “K” TestApp eXeCUtioN 42
Option “I” TestApp eXecution e e 43

3

DoclD026956 Rev 1

AN4593

Getting started

1.1

3

Getting started

This application note and the test application have been written in order to help Linux
developers to easily use CR95HF reader. This application note explains all the functions
exposed by the Linux dynamic link library (.so file) and their description. The extension “.so”
in Linux stands for shared object.

Connecting the board to your computer

The CR95HF RF transceiver board is connected to the Linux host computer through its USB
port.

The developed library for CR95HF uses “libusb” at the lower level to communicate with USB
connected devices on Linux platform.

libusb is a C library that gives applications easy access to USB devices on many different
operating systems. libusb is an open source project (http://www.libusb.org/).

Figure 2 shows the connection of CR9HF RF transceiver demo board with Linux machine is
through the USB. Libusb based Linux library for CR95HF reader is available on host side
that communicate with the CR95HF firmware running on MCU. CR95HF transceiver
available on demo board communicates with NFC tag through RF communication.

Figure 2. Connection of board with Linux Machine

CR95HF
Contactless
=)~ Transceiver | == NFC tag
UsB
CR95HF RF transceiver
MSv37904V1
DoclD026956 Rev 1 5/45

Getting started AN4593

1.2

1.21

1.2.2

6/45

Using the Linux Library

Below steps are required to be followed to create the library and to run the test application
on any Linux machine (here, Ubuntu machine is taken as Linux host machine).

Pre-Requisite:

‘build-essential’, “g++” and “libusb” packages are required to be installed on Linux
machine to proceed for library creation.

If not, please follow below steps:

e For “build-essential” pkg installation, run the command:
apt-get install build-essential

e For “g++” pkg installation, run the command:

apt-get install g++

e For “libusb” pkg installation, run the command:
apt-get install libusb-1.0-0-dev

Library creation:

Unzip the package locally on Linux machine and run the below commands from the location
where package is unzipped.

e Step 1: Compile the source code and generate object files.

g++ -g -c¢ -Wall -Werror -fPIC -I. HIDManager.cpp libcr95hf.cpp
e Step 2: Create the library (.so) from object files.

g++ -g -shared -o 1ibCR95HF.so libcr95hf.o HIDManager.o

e Step 3: Export the path of library to System Library Path so that library can be used by
other applications.

export LD_LIBRARY_PATH= < Path of the generated 1ibCR95HF.so
file>:$SLD_LIBRARY_ PATH

Test application compilation and execution:

In the package there is a file named TestApp.cpp, it is the test application that can be used
to test and validate the developed Linux library.

e Step 1: Compilation of test application:

g++ -g -L<Path_to_libusb_library> -L<path_to_CR95HF library> -Werror
TestApp.cpp -0 TestApp -1CR95HF -lusb-1.0

3

DoclD026956 Rev 1

AN4593 Getting started
Example:
g++ -g -L/1lib/x86_64-1linux-gnu -L. -Werror TestApp.cpp -o TestApp -
1CRO95HF -1lusb-1.0
Here, path of libusb library is /lib/x86_64-linux-gnu and path of CR95HF library is same from
where the command is executing.
e Step 2: Execution of test application
. /TestApp

Note: Please note, this application is needed to be run from “root” to make the application able to

3

open the device for USB communication.

On the execution, this application displays a number of options for the user to select
depending on which action he want to perform. A screen shot of TestApp execution is
available in the Appendix B.

Whenever a new terminal is opened to build/execute the application, it is required to run the
setp3 to include the path of “.so” file in environment variable “LD _LIBRARY PATH”.

DoclD026956 Rev 1 7/45

Function Description

AN4593

2

8/45

Function Description

This section explains about the different functions exposed by the library that can be used

by any other application to communicate with CR95HF reader.

List of Library functions are:

CR95HFIlib_USBConnect
CR95HFIlib_MCUVer
CR95HFDII_Echo
CR95HFIib_Idn
CR95HFIib_Select
CR95HFIlib_SendReceive
CR95HFIlib_Read_Block
CR95HFIib_Write_Block
CR95HFIib_FieldOff
CR95HFIib_ResetSPI
CR95HFIlib_SendIRQPulse
. CR95HFIib_getinterfacePinState

© Nk N>

_ a a O
N = o

DoclD026956 Rev 1

3

AN4593 Function Description

21 Functions to check USB connection

211 CR95HFlib_USBConnect

This function detects if the CR95HF board is properly connected with Linux machine and
lower level driver Libusb available on host side is able to properly communicate with the

board.
Declaration: int CR95HFIlib_USBConnect()
Prototype: int iResult;
iResult=CR95HFlib_USBConnect();
Input parameter: None
Output parameter: None
Returned value: iResult= 0: No Error
1: CR95HF RF transceiver board not
connected
Example:

Test Application code to validate CR95HFIlib_USBConnect()

void Device_Connect ()
{
char entry3;
int iResult;
iResult=CR95HF1lib_USBConnect () ;
printf ("\n Establishing CR95HR Reader connection through USB \n");
printf("\n --> Library function call : CR95HF1ibUSB_Connect () \n");

printf ("\n <-- Return from Library function : 0X%x \n",iResult);

if (iResult == 0)
printf ("\n SUCCESS : Board connected successfully and ready to use
\n");
else
printf ("\n ERROR : Connection failed \n");
printf ("\n Selected Task is completed, To proceed for another task put
your choice");

printf("\n");

scanf ("%$c", &entry3);

3

DoclD026956 Rev 1 9/45

Function Description AN4593

2.2

2.21

10/45

Functions to communicate with the STM32 MCU

CR5HFlib_Echo

This function sends a USB request to the STM32 MCU that executes an Echo request on
the CR95HF. The STM32 MCU sends back the answer of the CR95HF, if success, or
returns an error code ‘1’ if there is no answer.

Declaration: int CR95HFIib_Echo (char* strAnswer);
Prototype: char strAnswer[50]="";
int iresult;

iresult= CR95HFIib_Echo (strAnswer);

Input parameter: None

Output parameter: strAnswer: The CR95HF IC answer to the Echo request is
“5500” if there is no error.

Answer example: “56500”

Returned value: iResult= 0: No Error
5: CR95HF RF transceiver board not connected

Example
Test Application code to validate CR95HFIlib_Echo

void Echo ()

{

char strAnswer[50]="";

char entry3;

printf ("\n Echo command sent to MCU \n");

int iresult= CR95HFlib_Echo (strAnswer) ;

printf("\n --> Library function call : CR95HFlib_Echo (strAnswer) \n");

printf ("\n <-- Return from Library function : 0X%x \n",iresult);

if (iresult == 0)
printf ("\n SUCCESS : Echo command answer = %s \n", strAnswer);

else
printf ("\n ERROR : Echo command failed, no answer \n");

printf ("\n Selected Task is completed, To proceed for another task put

your choice");

printf("\n");

scanf ("%c", &entry3);

3

DoclD026956 Rev 1

AN4593 Function Description

2.2.2 CR95HFlib_MCUrev

This function sends a USB request to the STM32 MCU on the CR95HF RF transceiver
board that sends back the revision number of its firmware.

Declaration: int CR95HFlib_MCUVer(char* StringReply);
Prototype: char strAnswer[50]="";
int iresult;
iresult= CR95HFIib_ MCUVer(strAnswer);
Input parameter: None
Output parameter: strAnswer: Firmware revision of the STM32 MCU on

CR95HF RF transceiver board.
Answer example: “0003010300”
Where:

00: Status byte

03: Size of answer (in bytes)

010300: Revision 1.3.0

Returned value: iResult= 0: No Error
5: CR95HF RF transceiver board not connected

Example:

Test Application code to validate CR95HFIib_ MCUrev

void Get_MCU_rev ()

{
char strAnswer [50]="";
int iresult;

char entry3;

iresult = CR95HFlib_MCUVer (strAnswer) ;
printf ("\n Get MCU Version request is sent \n");

printf("\n --> Library function call : CR95HF1ibUSB_MCUVer (strAnswer)
\n");

printf ("\n <-- Return from Library function : 0X%x \n",iresult);

if (iresult == 0)
{
printf ("\n SUCCESS: MCU Version Reply=%s \n", strAnswer);

else

{
printf ("\n ERROR : Get MCU Version Failed \n");

3

DoclD026956 Rev 1 11/45

Function Description AN4593

printf ("\n Selected Task is completed, To proceed for another task put
your choice");

printf ("\n");

scanf ("%c", &entry3);

3

12/45 DoclD026956 Rev 1

AN4593

Function Description

2.2.3

3

CR95HFIlib_getinterfacePinState

This function verifies the communication path between the STM32 MCU and the CR95HF
IC (either SPI or UART).

The STM32 MCU checks which communication configuration is selected on the CR95HF
RF transceiver board.

Declaration: int CR95HFIib_getinterfacePinState(char®);
Prototype: char strAnswer[50]="";
int iresult;

CR95HFIib_getinterfacePinState(strAnswer);

Input parameter: None

Output parameter: strAnswer: strAnswer: Interface Pin state
Answer example: “80010X”
Where:

80: Status byte

01: Size of answer (in bytes)

0X: Communication mode

With X:
0: Communication in UART mode
1: Communication in SPI mode

Returned value: iResult= 0: No Error
5: CR95HF RF transceiver board not
connected
Example:

Test Application code to validate CR95HFIib_getinterfacePinState

void Get_InterfacePinState ()

{

char strAnswer[50]="";
int iresult;

char entry3;

iresult = CR95HFlib_getInterfacePinState (strAnswer) ;
printf ("\n Request for getInterfacePinState is sent \n");
printf("\n --> Library function call :
CRY95HF1ib_getInterfacePinState (strAnswer) \n");

printf ("\n <-- Return from Library function : 0X%x \n",iresult);

if (iresult == 0)

{

DoclD026956 Rev 1 13/45

Function Description

AN4593

14/45

printf ("\n SUCCESS: getInterfacePinState completed successfully, Answer

received= %s \n", strAnswer) ;
if (strAnswer([3]=='0")
{
printf("\n Communication is in UART mode \n");
}
else
{
printf("\n Communication is in SPI mode \n");
}
}
else
{
printf ("\n ERROR : getInterfacePinState failed, No answer

received\n") ;

}

printf ("\n Selected Task is completed, To proceed for another task put

your choice");

printf ("\n");

scanf ("%c", &entry3);

DoclD026956 Rev 1

3

AN4593

Function Description

2.3

2.3.1

3

Functions to communicate with the CR95HF IC

CR95HFlib_ldn

This function sends a USB request to the STM32 MCU that requests the IDN of the
CR95HF IC. The STM32 MCU sends back the answer of the CR95HF containing the IDN
value (ASCII codes), if success, or returns an error code ‘1’ if there is no answer.

Declaration:

Prototype:

Input parameter:

Output parameter:

Returned value:

Example:

int CRO5HFIib_ldn(char*);

int iresult;
char strAnswer[50]="";
iresult= CR95HFDII_ldn (strAnswer);

None

strAnswer: IDN of the CR95HF IC (if no error)

Answer example:
“000F4E4643204653324A415354320075D2”

Where:
00: Status byte
OF: Size of answer (in bytes)
4E4643204653324A41535432: ASCII transcription
of the CR95HF IDN
00: protocol status
75D2: CRC value

iresult:
0: No error
5: CR95HF RF transceiver board not connected

Test Application code to validate CR95HFIib_ldn

void Idn ()
{

int iresult;

char strAnswer[50]="";

char entry3;

printf ("\n IDN command

is sent \n");

iresult= CR95HFlib_Idn (strAnswer) ;
printf("\n --> Library function call : CR95HFlib_Idn (strAnswer) \n");

printf ("\n <-- Return from Library function : 0X%x \n",iresult);

if (iresult == 0)

printf ("\n SUCCESS :

Idn command response = %s \n", strAnswer);

DoclD026956 Rev 1 15/45

Function Description AN4593

else

printf("\n ERROR : no Idn returned \n", strAnswer) ;

printf ("\n Selected Task is completed, To proceed for another task put
your choice");

printf("\n");

scanf ("%c", &entry3);

3

16/45 DoclD026956 Rev 1

AN4593 Function Description

2.3.2 CR95HFlib_Select

This function sends a USB request to the STM32 MCU that prepares the CR95HF for
communication by executing a Select request containing the selected RF parameters to the
CR95HF IC.

The STM32 MCU sends back the answer of the CR95HF, if success, or returns an error
code ‘1’ if there is no answer. In addition to selecting the correct RF communication
parameters, this function activates the RF field.

Note: This is necessary at the start of communications if the RF field was previously switched off.
Declaration: int CR95HFIlib_Select(char*, char®);
Prototype: int iresult;
char strRequest[50]="";

char strAnswer[50]="";
iresult = CR95HFIib_Select(strRequest ,strAnswer);
Input parameter: strRequest: Selected RF communication protocol and

certain protocol-related parameters. (This configuration is
used for SendReceive requests.)

For ex: strRequest for ISO15693 HighDataRate 10% One
subcarrier is = "010D™:

Where:
“01” is the ISO 15693 configuration
“OD” are the parameters
Output parameter: Answer: The CR95HF RF transceiver sends back an

answer if the CR95HF is configured correctly and the RF
field is on.

Answer example: “0000”
Where:
“00” is the status byte
“00” is the size of the answer

Returned value: iresult:
0: No error
5: CR95HF RF transceiver board not connected
2: Empty argument error
3: Command parameter error

Example:
Test Application code to validate CR95HFIlib_Select

void Select_IS015693 ()
{
int iresult;
char strRequest[50]="";

char strAnswer[50]="";

3

DoclD026956 Rev 1 17/45

Function Description AN4593

18/45

char entry3;

printf("\n ISO 15693 Protocol selection for future NFC
communication:\n") ;

strcpy (strRequest, "010D") ;
iresult = CR95HFlib_Select (strRequest ,strAnswer) ;

printf("\n --> Library function call : CR95HFlib_Select (strRequest
, strAnswer) \n");

printf ("\n <-- Return from Library function : 0X%x \n",iresult);

if (iresult == 0)

printf ("\n SUCCESS : IS015693 protocol selected : Answer Received=%s
\n", strAnswer) ;

else

printf ("\n ERROR : IS015693 protocol selection failed :No Answer
Received \n", strAnswer) ;

printf ("\n Selected Task is completed, To proceed for another task put
your choice");

printf ("\n");

scanf ("%c", &entry3);

DoclD026956 Rev 1

3

AN4593 Function Description

2.3.3 CR95HFlib_SendReceive

This function sends a USB request to the STM32 MCU that executes a SendRecv
command with data to the CR95HF IC. The STM32 MCU sends back the answer of the
CRO95HF, if success, or returns an error code ‘1’ if there is no answer.

Note: The request uses the SendRecv command to send data using previously selected protocol
and to receive the tag response. For more information, refer to the CR95HF transceiver
datasheet.

Declaration: int CR95HFIlib_SendReceive(char*,char®);

Prototype: int iresult;
char strRequest[50]=
char strAnswer[50]="";
iresult=CR95HFlib_SendReceive(strRequest,strTagAnswer
);

Input parameter: strRequest: The RF Request to be sent by the CR95HF IC
to the Tag (with previously selected ISO format).
ISO 15693 Inventory example: “260100”
Where:

“260100” is the ISO 15693 Inventory command.

Output parameter: strTagAnswer: The Tag answer if the CR95HF has received
an answer from the Tag in the field; otherwise, an error
code.

ISO 15693 Inventory example:
800D00FF6820492F6A5C02E00CDS800
Where

“80” is the status byte

“0OD” is the length of the entire data field

“O0FF6820492F6A5C02EQ” is the data received from
the tag

“0CD8 is the original received CRC value
“00” is the protocol error status

Returned value: iresult:
0: No error
5: CR95HF RF transceiver board not connected
4: Communication error

Example:

Test Application code to validate library function CR95HFIib_SendReceive

void Send_IS015693_Inventory ()
{

int iresult;

3

DoclD026956 Rev 1 19/45

Function Description AN4593

char strRequest[50]="";
char strTagAnswer [50]="";

char entry3;

strcpy (strRequest, "260100") ;

iresult=CR95HF1lib_SendReceive (strRequest, strTagAnswer) ;

printf ("\nIS015695 inventory using CR95HF SendReceive command:\n") ;

printf("\n --> Library function call : CR95HFlib_Select (260100
, strAnswer) \n");

printf ("\n <-- Return from Library function : 0X%x \n",iresult);

if ((strTagAnswer[0] == '8') & (strTagAnswer[l] == '0')) //CR95HF Tag
answer OK
{

printf ("\n SUCCESS : Tag answer=%s \n",strTagAnswer) ;
}
else
{

printf ("\n ERROR : No tag answer received \n", strTagAnswer) ;

printf ("\n Selected Task is completed, To proceed for another task put
your choice");

printf ("\n") ;

scanf ("%c", &entry3);

20/45 DoclD026956 Rev 1

3

AN4593 Function Description

2.3.4 CR95HFlib_Read_Block

This function will read the particular block of Tag memory. This function takes the block no.
as a input parameter and sends back the 4 byte data available at that particular block.

Declaration: int CR95HFIlib_Read_Block(int,unsigned char*);
Prototype: nt iresult;
int RegAdd;

unsigned char strTagAnswer[50]="";
iresult = CR95HFlib_Read_Block(RegAdd, strTagAnswer);

Input parameter: RegAdd: Address of register of which data is required
Output parameter: strTagAnswer: array of unsigned char to contain the 4 bytes
data available at RegAdd
Returned value: iresult:
0: No error

5: CR95HF RF transceiver board not connected
4: Communication error

Example:

Test Application code to validate library function CR95HFIib_Read_ Block

void Read_Block()
{
char entry3;
unsigned char strTagAnswer[50]="";
int RegAdd=0;
printf("\n This option will read 4 byte data of the block entered by user
\n") ;
printf ("\n") ;
printf ("\n please enter the Block address in hex \n");
printf ("\n");
scanf ("%$x", (int*)&RegAdd) ;
int r = CR95HFlib_Read_Block (RegAdd, strTagAnswer) ;

printf("\n --> Library function call : CR95HFlib_Read_Block (RegAdd,
strTagAnswer) \n");

printf ("\n <-- Return from Library function : 0X%x \n",r);
if (r==0)
{

printf ("\n SUCCESS : Received Tag answer=%s \n",strTagAnswer) ;

for (int i1i=3;i<=6;i++)
{
printf ("%$x", (int) strTagAnswer[i]) ;

printf (" ");

3

DoclD026956 Rev 1 21/45

Function Description AN4593

22/45

}
else
{

printf("\n ERROR : No tag answer received \n", strTagAnswer) ;

printf ("\n Selected Task is completed, To proceed for another task put
your choice");

printf ("\n");

scanf ("%$c", &entry3);

This test application asks the user to enter the register address of which data is needed to
be read. After the execution of function it returns the 4 bytes data available at that particular
location separated by space.

3

DoclD026956 Rev 1

AN4593 Function Description

2.3.5 CR95HFlib_Write_Block

This function writes the data into particular block of Tag memory. This function takes the
block number and the data needed to be written on memory as the input parameter.

Declaration: int CR95HFIlib_Write_Block(int,unsigned char*,unsigned
char®);

Prototype: int iresult;
int WriteAdd;

unsigned char strTagAnswer[50]="",;
unsigned char strBytestowrite[50]="";
iresult = CR95HFIib_Write_Block(WriteAdd,
strTagAnswer,strBytestowrite);

Input parameter: WriteAdd: Address at which data is needed to be written
strBytestowrite: array of unsigned char to store the 4 bytes
of data which is required to be written on memory of Tag

Output parameter: strTagAnswer : The Tag answer if the CR95HF has received
an answer from the Tag in the field; otherwise, an error code
Returned value: iresult:
0: No error

5: CR95HF RF transceiver board not connected
4: Communication error

Example:

Test Application code to validate library function CR95HFIlib_Write Block

void Write_Block()

{
char entry3;
unsigned char strBytestowrite[50]="";
unsigned char strTagAnswer[50]="";
int WriteAdd;

printf ("\n This option will write 4 bytes of data entered by user into
the selected block\n");

printf ("\n") ;

printf ("\n please enter the Block address in hex");
printf("\n");

scanf ("$x", (int*)&WriteAdd) ;

printf ("\n enter first byte \n");
scanf ("%$x", (int*) &strBytestowrite[0]) ;
printf ("\n enter second byte \n");
scanf ("%$x", (int*) &strBytestowrite[1l]);

printf ("\n enter third byte \n");

3

DoclD026956 Rev 1 23/45

Function Description AN4593

scanf ("%$x", (int*) &strBytestowrite[2]);

printf ("\n enter fourth byte \n");

scanf ("%$x", (int*) &strBytestowrite[3]);

printf ("\n");

int r = CR95HFlib_Write_Block (WriteAdd, strTagAnswer,strBytestowrite);

printf("\n --> Library function call : CR95HFlib_Write_Block (WriteAdd,
strTagAnswer, strBytestowrite) \n");

printf ("\n <-- Return from Library function : 0X%x \n",r);

if (r==0)

{
printf ("\n SUCCESS : Data written into the block
successfully\n", strTagAnswer) ;

}

else

{
printf ("\n ERROR : data write on block is failed \n");

printf ("\n Selected Task is completed, To proceed for another task put
your choice");
printf ("\n");

scanf ("%c", &entry3);

3

24/45 DoclD026956 Rev 1

AN4593

Function Description

2.3.6

3

CR95HFlib_FieldOff

This function sends a USB request to the STM32 MCU to switch off the CR95HF RF Field.
The STM32 MCU sends back the answer of the CR95HF, if success, or returns an error
code ‘5’ if there is no answer.

Declaration: Int CR95HFIlib_FieldOff(char™);

Prototype: int iresult;
char strAnswer[50]="";
iresult= CR95HFIib_FieldOff (strAnswer);
Input parameter: None
Output parameter: strAnswer: The CR95HF RF transceiver sends back an
answer and the RF Field is switched off.
Answer example: “0000”
Where:
“00” is the status byte
“00” is the size of the answer

Returned value: result:
0: No error
5: CR95HF RF transceiver board not connected

Example:
Test Application code to validate library function CR95HFIib_FieldOff

void FieldOff ()
{
int iresult;
char strAnswer[50]="";
char entry3;
printf ("\n FieldOff command is sent \n");
iresult= CR95HFlib_FieldOff (strAnswer);

printf("\n --> Library function call : CR95HFD11_FieldOff (strAnswer)
\n") ;

printf ("\n <-- Return from Library function : 0X%x \n",iresult);

if (iresult == 0)

printf ("\n SUCCESS : RF Field Off ok = %s \n", strAnswer) ;
else

printf ("\n ERROR : RF Field Off command error \n", strAnswer) ;

printf ("\n Selected Task is completed, To proceed for another task put
your choice");

printf("\n");

scanf ("%c", &entry3);

DoclD026956 Rev 1 25/45

Function Description

AN4593

2.3.7 CR95HFlib_ResetSPI

This function resets the CR95HF IC in case of a problem. This function only resets the
CR95HF IC and not the STM32 MCU.

Declaration:

Prototype:

Input parameter:

Output parameter:

Returned value:

Example:

int CR95HFIlib_ResetSPI(char*);

int iresult;
char strAnswer[50]="";
iresult = CR95HFIib_ResetSPI(strAnswer);
None
strAnswer: The CR95HF RF transceiver sends back an
answer if the SPI has been correctly reset.
Answer example: “8000”
Where:
“80” is the status byte
“00” is the size of the answer

iresult:
0: No error
5: CR95HF RF transceiver board not connected

Test Application code to validate library function CR95HFIib_ResetSPI

void Reset_SPI ()
{

char strAnswer[50]="";

int iresult;

char entry3;

iresult = CR95HFlib_ResetSPI (strAnswer) ;

printf ("\n Reset_SPI request is sent \n");
printf("\n --> Library function call : CR95HFlib_ResetSPI (strAnswer)

\n") ;

printf ("\n <-- Return from Library function : 0X%x \n",iresult);

if (iresult == 0)

{

printf ("\n SUCCESS:

strAnswer) ;

}

else

{

26/45

Reset SPI successfully,Answer received= %s \n",

3

DoclD026956 Rev 1

AN4593 Function Description

printf ("\n ERROR : Reset SPI failed, No answer received\n");

printf ("\n Selected Task is completed, To proceed for another task put
your choice");

printf("\n");

scanf ("%c", &entry3);

3

DoclD026956 Rev 1 27145

Function Description AN4593

2.3.8

28/45

CR95HFIlib_SendIRQPulse

This function must be used when the CR95HF RF transceiver is configured in SPI mode
(communication between the STM32 MCU and the CR95HF IC). The interrupt pulse is sent
to the CR95HF IRQ pin.

Declaration: int CR95HFIlib_SendIRQPulse(char*);
Prototype: int iresult;

char strAnswer[50]="";

iresult = CR95HFIib_SendIRQPulse(strAnswer);
Input parameter: None

Output parameter: strAnswer: The CR95HF RF transceiver board sends back an
answer if the IRQ

Pulse was correctly sent.

Answer example: “8000”

Where:

“80” is the status byte (see Appendix A for error codes)
“00” is the size of the answer

Returned value: iresult:
0: No error
5: CR95HF RF transceiver board not connected

Example:
Test Application code to validate library function CR95HFIlib_SendIRQPulse

void Send_IRQPulse ()

char strAnswer [50]="";
int iresult;

char entry3;

iresult = CR95HFlib_SendIRQPulse (strAnswer) ;

printf ("\n Send IRQPulse request is sent \n");

printf("\n --> Library function call : CR95HFlib_SendIRQPulse (strAnswer)
\n") ;

printf ("\n <-- Return from Library function : 0X%x \n",iresult);

if (iresult == 0)
{
printf ("\n SUCCESS: Send IRQPulse completed successfully, Answer

received= %$s \n", strAnswer);

}

3

DoclD026956 Rev 1

AN4593 Function Description

else

{
printf ("\n ERROR : Send IRQPulse failed, No answer received\n");

printf ("\n Selected Task is completed, To proceed for another task put
your choice");

printf ("\n") ;

scanf ("%c", &entry3);

3

DoclD026956 Rev 1 29/45

Function Description

AN4593

2.3.9 CR95HFlib_SendNSSPulse

This function sends an interrupt to wake up the CR95HF IC. It can be used when the
CR95HF Demo board is configured in UART mode. The interrupt pulse is sent to the

CR95HF NSS pin.

Declaration:

Prototype:

Input parameter:

Output parameter:

Returned value:

Example:

int CR95HFIlib_SendNSSPulse (char*);

it iresult

char strAnswer[50]="";

iresult = CR95HFIlib_ SendNSSPulse (strAnswer);

None

strAnswer: The CR95HF RF transceiver board sends back
an answer if NSS

Pulse was correctly sent.

Answer example: “8000”

Where:

“80” is the status byte (see Appendix A for error
codes)

“00” is the size of the answer

result:
0: No error
5: CR95HF RF transceiver board not connected

Test Application code to validate library function CR95HFIlib_SendNSSPulse

void Send_NSS_Pulse
{

char strAnswer[50]="";

int iresult;

char entry3;

iresult = CR95HFlib_SendNSSPulse (strAnswer) ;

printf ("\n Request for Send NSS_Pulse \n");

printf("\n --> Library function call : CR95HFlib_SendNSSPulse (strAnswer)

\n") ;

printf ("\n <-- Return from Library function : 0X%x \n",iresult);

if (iresult == 0)

{

printf ("\n SUCCESS:

\n", strAnswer) ;

30/45

Send NSS pulse successfully,Answer received= %s

DocID026956 Rev 1 ‘Yl

AN4593 Function Description

else

{
printf ("\n ERROR : Send NSS Pulse failed, No answer received\n");

printf ("\n Selected Task is completed, To proceed for another task put
your choice");

printf ("\n");

scanf ("%c", &entry3);

3

DoclD026956 Rev 1 31/45

Function Description

AN4593

2.3.10

32/45

CR95HFlib_STCmd

This function is used to send any request to CR95HF IC. The STM32 MCU receives the
frame contained in the request and send it directly to the CR95HF IC. The STM32 MCU
sends back the answer from CR95HF IC to the PC through USB port. The frame has to be
formatted according to the CR95HF datasheet.

This function can be defined as a “Transparent Mode” command.

The CR95HF formatted frame has to be sent through this CR95HFIlib_STCmd function. “01”
is prepend in the frame as the header byte.

Declaration:

Prototype:

Input parameter:

Output parameter:

Returned value:

Example:

int CRO5HFIib_STCmd(char*,char*);

it iresult

char strAnswer[50]="";

char strAnswer[50]="";

iresult = CR95HFIlib_STCmd(strRequest,strAnswer);
strRequest : is the frame which will be directly send to
CR95HF IC. This

frame is prepended by an additional byte “01”
Example:

For select protocol ISO 15693, strRequest will be
“010202010D”

Where:
“01” is the transparent command header byte
“0202010D” is the protocol select frame
“02” is Protocol Select Command
“02” is the request length
“010D” are protocol select parameters
strAnswer: The CR95HF RF transceiver board sends back
an answer
Answer example: “0000”
Where:

“00” is the status byte (see Appendix A for error
codes)

“00” is the size of the answer

iresult:
0: No error
5: CR95HF RF transceiver board not connected

Test Application code to validate library function CR95HFIib_STCmd(char*,char*)

void STCmd_IS015693 ()

{

DoclD026956 Rev 1

3

AN4593

Function Description

3

char strRequest[50]="";
char strAnswer[50]="";
int iresult;

char entry3;

strcpy (strRequest, "010202010D") ;

iresult = CR95HFlib_STCmd (strRequest, strAnswer) ;
printf ("\n IS015693 Protocol select using CR95HFlib_STCmd function \n");

printf("\n --> Library function call
CR95HF1ib_STCmd (strRequest, strAnswer) \n");

printf ("\n <-- Return from Library function : 0X%x \n",iresult);

if (iresult == 0)

{
printf ("\n SUCCESS: IS015693 protocol is selected through STCmd,
Answer received= %s \n", strAnswer) ;

}

else

{

printf ("\n ERROR : IS015693 protocol select through STCmd failed,

Answer received= %s \n", strAnswer) ;

printf ("\n Selected Task is completed, To proceed for another task put
your choice");

printf("\n"); scanf("%c", &entry3);

DoclD026956 Rev 1 33/45

Error codes

AN4593

Appendix A Error codes
Table 2. Error codes
Error code Description
0000 Answer OK
8000 Answer OK
8200 Invalid command length
8300 Invalid protocol
8600 Communication error
8700 Frame wait time out OR no tag
8800 Invalid Start Of Frame
8900 Receive buffer overflow (too many bytes received)
8A00 Framing error (start bit = 0, stop bit = 1)
8B00 EGT time out (for ISOIEC 14443-B)
8C00 Invalid length. Used in Felica, when field length < 3
8D00 CRC error (Used in Felica protocol)
8E00 Reception lost without EOF received
8F00 No field
FDOO Time out - no answer from Tag detected by the CR95HF IC
FEOO Unknown error
34/45 DoclD026956 Rev 1 m

AN4593 TestApp execution screenshot

Appendix B TestApp execution screenshot

Below is the screen shot of TestApp execution to explain how application executes, what are
different options available and how the output will appear on the screen for user.

Figure 3. TestApp USER MENU screen shot

SHFLlib_USBConnect : DEMO-CR95HF-A USB connection <-- TED 1st
SHFLib_MCUVer : get MCU r ision
SHFD11_Echo : send Echo command

end Idn command

f user entered block
data into block

Figure 4. Option “a” TestApp execution

\ USB connection < TED 1st
: get MCU revisien
nd Echo and
send Idn command

95HFLib_ 6§93 Inventory reguest
HFLib_Read_| ; t r entered block
95HFLib_Write Block : write 4 byte da into block
SHFLib_Fieldoff d Field off request
95HFLib_ResetSPI : r t SP1
5HFLib_SendIRQPulse : send IRQ pulse
etInterfacePinstate get interface pin state
endNS5Puls send pulse
15015693 Protocol Se t through sTCmd

our cholice:?

Establishing CR95HR Reader connection through usB

--» Library function call : CR95HFLibUSB_Connect()

=-- Return from Library function : @xe

3

DoclD026956 Rev 1 35/45

TestApp execution screenshot AN4593

Figure 5. Option “b” TestApp execution

onnection < TED 1st

Inventory request
| || d data of user entered block
SHFLib_Write Block : write 4 byte data into block
SHFLib_Fieldoff : send Field Off request
SHF1ib_ResetSPI : 5
S5HFLlib_Send

[alalla

[alaNaNalal

: send N
593 Protocol Select th

Ex
cholce:?
MCU Versic
brary function call : SHFLLbUSB_MCWWer (strAnswer)

Return from Library function :

Figure 6. Option “c” TestApp execution

: DEMO \ USB connection =< TED 1st
SHFLlib_MC : get MCU re

95HFD11_Echo : dE

HFLib_Idn send Id
95HFLib_sel . sele L

ntory request
Read data user entered block
: write 4 byte data into block

etInterfacePins] g ce pln state
endN535Pulse : send NS5 pulse
93 Protocol Se rough STCmd

1
sl aRalalala]

8)
rour cho
Eche command sent to MCU

--= Library function call : SHFlib_Echo (stranswer)

=-- Return from Library function :

3

36/45 DoclD026956 Rev 1

AN4593 TestApp execution screenshot

Figure 7. Option “d” TestApp execution

CRI5HF1ib : DEMO-CR95HF-A USB connection =< TBD 1st
CRO5HFLL C get MCU rewi

SHFLib_Idn
SHFLib_sel i
SHFLlib ndR ive e 50 tory request
CR95HFLib_Read_Block : Read data of user entered block
SHF11b_Write Block : write 4 byte data into block
send Field OFf request
ndIRQPulse : send IRQ pulse
195HFLib_getInterfaceFinState : get interface pin state
Flib_SendN55Pulse : send NS5 pulse
CR95HF1ib_5TCmd : IS015693 Protocol Select through STCmd
Exit
your cholce:?d
IDN command is sent
--= Library function call : C HFlib_Idn (stranswer)
<-- Return from Library function : @X8

: Idn command response = BOOF4E4643204653324A415354320075D2

d Task is completed, To proceed for another task put your choice

Figure 8. Option “e” TestApp execution

< TBD 1st

n oo

Idn command
lect IS015693 prot
L end 15015693 ntory reguest
SHFLLb_Read_Block er entered block
SHFLib_Write Block : write 4 byte data into block
| end Field Off request
!95HFLib_ResetSPI : reset SPI
195HF Lib_SendIRQPuls end IRQ pulse
SHFLib_getInterfacePinState : get interface pin state
ndNSSPulse : send NSS pulse
15015693 Protocol Select through STCmd

o
A e e

O L
" A et

I L
—

@
-l

our choice

retocol selection for future NFC communication:

. k
--» Library function call : CR95HFLlib_Select rRequest ,stréAnswer)

=-- Return from Library function : <]
SUCCE : 15015693 protocol selected : Answer Received=08000

Selected Task iz completed, To proceed for another task put your choice

3

DoclD026956 Rev 1 37/45

TestApp execution screenshot AN4593

Figure 9. Option “f’ TestApp execution

: DEMO-CR95HF-A USB connection =< TBD 1st
E HLU revision

:end 15015 1 1nurnt0rv request
CR95HF1Lib_Read Blnnk Read data of user entered block
CR9SHFLib_Write Block : write 4 byte data into block

CR35HFLib_SendIRQPulse : send IR() pulse

CRI5HF1ib_getInterfacePinState : get interface pin state
> CR25HFLib_SendNSSPulse end NS5 pulse

CRI5HF11ib md : IS015693 Protocol Select through STCmd

Exit

5015695 inventory using CR95HF SendReceive command:

--» Library function call : CR95HFlib_Select(266168 ,

<-- Return from Library function :]
SUCCESS : Tag answer=B0BDOOFF3249932 EGBGFBOE8

Selected Task is completed, To proceed for another task put your choice

Figure 10. Option “r” TestApp execution

95HFlib_UsSBConnect : DEMO-CR L connection <-- TBD 1st

EHFlih_MEUV?r

SHFDL11_Echo

3 protocol
nd IS01 3 Inventory request
: Read data of user entered blo
write 4 byte data into bl

qJHFlib Fleldoff send Fleld Off request

SHFlib_ResetsSPI :
BSHFltb_SEndI

vour choice:

This option will read 4 byte data of the block entered by user

please enter the Block address in hex

12

--> Library function call : CR95HFLib_Read_Block(RegAdd, strTagAnswer)
=-- Return from Library function : @Xe

eceived Tag answer=

fo sf
Selected Task is completed, To proceed for another task put your choice

3

38/45 DoclD026956 Rev 1

AN4593 TestApp execution screenshot

Figure 11. Option “w” TestApp execution

95HFLib_USBConnect : DEMO-CR95HF-A USB connection <-- TBD ist
SHFLib_MCUVer : r n
SHFDL11_Echo :

protocel
1] Inventory request
data of user entered b
SHFLib_Write_Block : te data into block
SHFLlib_Fieldoff send Field Off reque
SHFlib_ResetSPI r t SPI
195HFL1b_sSendIRQPulse : send IR(Q pulse
SHFLib_getInterfacePinState get interface pin state
d N55 pulse
156;3 Protocol Select through STCmd

yvour choice:?w
This option will write 4 bytes of data entered by user into the selected block
nter the Block address in hex
first byte
second byte

third byte

enter fourth byte
F&

==> Library function call : CR95HFLib_Write_Block(WriteAdd, strTa ,Streytestowrite)
Return from Library function :
: Data written into the block successfully

Selected Ta s completed, To proceed for another task put your choice

3

DoclD026956 Rev 1 39/45

TestApp execution screenshot AN4593

Figure 12. Option “r”’ TestApp execution after write

CRO5HFLib_USBConnect : DEMO- S5HF-A USB connection =-- TBD 1st
95HFLib_MCUVer : get MCU
S5HFD1L_Echo send Echo c

33 protocol
send 15015693 Inventory request
: Read data of user entered bl
CR data intk block
CR95HFLib_Fieldoff send Field Off request
CRO5HFLib_ResetSPI
CRI5HFLib_SendIRQFu
se
Protocol lect through STCmd

get interface pin state

This option will read 4 byte data of the block entered by user

please enter the Block address im hex
2
--= Library function call : CR95HFLlib_Read_Block(RegAdd, strTagAnsw

<-- Return from Library function : axeé

=
n
n]
m

ceived Tag answer=

oo

elected Task is completed, To proceed for another task put your choice

Figure 13. Option “g” TestApp execution

MO-CR95HF-A USB connectlion <-- TBD 1st
get MCU r i

: write 4 byte data into block
CR95HFLib_Fieldoff : send Field Off request
CR95HF1ib_ResetsSPI : r
etInterfacePinState :
ndN5SPulse : send M
CR95HF1ib_STCmd : IS015693 Protocol Select through STCmd

Exit

your choice:?g

Fieldoff command is sent

--> Library function call : SHFDLL_Fieldoff(strAnswer)
<-- Return from Library function : 8X@

SUCCESS : RF Field Off ok = 6600

Selected Task is completed, To proceed for another task put your choice

3

40/45 DoclD026956 Rev 1

AN4593 TestApp execution screenshot

Figure 14. Option “h” TestApp execution

\ USB connection <-- TBD 1st

send Idn command
lect 15015693 p
= send 15015693 In tory request
> CR95HFlib_Read_Block : Read data of user entered block

5HFLlib_Write_Blo write 4 byte data into block

SHFLib_Fieldoff : send Field Off reguest
195HFLib_Re - et SPI

Flib_sendI send IRQ pulse

t95HFLib_getInterfacePinState : get interface pin state

SHFLib_STCmd : 69 [L Se t through STCmd
-> Exit
your cholce:?h
Reset_SPI request is sent
--» Library function call : SHFLib_ResetSPI(strAnswe
<-- Return from Library function : @X@
Reset 5PI successfully,Answer received= 8

Selected Task is completed, To proceed for another task put your choice

Figure 15. Option “i” TestApp execution

¢t : DEMO-CR95HF-A USB connectien <-- TBD 1st
CRO5HFLib_MC get MCU r ion
CR95HFD11_Echo : nd Echo command
5HFLlib_Idn : send Idn command
SHFLLb_Sele : select IS015693 pro
cel send 15015693 Inventory request
_| _Block : Read data of user entered block
R95HF1ib_Write Block : write 4 byte data into block
SHFLib_Fieldoff end Field Off request
SHFlib_ResetSPI : r t SPI
Flib_SendIRQPulse : send IRQ pulse
HFLib_getInterfacePins c get interface pin state
SendNSSPulse
t through STCmd

Exit
your cholce:?1i
send IRQPulse request is sent
--> Library function call : CR95HFLlib_SendIRQPulse(strAnswer)

<-- Return from Library function : @

SUCCESS: Send IRQPulse completed successfully,Answer receiw

Selected Task is completed, To proceed for another task put vour choice

3

DoclD026956 Rev 1 41/45

TestApp execution screenshot AN4593

Figure 16. Option “j” TestApp execution

5 | = 195HF-A USB connection <-- TBD 1st

SHF Lib_Mcu : get MCU rewision

SHFD11_Echo Echo command

SHFLib_Idn send Idn command

' t IS015693 pr
send IS015 In tory request
: Read data of user entered block
te data into block

CRO5HFLib_Fieldoff ¢ f request
CR9SHFLib_ResetSPI :

SHFLib_SendI and IRQ pulse

SHFlib_getInterfacePinState : get interfac in state

ndN55Pulse :

CROSHF1ib_STCmd : 0 ol S t through STCmd

Exit
our cholc
Request for getInterfacePinstate is sent
--= Library function call : 5HF1ib_getInterfacePinState rAnswer)
Return from Library function : oxe
sfully,Answer received= 886181
Communicatien is in SPI mode

Selected Task is completed, To proceed for another task put your choice

Figure 17. Option “k” TestApp execution

TBD 1st
ision
send Echo command
send Idn command
elect IS015693 protocol
: send IS015693 Inventory requ
: Read data of user entered bl
: write 4 byte data into bloc
send Field Off request
H eset SPI
endIRQPulse send IRQ pulse
_getInterfacePinState : get interface pin state
endhNS5Pulse send puls
_5TCmd : I5015693 Protocol Select through STCmd

Request for Send NSS_

--> Library function call : LRQSHFLib_SEHdNSSPﬁLsefstrAnswer}

<-- Return from Library function : axe
SUCCE Send NS5 pulse successfully,Answer received= 8888

selected Task is completed, To proceed for another task put your choice

3

42/45 DoclD026956 Rev 1

AN4593 TestApp execution screenshot

Figure 18. Option “I” TestApp execution

connection <-- TBD 1st
revision
ommand
send Idn command
elect IS0 protocol
e : send 15015693 Inventory request
CR35HFLib_Read_Block : Read data of user entered block
SHFlib_Write_Block : write 4 byte data into block
send Fleld Off reque
r t SPI
B QPulse : send IRQ pulse
195HFLib_getInterfacePinState : get interface pin
195HFLib_SendNS5Puls send N55 pulse
SHFLib_STCmd : I 1 Select through

lour cheice:?1

I5015693 Protocol select using CRO95HFLib_STCmd function

--= Library function call : CR95HFLib_STCmd{strRequest,strAnswer)
Return from Library function : 8X8

393 protocol is selected through STCmd, Answer received= 8086

Selected Task is completed, To proceed for another task put your choice

S74

DoclD026956 Rev 1 43/45

Revision history

AN4593

3

44/45

Revision history

Table 3. Document revision history

Date

Revision

Changes

14-Apr-2015

1

Initial release.

DoclD026956 Rev 1

3

AN4593

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics — All rights reserved

3

DoclD026956 Rev 1 45/45

	Table 1. Applicable tools and software
	1 Getting started
	1.1 Connecting the board to your computer
	1.2 Using the Linux Library
	Pre-Requisite:
	1.2.1 Library creation:
	1.2.2 Test application compilation and execution:
	Example:

	2 Function Description
	List of Library functions are:
	2.1 Functions to check USB connection
	2.1.1 CR95HFlib_USBConnect
	Example:

	2.2 Functions to communicate with the STM32 MCU
	2.2.1 CR5HFlib_Echo
	2.2.2 CR95HFlib_MCUrev
	Example:

	2.2.3 CR95HFlib_getInterfacePinState
	Example:

	2.3 Functions to communicate with the CR95HF IC
	2.3.1 CR95HFlib_Idn
	Example:

	2.3.2 CR95HFlib_Select
	Example:

	2.3.3 CR95HFlib_SendReceive
	Example:

	2.3.4 CR95HFlib_Read_Block
	Example:

	2.3.5 CR95HFlib_Write_Block
	Example:

	2.3.6 CR95HFlib_FieldOff
	Example:

	2.3.7 CR95HFlib_ResetSPI
	Example:

	2.3.8 CR95HFlib_SendIRQPulse
	Example:

	2.3.9 CR95HFlib_SendNSSPulse
	Example:

	2.3.10 CR95HFlib_STCmd
	Example:

	Appendix A Error codes
	Table 2. Error codes

	Appendix B TestApp execution screenshot
	3 Revision history
	Table 3. Document revision history

