

ПРОТОН-ЭЛЕКТРОТЕКС

Низкие динамические потери Разветвленный управляющий электрод для высоких скоростей нарастания тока

Быстродействующий Тиристор Тип ТБ173-1600-28

Средний прямой ток			I _{TAV}	4V 1600 A			
Повторяющееся импульсное напряжение в закрытом состоянии			U _{DRM}		20002800 B		
Повторяющееся импульсное обратное напряжение			U _{RRM}				
Время выключения	Время выключения				50.0, 63.0 мкс		
U _{DRM} , U _{RRM} , B	2000	220	0	240	0	2600	2800
Класс по напряжению	20	22	. 24			26	28
T _j , °C	-60+125						

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

Обозначение и наименование параметра			Значение	Условия измерения		
Параметр	ы в проводящем состоянии					
I_{TAV}	Средний ток в открытом состоянии	A	1600 2060 3029	T_c =96 °C; двухстороннее охлаждение T_c =85 °C; двухстороннее охлаждение T_c =55 °C; двухстороннее охлаждение 180 эл. град. синус; 50 Гц		
I_{TRMS}	Действующий ток в открытом состоянии	А	2512	T _c =96 °C; двухстороннее охлаждение; 180 эл. град. синус; 50 Гц		
I _{TSM}	Ударный ток в открытом состоянии	кА	40.0 46.0	$t_p=10$ мс; единичный импульс; $t_p=10$ мс; единичный импульс; $t_p=0$ В; $t_p=25$ °C Импульс управления: $t_g=1_{FGM}$; $t_g=20$ В; $t_{GP}=50$ мкс; $t_{GG}=1$ А/мкс		
		KA	42.0 48.0	$T_{j}=T_{jmax}$ $T_{j}=25~^{\circ}C$ $I_{g}=1.5~^{\circ}C$		
	Защитный фактор	A ² c·10 ³	8000 10500	$T_{j}=T_{jmax}$ $T_{j}=25~^{\circ}C$ $I_{g}=I_{FGM}; U_{g}=20~B; U_{g}=20~B; U_{g}=50~MKC; di_{g}/dt=1~A/MKC$		
I²t			7300 9500	$T_{j}=T_{jmax}$ 180 эл. град. синус; $t_{p}=8.3$ мс; единичный импульс; $U_{D}=U_{R}=0$ В; Импульс управления: $I_{G}=I_{FGM};\;U_{G}=20$ В; $t_{GP}=50$ мкс; $d_{G}/dt=1$ А/мкс		

Блокирук	ощие параметры			
U _{DRM} , U _{RRM}	Повторяющееся импульсное обратное напряжение и повторяющееся импульсное напряжение в закрытом состоянии	В	20002800	$T_{j\text{min}} < T_{j} < T_{j\text{max}};$ 180 эл. град. синус; 50 Гц; управление разомкнуто
U _{DSM} , U _{RSM}	Неповторяющееся импульсное обратное напряжение и неповторяющееся импульсное напряжение в закрытом состоянии	В	21002900	$T_{j\text{min}} < T_{j} < T_{j\text{max}};$ 180 эл. град. синус; единичный импульс; управление разомкнуто
U_D , U_R	Постоянное обратное и постоянное прямое напряжение	В	0.6 [·] U _{DRM} 0.6 [·] U _{RRM}	$T_{j}=T_{j max};$ управление разомкнуто
Параметр	ы управления			
I_{FGM}	Максимальный прямой ток управления	А	10	T_T
U _{RGM}	Максимальное обратное напряжение управления	В	5	$T_j = T_{j \text{ max}}$
P_{G}	Максимальная рассеиваемая мощность по управлению	Вт	8	Т _j =Т _{j max} для постоянного тока управления
Параметр	ы переключения			
(di _T /dt) _{crit}	Критическая скорость нарастания тока в открытом состоянии (f=1 Hz)	А/мкс	2500	$T_j = T_{j \text{ max}}$; $U_D = 0.67 \cdot U_{DRM}$; $I_{TM} = 5800 \text{ A}$; Импульс управления: $I_G = 2 \text{ A}$; $U_G = 20 \text{ B}$; $t_{GP} = 50 \text{ мкc}$; $di_G/dt = 2 \text{ A/MKC}$
Тепловые	е параметры			
T _{stg}	Температура хранения	°C	-60+50	
T _j	Температура р-п перехода	°C	-60+125	
Механиче	ские параметры		•	
F	Монтажное усилие	кН	40.050.0	
a	Ускорение	M/C ²	50	В зажатом состоянии

ХАРАКТЕРИСТИКИ

Обозначе	ние и наименование характеристики	Ед. изм.	Значение	Условия измерения
Характери	стики в проводящем состоянии			
U _™ Импульсное напряжение в открытом состоянии, макс		В	2.26	T _j =25 °C; I _{TM} =5024 A
U _{T(TO)}	Пороговое напряжение, макс	В	1.360	T _j =T _{j max} ;
r _T	Динамическое сопротивление в открытом состоянии, макс	мОм	0.183	$0.5 \pi I_{TAV} < I_{T} < 1.5 \pi I_{TAV}$
I _H	Ток удержания, макс	мА	1000	T _j =25 °C; U _D =12 B; управление разомкнуто
Блокирую	щие характеристики			
I_{DRM} , I_{RRM}	Повторяющийся импульсный обратный ток и повторяющийся импульсный ток в закрытом состоянии, макс	мА	300	$T_j=T_{j max}$; $U_D=U_{DRM}$; $U_R=U_{RRM}$
(du _D /dt) _{crit}	Критическая скорость нарастания напряжения в закрытом состоянии ¹⁾ , мин	В/мкс	200, 320, 500, 1000, 1600, 2000, 2500	$T_{j} = T_{j \text{ max}};$ $U_{D} = 0.67 \cdot U_{DRM};$ управление разомкнуто

Характе	ристики управления						
U_GT	Отпирающее постоянное напряжение управления, макс	В	3.00 3.00 1.50	li li may		B; I _D =3 A;	
I _{GT}	Отпирающий постоянный ток управления, макс	мА	500 300 150	T T	постоя управл	нный ток ения	
J_GD	Неотпирающее постоянное напряжение управления, мин	В	0.35	$T_{j}=T_{j max};$ $U_{D}=0.67\cdot U_{DRM}$			
\mathbf{I}_{GD}	Неотпирающий постоянный ток управления, мин	мА	70.00	Постоянный		оавления	
Динами	ческие характеристики						
-gd	Время задержки включения, макс	мкс	1.05	T _j =25 °C; U _D =	=1500 l	B; I _{TM} =I _{TAV} ;	
t_{gt}	Время включения ²⁾ , макс	МКС	2.50, 3.20, 4.00, 6.30	Импульс упр	/dt=200 A/мкс; ипульс управления: I _G =2 A; U _G =20 E _P =50 мкс; di _G /dt=2 A/мкс		
_	Page 30 100 100 100 100 100 100 100 100 100		50.0, 63.0	du _D /dt=50 B/	$T_{j}=T_{j \text{ max}}; I_{j}=T_{j \text{ max}}; I_{j}=$		
t _q	Время выключения ³⁾ , макс	МКС	63.0, 80.0	$du_D/dt=200 \ B/мкс;$ $U_R=100 \ B;$ $U_D=0.67U_{DRM}$		U _R =100 B;	
Qrr	Заряд обратного восстановления, макс	мкКл	1550	T_T	1500 A.		
- -rr	Время обратного восстановления, макс	мкс	10.0	$T_j=T_{j \text{ max}}; I_{TM}=$ $di_R/dt=-50 \text{ A/}$ $U_R=100 \text{ B}$			
I_{rrM}	Ток обратного восстановления, макс	A	310	0k-100 B	U _R =100 B		
Геплові	ые характеристики			1			
R thjc			0.0085		1	ихстороннее аждение	
R _{thjc-A}	Тепловое сопротивление p-n переход-корпус, макс	°С/Вт	0.0187	Постоянный ток		паждение со роны анода	
$R_{ ext{thjc-K}}$			0.0153		- 1	паждение со роны катода	
R_{thck}	Тепловое сопротивление корпус- охладитель, макс	°С/Вт	0.0020	Постоянный	ток		
Механи	ческие характеристики						
W	Масса, макс	Г	1210				
D _s	Длина пути тока утечки по поверхности	мм (дюйм)	27.37 (1.077)				
Da	Длина пути тока утечки по воздуху	мм (дюйм)	16.00 (0.629)				

МАРКИРОВКАТЕ 172 1600

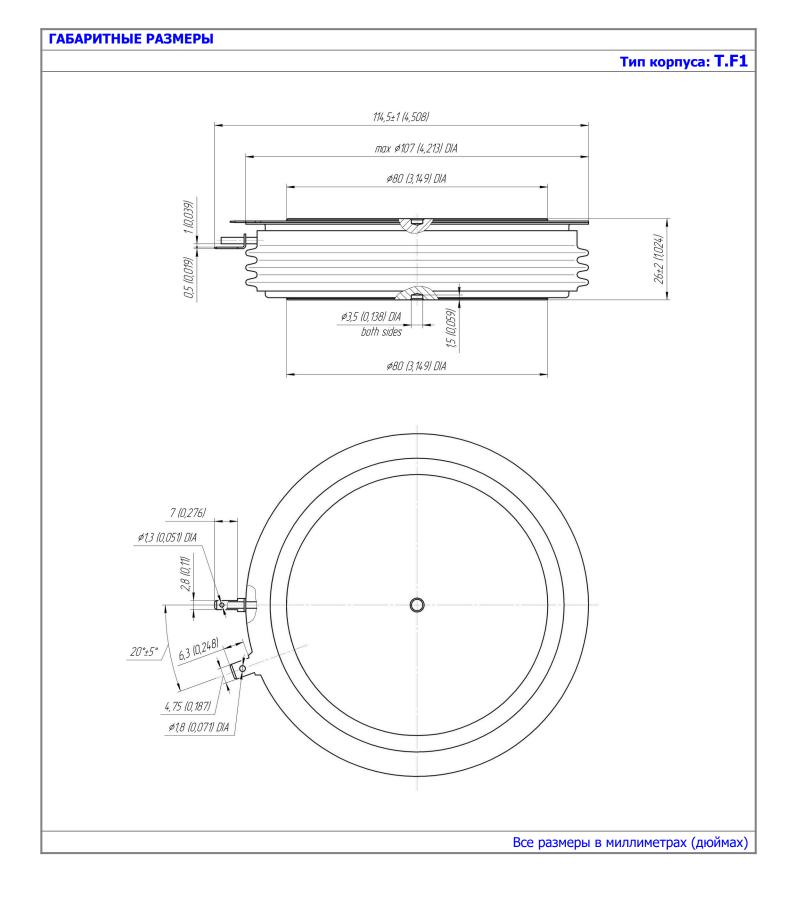
 ТБ
 173
 1600
 28
 A2
 C3
 C4
 УХЛ2

 1
 2
 3
 4
 5
 6
 7
 8

- 1. Быстродействующий тиристор
- 2. Конструктивное исполнение
- 3. Средний ток в открытом состоянии, А
- 4. Класс по напряжению
- 5. Критическая скорость нарастания напряжения в закрытом состоянии
- 6. Группа по времени выключения ($du_D/dt=50\ B/мкс$)
- 7. Группа по времени включения
- 8. Климатическое исполнение по ГОСТ 15150: УХЛ2, Т2

ПРИМЕЧАНИЕ

¹⁾ Критическая скорость нарастания напряжения в закрытом состоянии


Обозначение	D2	K2	F2	A2	T1	P1	M1
группы	12	IXZ	LZ	72	11	' 1	1.17
(du _D /dt) _{crit} , В/мкс	200	320	500	1000	1600	2000	2500

²⁾ Время включения

Обозначение группы	M4	K4	H4	C4
t _{at} , MKC	2.50	3.20	4.00	6.30

 $^{3)}$ Время выключения (du_D/dt=50 B/мкс)

Обозначение группы	E3	C3
t _q , мкс	50.0	63.0

Содержащаяся здесь информация является конфиденциальной и находится под защитой авторских прав. В интересах улучшения качества продукции, АО «Протон-Электротекс» оставляет за собой право изменять информационные листы без уведомления.

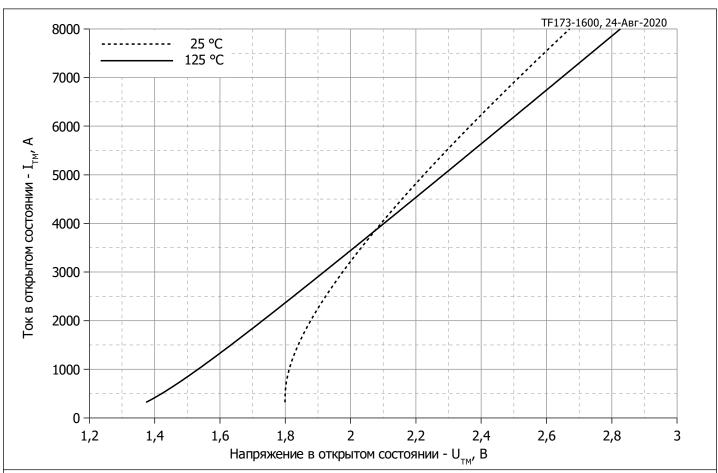


Рис. 1 — Вольт — амперная характеристика в открытом состоянии

Аналитическая функция вольт — амперной характеристики в открытом состоянии:

$$V_{\scriptscriptstyle T} = A + B \cdot i_{\scriptscriptstyle T} + C \cdot \ln(i_{\scriptscriptstyle T} + 1) + D \cdot \sqrt{i_{\scriptscriptstyle T}}$$

	Коэффициенті	Коэффициенты для графика							
	$T_j = 25^{\circ}C$ $T_j = T_{j \text{ max}}$								
Α	1.52483235	1.07652723							
В	0.00025571	0.00018018							
С	0.09370403	0.04475356							
D	-0.01947386	-0.00104796							

Модель вольт – амперной характеристики в открытом состоянии (см. Рис. 1)

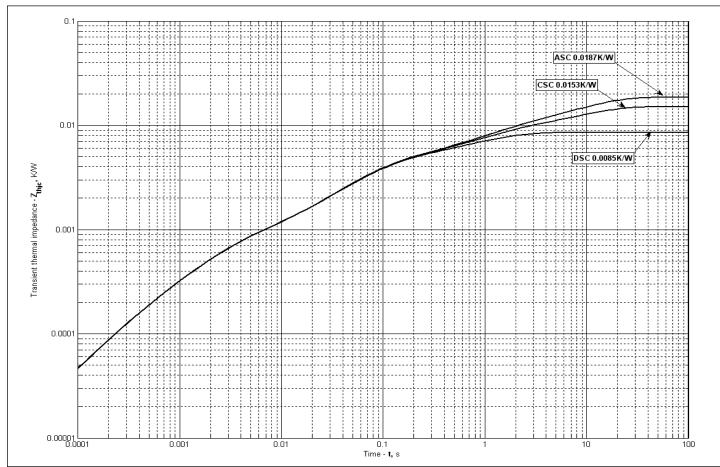


Рис. 2 — Переходное тепловое сопротивление

Аналитическая зависимость переходного теплового сопротивления переход — корпус:

$$Z_{thjc} = \sum_{i=1}^{n} R_i \left(1 - e^{-\frac{t}{\tau_i}} \right)$$

Где i = 1 to n, n — число суммирующихся элементов.

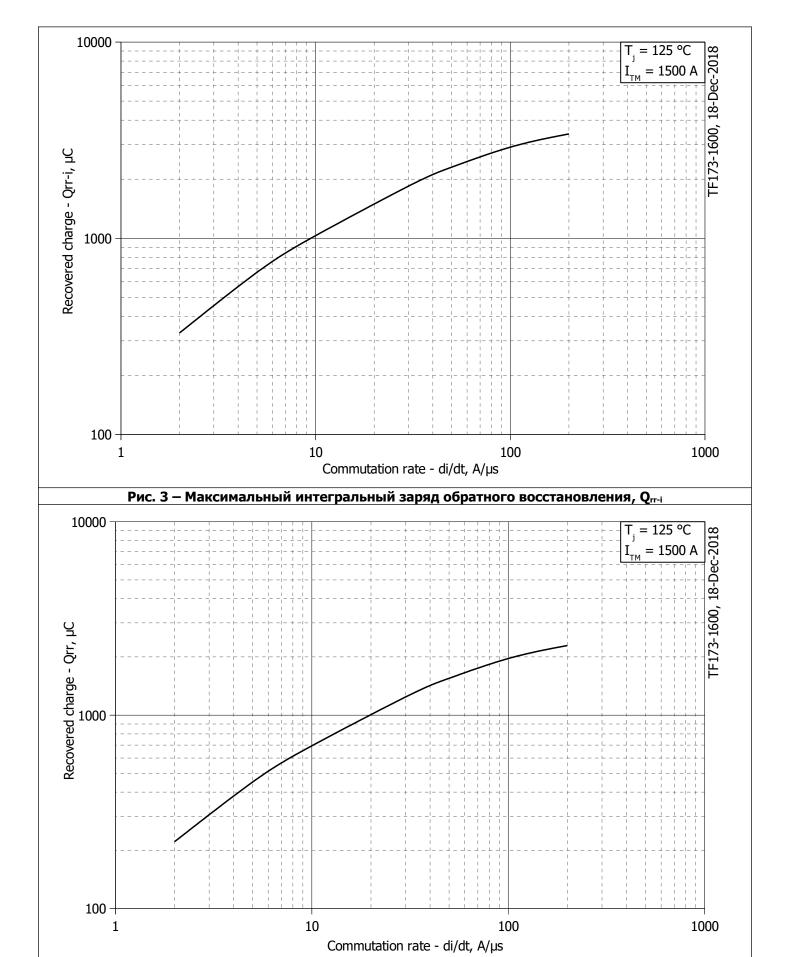
t = продолжительность импульсного нагрева в секундах.

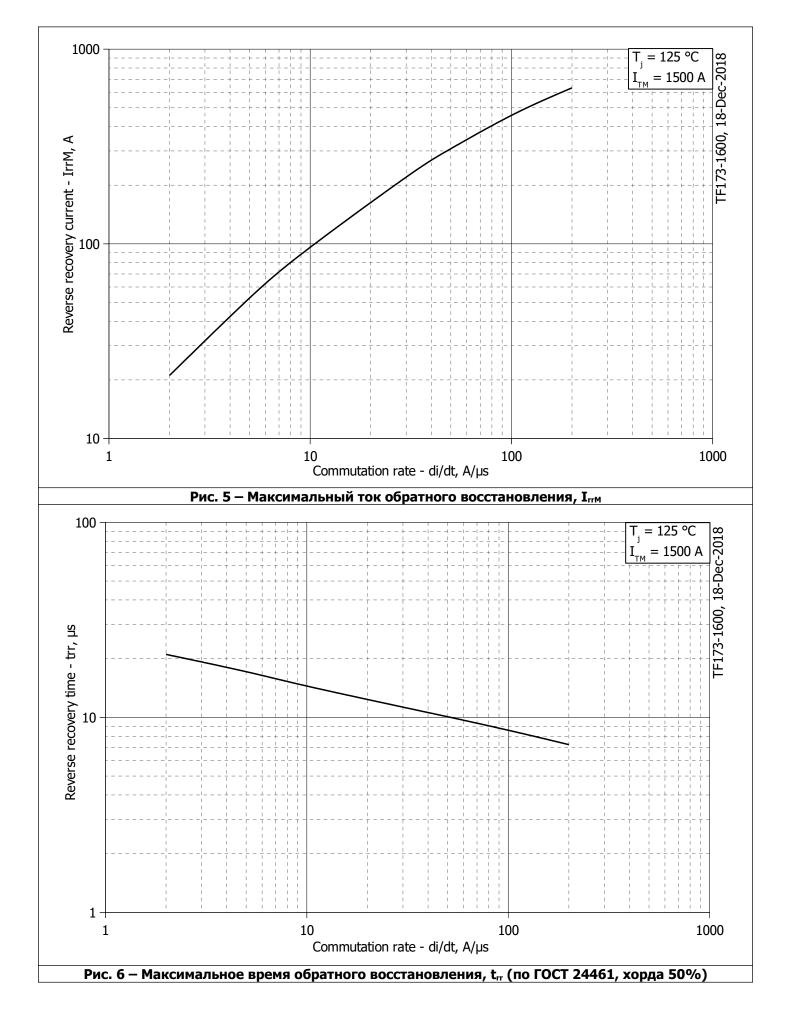
 \mathbf{Z}_{thjc} = Тепловое сопротивление за время t.

 ${\bf R}_{{\bf i},\, {f au}_{{f i}}} = {\it pac}$ четные коэффициенты, приведенные в таблице.

Постоянный ток, двустороннее охлаждение

-	1	2	3	4	5	6
R _i , K/W	0.00007989	0.002973	0.0005936	0.000846	0.00005975	0.003948
τ _i , S	1.688	0.06219	0.002329	0.138	0.0003243	0.9533


Постоянный ток, охлаждение со стороны анода


i	1	2	3	4	5	6
R _i , K/W	0.01013	0.004062	0.0009401	0.002853	0.0005963	0.00005641
τ _{i,} S	9.747	1.058	0.1304	0.06179	0.002313	0.0003013

Постоянный ток, охлаждение со стороны катода

i	1	2	3	4	5	6
R _i , K/W	0.006619	0.004034	0.0008595	0.002956	0.0005965	0.00005689
τ _i , S	9.744	1.025	0.1394	0.06237	0.002318	0.0003037

Модель переходного теплового сопротивления переход - корпус (см. Рис. 2)

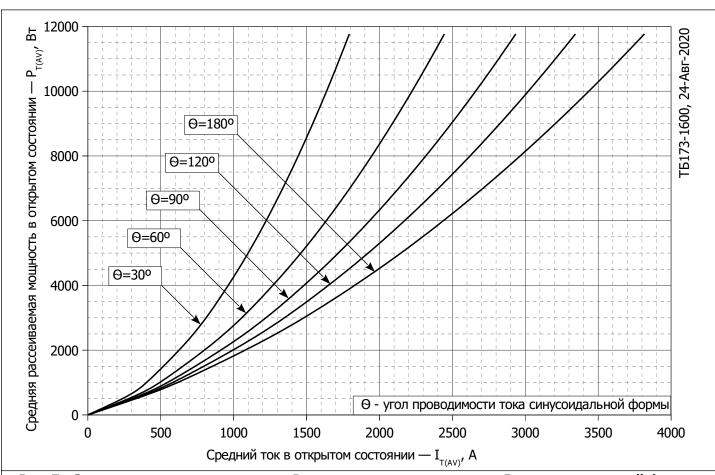


Рис. 7 - Зависимость потерь мощности P_{TAV} от среднего прямого тока I_{TAV} синусоидальной формы при различных углах проводимости (f=50 Гц, двустороннее охлаждение)

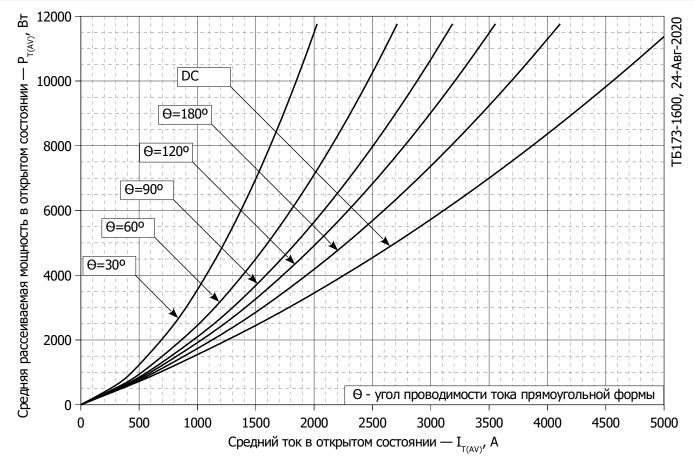


Рис. 8 — Зависимость потерь мощности P_{TAV} от среднего прямого тока I_{TAV} прямоугольной формы при различных углах проводимости (f=50 Гц, двустороннее охлаждение)

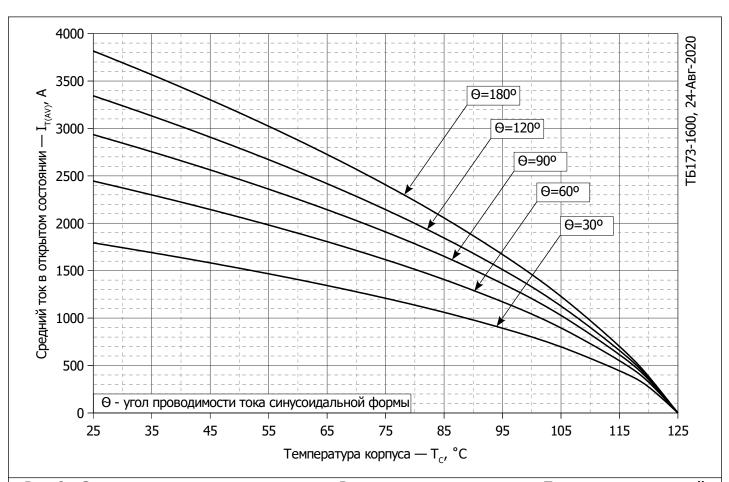


Рис. 9 — Зависимость среднего прямого тока I_{TAV} от температуры корпуса T_c для синусоидальной формы тока при различных углах проводимости (f=50 Γ ц, Двустороннее охлаждение)

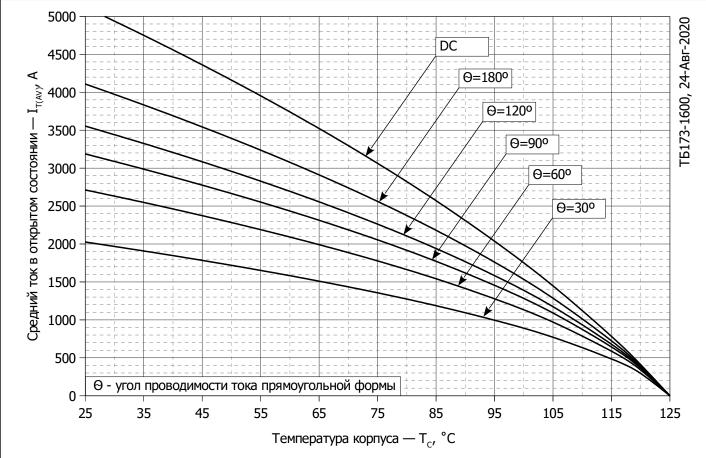
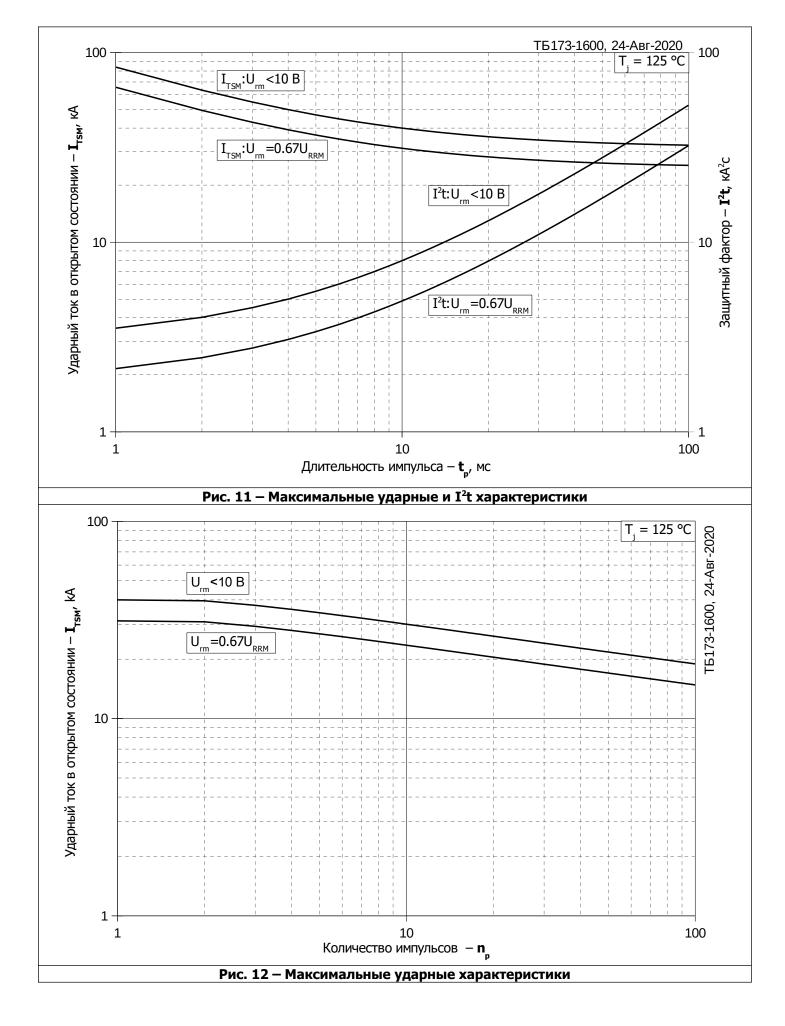



Рис. 10 - Зависимость среднего прямого тока I_{TAV} от температуры корпуса T_c для прямоугольной формы тока при различных углах проводимости (f=50 Γ ц, Двустороннее охлаждение)

