ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

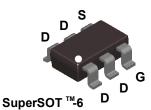
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

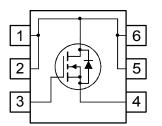
ON Semiconductor[®]

FDC3612 100V N-Channel PowerTrench[®] MOSFET

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $R_{DS(ON)}$ and fast switching speed.


Applications


DC/DC converter

Features

FDC3612

- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- Low gate charge (14nC typ)
- High power and current handling capability
- Fast switching speed

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage			100	V
V _{GSS}	Gate-Source	e Voltage		± 20	V
I _D	Drain Curre	nt – Continuous	(Note 1a)	2.6	A
		 Pulsed 		20	
E _{AS}	Single Pulse	e Avalanche Energy	(Note 3)	37 m	
P _D	Maximum Power Dissipation		(Note 1a)	1.6	W
			(Note 1b)	0.8	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			–55 to +150	
Therma R _{0JA}		teristics	Ambient (Note 1a)	78	°C/W
R _{ejc}	Thermal Resistance, Junction-to-Case		· · ·	30	°C/W
Packag		g and Orderin	g Information		
Device Marking		Device	Reel Size	Tape width	Quantity
.362		FDC3612	7"	8mm	3000 units

©2012 Semiconductor Components Industries, LLC. October-2017, Rev. 2

Units Min T J Λ /[/] /⁰C Α Α Α Α //⁰C

FDC3612

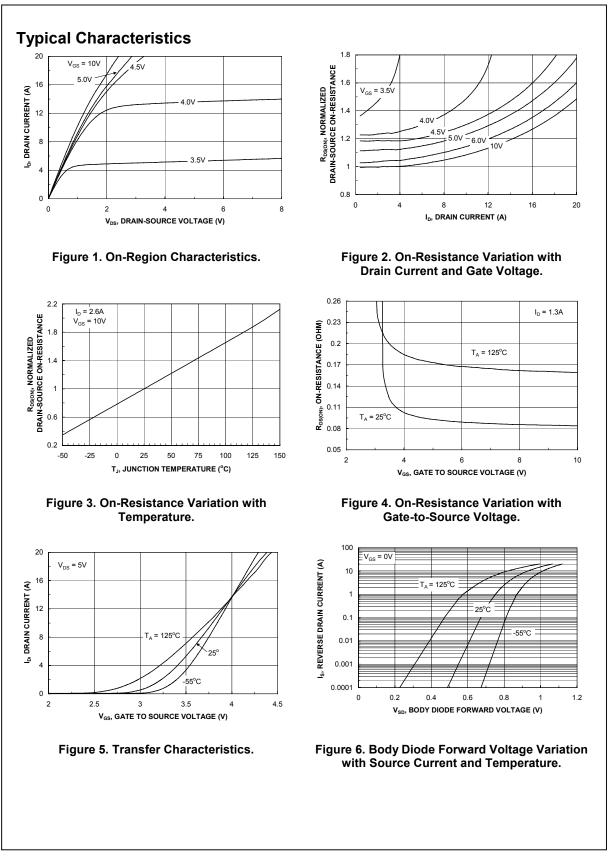
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-Sc	Durce Avalanche Ratings (Note	2)			l	
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, V_{DD} = 50 V, I_D =2.6 A			90	mJ
I _{AR}	Drain-Source Avalanche Current				2.6	Α
Off Char	racteristics					
3V _{DSS} Drain–Source Breakdown Voltage		V _{GS} = 0 V, I _D = 250 μA	100			V
$\Delta BV_{DSS} \Delta T_J$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		99		mV/°C
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			10	μA
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate–Body Leakage, Reverse	$V_{GS} = -20 V, V_{DS} = 0 V$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	2	2.3	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		- 6		mV/°C
R _{DS(on)}	Static Drain–Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 2.6 \text{ A} \\ V_{GS} = 6.0 \text{ V}, I_D = 2.5 \text{ A} \\ V_{GS} = 10 \text{ V}, I_D = 2.6 \text{ A}; T_J = 125^{\circ}\text{C}$		86 91 157	125 135 240	mΩ
I _{D(on)}	On-State Drain Current	V _{GS} = 10 V, V _{DS} = 5 V	10			Α
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 2.6 \text{ A}$		10		S
Dvnamio	c Characteristics					
Ciss	Input Capacitance	$V_{DS} = 50 V$, $V_{GS} = 0 V$,		660		pF
C _{iss} C _{oss}	Input Capacitance Output Capacitance	V _{DS} = 50 V, V _{GS} = 0 V, f = 1.0 MHz		660 55		pF pF
	· · ·					•
Coss	Output Capacitance		0.1	55	3.0	pF
C _{oss} C _{rss} R _g	Output Capacitance Reverse Transfer Capacitance Gate Resistance		0.1	55 40	3.0	pF pF
C _{oss} C _{rss} R _g Switchir	Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics (Note 2)	f = 1.0 MHz	0.1	55 40	3.0	pF pF
C _{oss} C _{rss} R _g Switchir t _{d(on)}	Output Capacitance Reverse Transfer Capacitance Gate Resistance		0.1	55 40 1.4	- <u> </u>	pF pF Ω
Coss Crss Rg Switchir t _{d(on)} tr	Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics (Note 2) Turn–On Delay Time	f = 1.0 MHz V _{DD} = 50 V, I _D = 1 A,	0.1	55 40 1.4 6	11	pF pF Ω ns
C _{oss} C _{rss} R _g Switchir t _{d(on)}	Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time	f = 1.0 MHz V _{DD} = 50 V, I _D = 1 A,	0.1	55 40 1.4 6 3.5	11 7	pF pF Ω ns
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switchir} \\ \hline t_{d(on)} \\ \hline t_r \\ \hline t_{d(off)} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time	f = 1.0 MHz V _{DD} = 50 V, I _D = 1 A,	0.1	55 40 1.4 6 3.5 23	11 7 37	pF pF Ω ns ns
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switchir} \\ t_{d(on)} \\ \hline t_r \\ t_{d(off)} \\ \hline t_r \\ t_f \\ \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time	f = 1.0 MHz V_{DD} = 50 V, I_D = 1 A, V_{GS} = 10 V, R_{GEN} = 6 Ω	0.1	55 40 1.4 6 3.5 23 3.7	11 7 37 7.4	pF pF Ω ns ns ns ns
$\begin{array}{c} \hline C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switchir} \\ \hline \textbf{t}_{d(on)} \\ \hline t_r \\ \hline t_{d(off)} \\ \hline t_r \\ \hline q_g \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time Total Gate Charge	f = 1.0 MHz $V_{DD} = 50 V$, $I_D = 1 A$, $V_{GS} = 10 V$, $R_{GEN} = 6 Ω$ $V_{DS} = 50 V$, $I_D = 2.6 A$,	0.1	55 40 1.4 6 3.5 23 3.7 14	11 7 37 7.4	pF pF Ω ns ns ns nc
Coss Crss Rg Switchir td(on) tr td(off) tf Qg Qgs Qgd	Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time Total Gate Charge Gate–Source Charge Gate–Drain Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 50 \text{ V}, \qquad I_D = 1 \text{ A},$ $V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$ $V_{DS} = 50 \text{ V}, \qquad I_D = 2.6 \text{ A},$ $V_{GS} = 10 \text{ V}$	0.1	55 40 1.4 6 3.5 23 3.7 14 2.3	11 7 37 7.4	pF pF Ω ns ns ns nC nC
Coss Crss Rg Switchir t _{d(on)} tr t _{d(off)} t _f Qg Qgd Drain–So	Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time Total Gate Charge Gate–Source Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 50 \text{ V}, \qquad I_D = 1 \text{ A},$ $V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$ $V_{DS} = 50 \text{ V}, \qquad I_D = 2.6 \text{ A},$ $V_{GS} = 10 \text{ V}$ and Maximum Ratings	0.1	55 40 1.4 6 3.5 23 3.7 14 2.3	11 7 37 7.4	pF pF Ω ns ns ns nC nC
Coss Crss Rg Switchir td(on) tr td(off) tf Qg Qgs Qgd	Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics Maximum Continuous Drain-Source Drain-Source Diode Forward	$f = 1.0 \text{ MHz}$ $V_{DD} = 50 \text{ V}, \qquad I_D = 1 \text{ A},$ $V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$ $V_{DS} = 50 \text{ V}, \qquad I_D = 2.6 \text{ A},$ $V_{GS} = 10 \text{ V}$ and Maximum Ratings	0.1	55 40 1.4 6 3.5 23 3.7 14 2.3	11 7 37 7.4 20	pF pF Ω ns ns ns nC nC nC
Coss Crss Rg Switchir ta(on) tr tq(off) tr Qg Qgd Drain–So	Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time Total Gate Charge Gate–Source Charge Gate–Drain Charge ource Diode Characteristics Maximum Continuous Drain–Source	$f = 1.0 \text{ MHz}$ $V_{DD} = 50 \text{ V}, I_D = 1 \text{ A},$ $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = 50 \text{ V}, I_D = 2.6 \text{ A},$ $V_{GS} = 10 \text{ V}$ and Maximum Ratings Diode Forward Current	0.1	55 40 1.4 6 3.5 23 3.7 14 2.3 3.6	11 7 37 7.4 20 1.3	pF pF Ω ns ns ns nc nC nC

 $T_A = 25^{\circ}C$ unless otherwise noted

Notes:

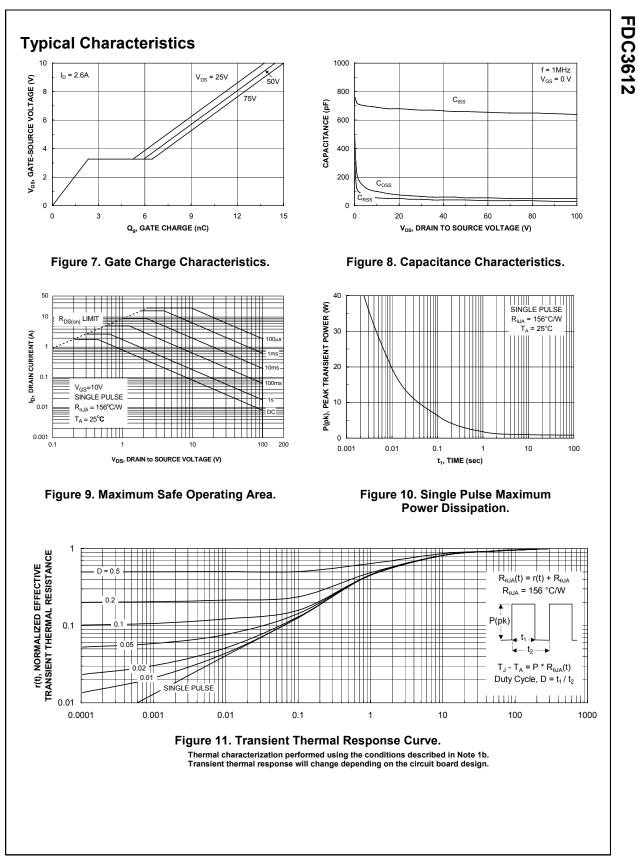
1. R_{0JA} is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $\rm R_{_{\theta JC}}$ is guaranteed by design while $\rm R_{_{\theta CA}}$ is determined by the user's board design.

a. 78° C/W when mounted on a $1in^2$ pad of 2oz copper on FR-4 board.


b. 156°C/W when mounted on a minimum pad.

2. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%

Electrical Characteristics


3. E_{AS} of 37 mJ is based on starting T_J = 25 °C; N-ch: L = 3 mH, I_{AS} = 5 A, V_{DD} = 100 V, V_{GS} = 10 V. 100% test at L = 0.3 mH, I_{AS} = 11 A.

www.onsemi.com 2

FDC3612

www.onsemi.com

www.onsemi.com

4

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi: FDC3612