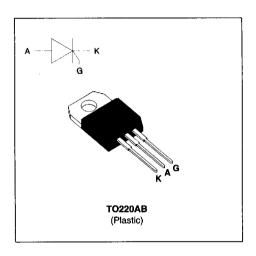


TXN/TYN 0512 ---> TXN/TYN 1012

SCR

FEATURES


- HIGH SURGE CAPABILITY
- HIGH ON-STATE CURRENT
- HIGH STABILITY AND RELIABILITY
- TXN Serie :

INSULATED VOLTAGE = 2500V_(RMS) (UL RECOGNIZED : E81734)

DESCRIPTION

The TYN/TXN 0512 ---> TYN/TXN 1012 Family of Silicon Controlled Rectifiers uses a high performance glass passivated technology.

This general purpose Family of Silicon Controlled Rectifiers is designed for power supplies up to 400Hz on resistive or inductive load.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit		
IT(RMS)	RMS on-state current (180° conduction angle)	TXN TYN	Tc=80°C Tc=90°C	12	А
lT(AV)	Average on-state current (180° conduction angle,single phase circuit)	8	А		
ITSM	Non repetitive surge peak on-state current	tp=8.3 ms	125	A	
	(Tj initial = 25°C)		tp=10 ms	120	
ı2 _t	I ² t value tp=10 ms			72	A ² s
di/dt	Critical rate of rise of on-state current Gate supply: I _G = 100 mA dig/dt = 1 A/μs	100	A/μs		
Tstg Tj	Storage and operating junction temperature ra	- 40 to + 150 - 40 to + 125	°C		
TI	Maximum lead temperature for soldering dur from case	260	°C		

Symbol	Parameter	TYN/TXN						Unit	
		0512	112	212	412	612	812	1012	
V _{DRM} V _{RRM}	Repetitive peak off-state voltage Tj = 125 °C	50	100	200	400	600	800	1000	٧

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit	
Rth (j-a)	Junction to ambient		60	°C/W
Rth (j-c) DC	(j-c) DC Junction to case for DC TXN		3.5	∘c/w
		TYN	2.5	

GATE CHARACTERISTICS (maximum values)

 $P_{G~(AV)} = 1W \quad P_{GM} = 10W~(tp = 20~\mu s) \quad I_{FGM} = 4A~(tp = 20~\mu s) \quad V_{RGM} = ~5~V.$

ELECTRICAL CHARACTERISTICS

Symbol	Test Conditions	Value	Unit		
GT	V _D =12V (DC) R _L =33Ω	Tj=25°C	MAX	15	mA
VGT	V _D =12V (DC) R _L =33Ω	Tj=25°C	MAX	1.5	V
V _{GD}	V _D =V _{DRM} R _L =3.3kΩ	Tj= 125°C	MIN	0.2	V
tgt	VD=VDRM IG = 40mA dlG/dt = 0.5A/µs	Tj=25°C TYP		2	μs
IL	IG= 1.2 IGT	Tj=25°C	TYP	50	mA
lн	I _T = 100mA gate open	Tj=25°C	MAX	30	mA
V _{TM}	ITM= 24A tp= 380µs	Tj=25°C	MAX	1.6	V
DRM	VDRM Rated VRRM Rated	Tj=25°C	MAX	0.01	mA
IRRM		Tj= 125°C		3	
dV/dt	Linear slope up to VD=67%VDRM gate open	Tj= 125°C	MIN	200	V/µs
tq	V _D =67%V _{DRM} _{TM} = 24A V _R = 25V dl _{TM} /dt=30 A/μs dV _D /dt= 50V/μs	Tj= 125°C	TYP	70	μs

Fig.1: Maximum average power dissipation versus average on-state current (TXN).

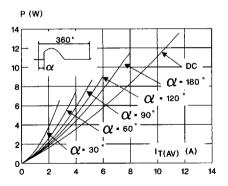


Fig.3: Maximum average power dissipation versus average on-state current (TYN).

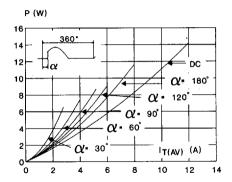


Fig.5 : Average on-state current versus case temperature (TXN).

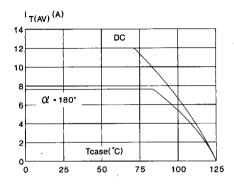


Fig.2: Correlation between maximum average power dissipation and maximum allowable temperatures (Tamb and T_{Case}) for different thermal resistances heatsink + contact (TXN).

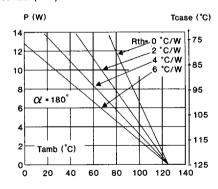


Fig.4: Correlation between maximum average power dissipation and maximum allowable temperatures (T_{amb} and T_{case}) for different thermal resistances heatsink + contact (TYN).

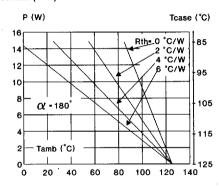


Fig.6 : Average on-state current versus case temperature (TYN).

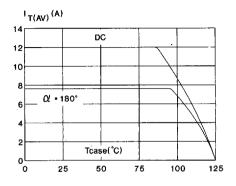


Fig.7: Relative variation of thermal impedance versus pulse duration.

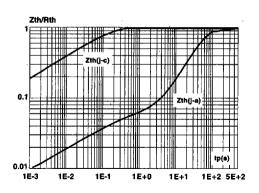


Fig.9: Non repetitive surge peak on-state current versus number of cycles.

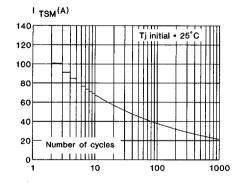


Fig.11: On-state characteristics (maximum values).

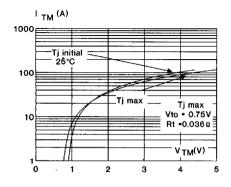


Fig.8: Relative variation of gate trigger current versus iunction temperature.

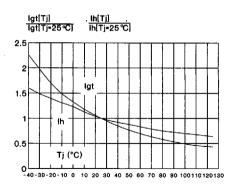
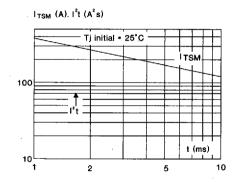
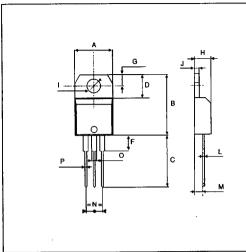




Fig.10: Non repetitive surge peak on-state current for a sinusoidal pulse with width: $t \le 10$ ms, and corresponding value of I^2t .

PACKAGE MECHANICAL DATA

TO220AB Plastic

REF.	DIMENSIONS					
	Millimeters		Inc	hes		
	Min. Max.		Min.	Max.		
Α	10.00	10.40	0.393	0.409		
В	15.20	15.90	0.598	0.625		
С	13.00	14.00	0.511	0.551		
D	6.20	6.60	0.244	0.259		
F	3,50	4.20	0.137	0.165		
G	2.65	2.95	0.104	0.116		
Н	4.40	4.60	0.173	0.181		
1	3.75	3.85	0.147	0.151		
j	1.23	1.32	0.048	0.051		
L	0.49	0.70	0.019	0.027		
М	2.40	2.72	0.094	0.107		
N	4.80	5.40	0.188	0.212		
0	1.14	1.70	0.044	0.066		
Р	0.61	0.88	0.024	0.034		

Cooling method : by conduction (method C)

Marking : type number

Weight: 2.3 g Recommended torque value: 0.8 m.N. Maximum torque value : 1 m.N.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: