High Voltage, Single and Dual Supply SPDT Analog Switch with Enable Pin

DESCRIPTION

The DG469, DG470 are high voltage SPDT switches, with a typical on resistance of 3.6Ω and typical flatness of 0.4Ω. The DG469, DG470 are identical, except the DG470 provides an enable input. When the enable input is activated, both sides of the switch are in a high impedance mode (Off), maintaining a "Safe State" at power up. This function can also be used as a quick "disconnect" in the event of a fault condition. For audio switching, the enable pin provides a mute function. These are high voltage switches that are fully specified with dual supplies at $\pm 4.5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ and a single supply of 12 V over an operating temperature range from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Fast switching speeds coupled with high signal bandwidth makes these parts suitable for video switching applications. All digital inputs have 0.8 V and 2.4 V logic thresholds ensuring low voltage TTL/CMOS compatibility. Each switch conducts equally well in both directions when on and can handle an input signal range that extends to the supply voltage rails. They exhibit break-before-make switching action to prevent momentary shorting when switching between channels. The DG469, DG470 are offered in a MSOP 8 and SOIC 8 package.

FEATURES

- Low on resistance (3.6 Ω typical)
- On resistance flatness (0.4Ω typical)
- 44 V supply maximum rating

RoHS

- $\pm 15 \mathrm{~V}$ analog signal range COMPLIANT
- Fully specified at supply voltages of $\pm 4.5 \mathrm{~V}, 12 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$
- TTL/CMOS compatible
- Break before make switching guaranteed
- Total harmonic distortion 0.0145 \%
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Audio and video signal switching
- Precision automatic test equipment
- Precision data acquisition
- Relay replacement
- Communications systems
- Automotive applications
- Sample and hold systems
- Power routing applications
- Telecom signal switching
- Medical equipment
- Portable and battery power systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

DG469
MSOP 8 and SOIC 8

TRUTH TABLE DG469

Logic	NC	NO
0	ON	OFF
1	OFF	ON

DG470
MSOP 8 and SOIC 8

TRUTH TABLE DG470

ENABLE	Logic	NC	NO
0	0	ON	OFF
0	1	OFF	ON
1	X	OFF	OFF

ORDERING INFORMATION		
Temp. Range	Package	Part Number
DG469, DG470	8-Pin MSOP	DG469EQ-T1-E3
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}^{\mathrm{a}}$	8-Pin Narrow SOIC	DG470EQ-T1-E3
		DG469EY-T1-E3 DG470EY-T1-E3

Notes:

a. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ datasheet limits apply.

ABSOLUTE MAXIMUM RATINGS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted			
Parameter		Limit	Unit
V+ to V-		44	V
GND to V-		25	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}-)-2 \text { to }(\mathrm{V}+)+2$ or 30 mA , whichever occurs first	
Continuous Current (NO, NC, or COM)		120	mA
Current (Any terminal except NO, NC, or COM)		30	
Peak Current, (Pulsed $1 \mathrm{~ms}, 10$ \% Duty Cycle)		200	
Storage Temperature		-65 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Package) ${ }^{\text {b }}$	8-Pin MSOP ${ }^{\text {c }}$	320	mW
	8 -Pin Narrow SOIC ${ }^{\text {d }}$	400	

Notes:
a. Signals on S_{X}, D_{X}, or $I N_{X}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
d. Derate $5.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

SPECIFICATIONS for Dual Supplies

Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		-15	15	-15	15	V
On-Resistance	R_{ON}	$\mathrm{I}_{\mathrm{S}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$ to +10 V	Room Full	3.6		$\begin{aligned} & 6 \\ & 8 \end{aligned}$		6 7	
On-Resistance Match	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{I}_{\mathrm{S}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$	Room Full	0.12		$\begin{aligned} & 0.4 \\ & 0.9 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.5 \\ & \hline \end{aligned}$	Ω
On-Resistance Flatness	$\mathrm{R}_{\text {FLATNESS }}$	$\mathrm{I}_{\mathrm{S}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-5 \mathrm{~V}, 0 \mathrm{~V},+5 \mathrm{~V}$	Room Full	0.4		$\begin{aligned} & 0.5 \\ & 0.9 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.8 \\ & \hline \end{aligned}$	
Switch Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}, \mathrm{~V}_{S}= \pm 14 \mathrm{~V}$	Room Full	± 0.1	$\begin{array}{r} -0.5 \\ -20 \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} -0.5 \\ -2.5 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.5 \\ & 2.5 \\ & \hline \end{aligned}$	
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		Room Full	± 0.1	$\begin{aligned} & -0.5 \\ & -20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	$\begin{array}{r} -0.5 \\ -2.5 \end{array}$	$\begin{aligned} & 0.5 \\ & 2.5 \end{aligned}$	nA
Channel On Leakage Current	$\mathrm{I}_{\mathrm{D}(\mathrm{on})}$	$\mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}$	Room Full	± 0.2	$\begin{aligned} & -0.5 \\ & -20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	$\begin{gathered} -0.5 \\ -5 \end{gathered}$	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	
Digital Control									
Input Current, $\mathrm{V}_{\text {IN }}$ Low	$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\text {IN }}$ Under Test $=0.8 \mathrm{~V}$	Full	0.05	-1	1	-1	1	A
Input Current, $\mathrm{V}_{\text {IN }}$ High	IIH	$\mathrm{V}_{\text {IN }}$ Under Test $=2.4 \mathrm{~V}$	Full	0.05	-1	1	-1	1	$\mu \mathrm{A}$
Input Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	3.7					pF

Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Dynamic Characteristics									
Turn-On Time	t_{O}	$\begin{gathered} R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ V_{S}= \pm 10 \mathrm{~V} \end{gathered}$	Room Full	129		$\begin{aligned} & \hline 166 \\ & 200 \end{aligned}$		$\begin{aligned} & 166 \\ & 185 \end{aligned}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room Full	80		$\begin{aligned} & \hline 108 \\ & 135 \end{aligned}$		$\begin{aligned} & \hline 108 \\ & 120 \end{aligned}$	
Break-Before-Make Time Delay	$t_{\text {D }}$	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	15					
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	58					pC
Off Isolation ${ }^{\text {e }}$	OIRR	$\begin{aligned} R_{L}= & 50 \Omega, C_{L}=5 \mathrm{pF} \\ & f=1 \mathrm{MHz} \end{aligned}$	Room	-57					dB
Channel-to-Channel Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room	-63					
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	37					pF
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		Room	85					
Channel On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		Room	125					
Power Supplies									
Power Supply Current	I+	$\begin{aligned} & \mathrm{V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V} \end{aligned}$	Room Full	3.0		6		6 7	$\mu \mathrm{A}$
Negative Supply Current	I-		Room Full	-0.4	$\begin{aligned} & -0.5 \\ & -4.5 \end{aligned}$		$\begin{aligned} & -0.5 \\ & -4.5 \end{aligned}$		
Ground Current	$\mathrm{I}_{\text {GND }}$		Room Full	-3.0	$\begin{aligned} & -6 \\ & -7 \end{aligned}$		-6 -7		

SPECIFICATIONS for Dual Supplies

Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-45^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	V ${ }_{\text {ANALOG }}$		Full		-4.5	4.5	-4.5	4.5	V
On-Resistance ${ }^{\text {e }}$	R_{ON}	$\mathrm{I}_{\mathrm{S}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-2 \mathrm{~V}$ to +2 V	Room Full	8		$\begin{aligned} & 11 \\ & 16 \end{aligned}$		11 15	Ω
On-Resistance Match ${ }^{\text {e }}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{I}_{\mathrm{S}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 2 \mathrm{~V}$	Room Full	0.6		$\begin{aligned} & 0.7 \\ & 0.9 \end{aligned}$		$\begin{aligned} & 0.7 \\ & 0.8 \end{aligned}$	Ω
Dynamic Characteristics									
Turn-On Time ${ }^{\text {e }}$	t_{ON}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room Full	245		$\begin{aligned} & 265 \\ & 340 \end{aligned}$		$\begin{gathered} \hline 65 \\ 310 \end{gathered}$	
Turn-Off Time ${ }^{\text {e }}$	toff	$\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$	Room Full	145		$\begin{aligned} & 163 \\ & 200 \end{aligned}$		$\begin{aligned} & 163 \\ & 185 \end{aligned}$	ns
Break-Before-Make ${ }^{\text {e }}$ Time Delay	t_{D}	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=2 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room Full	15					
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Full	58					pC
Power Supplies									
Power Supply Current ${ }^{\text {e }}$	I+	$\mathrm{V}_{\text {IN }}=0$ or 4.5 V	Room Full	3.0		$\begin{aligned} & 6 \\ & 7 \end{aligned}$		6 7	$\mu \mathrm{A}$
Negative Supply Current ${ }^{\text {e }}$	I-		Room Full	- 0.4	$\begin{aligned} & -0.5 \\ & -4.5 \end{aligned}$		$\begin{aligned} & -0.5 \\ & -4.5 \end{aligned}$		
Ground Current ${ }^{\text {e }}$	$\mathrm{I}_{\text {GND }}$		Room Full	3.0	$\begin{aligned} & -6 \\ & -7 \end{aligned}$		-6		

SPECIFICATIONS for Unipolar Supplies									
Parameter	Symbol	Test Conditions Unless Specified $\mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$V IN $=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full			12		12	V
On-Resistance	R_{ON}	$\mathrm{I}_{\mathrm{S}}=25 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}$ to +10 V	Room Full	7.5		$\begin{gathered} 8.5 \\ 14 \end{gathered}$		$\begin{gathered} \hline 8.5 \\ 11.3 \end{gathered}$	
On-Resistance Match	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{I}_{\mathrm{S}}=25 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}$	Room Full	0.4		$\begin{gathered} 0.45 \\ 0.9 \end{gathered}$		$\begin{gathered} 0.45 \\ 0.5 \end{gathered}$	Ω
On-Resistance Flatness	$\mathrm{R}_{\text {FLAtNes }}$	$\begin{gathered} \mathrm{I}_{\mathrm{S}}=25 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V},+5 \mathrm{~V},+10 \mathrm{~V} \end{gathered}$	Room Full	2.5		$\begin{aligned} & 2.6 \\ & 2.9 \end{aligned}$		$\begin{aligned} & 2.6 \\ & 2.8 \end{aligned}$	
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\begin{gathered} R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ V_{S}=10 \mathrm{~V} \end{gathered}$	Room Full	190		$\begin{aligned} & 200 \\ & 255 \end{aligned}$		$\begin{aligned} & 200 \\ & 240 \end{aligned}$	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room Full	100		$\begin{aligned} & \hline 110 \\ & 135 \end{aligned}$		$\begin{aligned} & \hline 110 \\ & 120 \end{aligned}$	ns
Break-Before-Make Time Delay	t_{D}	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	50					
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	2.4					pC
Power Supplies									
Power Supply Current	I+	$\mathrm{V}_{\mathrm{IN}}=0$ or 5 V	Room Full	3.0		6 7		6 7	$\mu \mathrm{A}$
Negative Supply Current	I-		Room Full	-0.4	$\begin{aligned} & -0.5 \\ & -4.5 \end{aligned}$		$\begin{aligned} & -0.5 \\ & -4.5 \end{aligned}$		
Ground Current	$\mathrm{I}_{\text {GND }}$		Room Full	-3.0	-6		$\begin{aligned} & -6 \\ & -7 \end{aligned}$		

Notes:
a. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS

On-Resistance vs. V_{D} and Dual Supply Voltage

On-Resistance vs. V_{D} and Temperature

Leakage Current vs. Temperature

On-Resistance vs. V_{D} and Single Supply Voltage

On-Resistance vs. V_{D} and Temperature

Leakage Current vs. Temperature

TYPICAL CHARACTERISTICS

Charge Injection vs. Analog Voltage

Charge Injection vs. Analog Voltage

Switching Time vs. Temperature and

Switching Time vs. Single Supply Voltage

Switching Time vs. Temperature and Single Supply Voltage

Switching Time vs. Dual Supply Voltage

TYPICAL CHARACTERISTICS

Insertion Loss, Off-Isolation, Crosstalk
vs. Frequency

Switching Threshold vs. Dual Supply Voltage

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
V_{O}=V_{S} \quad \frac{R_{L}}{R_{L}+r_{D S(o n)}}
$$

Switching Threshold vs. Signal Supply Voltage

DG469, DG470 Total Harmonic Distortion

Note: Logic input waveform is inverted for switches that have the opposite logic sense control.

Figure 1. Switching Time

TEST CIRCUITS

Figure 2. Break-Before-Make

Figure 3. Charge Injection

Figure 4. Off-Isolation

Figure 5. Source/Drain Capacitances

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71470.

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

