

STL42N65M5

N-channel 650 V, 0.070 Ω, 34 A MDmesh™ V Power MOSFET in PowerFLAT™ 8x8 HV package

Datasheet — preliminary data

Features

Order code	V _{DSS} @ T _{Jmax}	R _{DS(on)} max	I _D
STL42N65M5	710 V	< 0.079 Ω	34 A ⁽¹⁾

- 1. The value is rated according to Rthi-case
- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Applications

Switching applications

Description

This device is an N-channel MDmesh™ V Power MOSFET based on an innovative proprietary vertical process technology, which is combined with STMicroelectronics' well-known PowerMESH™ horizontal layout structure. The resulting product has extremely low onresistance, which is unmatched among siliconbased Power MOSFETs, making it especially suitable for applications which require superior power density and outstanding efficiency.

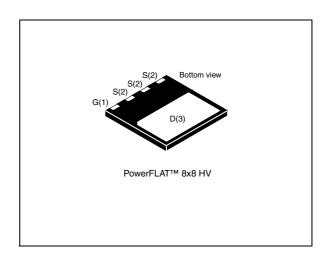


Figure 1. Internal schematic diagram

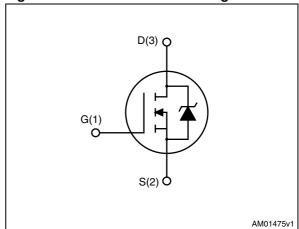


Table 1. Device summary

Order code	Marking	Package	Packaging
STL42N65M5	42N65M5	PowerFLAT™ 8x8 HV	Tape and reel

April 2012 Doc ID 17443 Rev 2 1/14

Contents STL42N65M5

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
3	Test circuits	6
4	Package mechanical data	7
5	Packaging mechanical data1	1
6	Revision history 1	3

STL42N65M5 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	650	٧
V _{GS}	Gate-source voltage	± 25	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	34	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	22	Α
I _{DM} (1),(2)	Drain current (pulsed)	136	Α
I _D ⁽³⁾	Drain current (continuous) at T _{amb} = 25 °C	4	Α
I _D ⁽³⁾	Drain current (continuous) at T _{amb} = 100 °C	2.5	Α
I _{DM} ^{(2),(3)}	Drain current (pulsed)	16	Α
P _{TOT} (3)	Total dissipation at T _{amb} = 25 °C	3	W
P _{TOT} ⁽¹⁾	Total dissipation at T _C = 25 °C	208	W
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by T _j max)	11	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	950	mJ
dv/dt (4)	Peak diode recovery voltage slope	15	V/ns
T _{stg} Storage temperature		- 55 to 150	°C
T _j	Max. operating junction temperature	150	°C

^{1.} The value is rated according to $R_{\mbox{\scriptsize thj-case}}$.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.6	°C/W
R _{thj-amb} ⁽¹⁾	Thermal resistance junction-ambient max	45	°C/W

^{1.} When mounted on FR-4 board of inch², 2oz Cu.

^{2.} Pulse width limited by safe operating area.

^{3.} When mounted on FR-4 board of inch², 2oz Cu.

^{4.} $I_{SD} \leq 34 \text{ A, di/dt} \leq 400 \text{ A/}\mu\text{s, V}_{Peak} < V_{(BR)DSS}$.

Electrical characteristics STL42N65M5

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0$, $I_D = 1$ mA	650			V
	Zero gate voltage	$V_{GS} = 0, V_{DS} = 650 \text{ V}$			1	μΑ
I _{DSS}	drain current	$V_{GS} = 0,$ $V_{DS} = 650 \text{ V}, T_{C} = 125 ^{\circ}\text{C}$			100	μА
I _{GSS}	Gate-body leakage current	$V_{DS} = 0, V_{GS} = \pm 25 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 16.5 A		0.070	0.079	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 100 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	-	4650 110 5.7	-	pF pF pF
C _{o(er)} ⁽¹⁾	Equivalent output capacitance energy related	$V_{GS} = 0$,	1	400	1	pF
C _{o(tr)} ⁽²⁾	Equivalent output capacitance time related	$V_{DS} = 0$ to 80% $V_{(BR)DSS}$	1	285	1	pF
R_{G}	Intrinsic gate resistance	f = 1 MHz open drain	-	1.4	-	Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 520 \text{ V}, I_{D} = 16.5 \text{ A},$ $V_{GS} = 10 \text{ V}$ (see <i>Figure 3</i>)	-	100 26 38	-	nC nC nC

^{1.} $C_{o(er)}$ is a constant capacitance value that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}

^{2.} $C_{o(tr)}$ is a constant capacitance value that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}

Table 6. Switching times

	<u> </u>					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _r t _c t _f	Turn-off delay time Rise time Cross time Fall time	$V_{DD} = 400 \text{ V}, I_{D} = 20 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 7)	,	TBD TBD TBD TBD	-	ns ns ns ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		34 136	A A
V _{SD} (2)	Forward on voltage	I _{SD} = 33 A, V _{GS} = 0	-		1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 33 A, di/dt = 100 A/μs V _{DD} = 100 V (see <i>Figure 4</i>)	1	400 7 35		ns µC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 33 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 100 \text{ V}, T_j = 150 ^{\circ}\text{C}$ (see <i>Figure 4</i>)	-	532 10 38		ns µC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%

Test circuits STL42N65M5

3 Test circuits

Figure 2. Switching times test circuit for resistive load

Figure 3. Gate charge test circuit

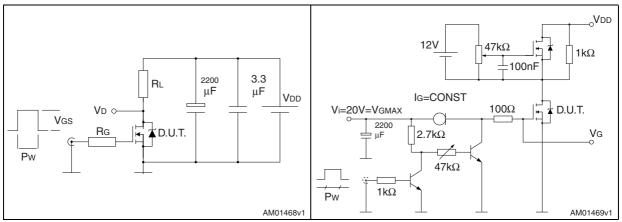


Figure 4. Test circuit for inductive load switching and diode recovery times

Figure 5. Unclamped inductive load test circuit

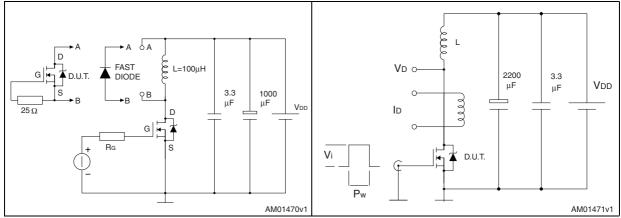
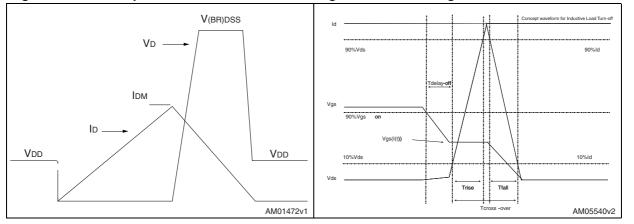



Figure 6. Unclamped inductive waveform

Downloaded from Arrow.com.

Figure 7. Switching time waveform

6/14 Doc ID 17443 Rev 2

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 8. PowerFLAT™ 8x8 HV mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
А	0.80	0.90	1.00		
A1	0.00	0.02	0.05		
b	0.95	1.00	1.05		
D		8.00			
E		8.00			
D2	7.05	7.20	7.30		
E2	4.15	4.30	4.40		
е		2.00			
L	0.40	0.50	0.60		
aaa		0.10			
bbb		0.10			
ccc		0.10			

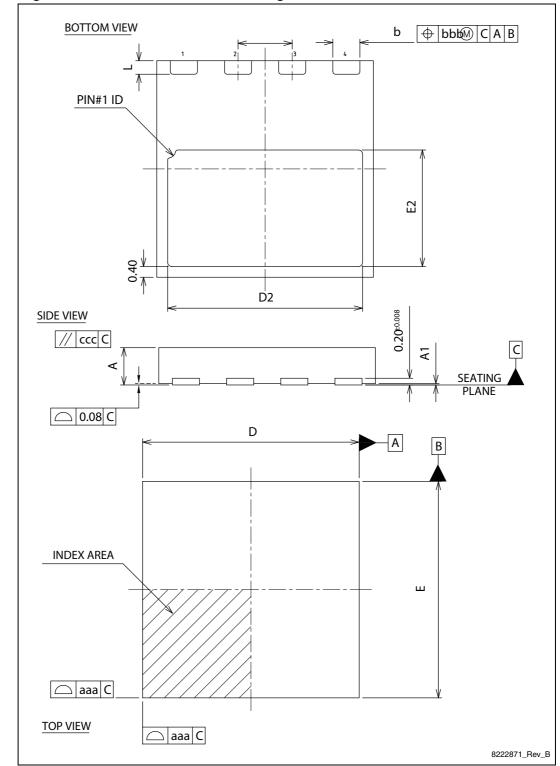


Figure 8. PowerFLAT™ 8x8 HV drawing mechanical data

577

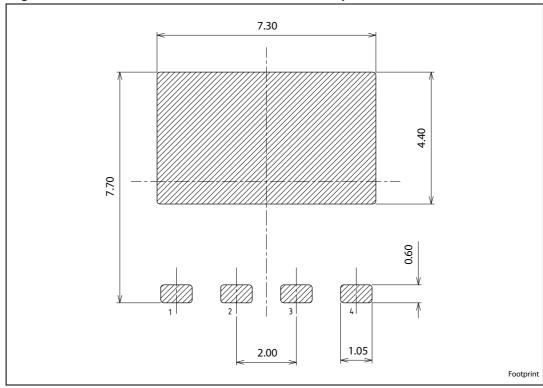


Figure 9. PowerFLAT™ 8x8 HV recommended footprint

577

5 Packaging mechanical data

Figure 10. PowerFLAT™ 8x8 HV tape

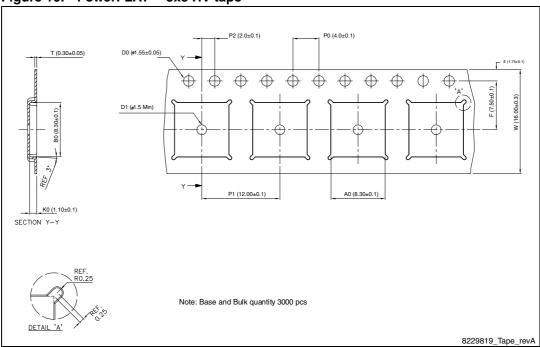
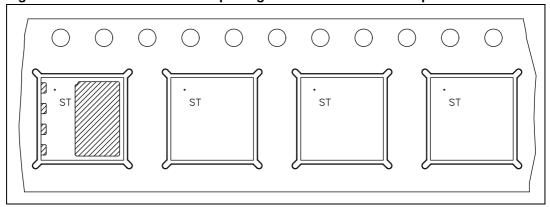



Figure 11. PowerFLAT™ 8x8 HV package orientation in carrier tape.

5/

20 R13 - 6.5:18

R13 - 6.5:18

SEE DETAIL C

SEE DETAIL C

8229819_Reel_revA

Figure 12. PowerFLAT™ 8x8 HV reel

Downloaded from Arrow.com.

Doc ID 17443 Rev 2

STL42N65M5 Revision history

6 Revision history

Table 9. Document revision history

Date	Revision	Changes
28-Apr-2010	1	First release.
27-Apr-2012	2	Section 4: Package mechanical data has been updated. Added new section: Section 5: Packaging mechanical data. Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

14/14 Doc ID 17443 Rev 2

