
Raspberry Pi Relay Board v1.0

The Relay Shield utilizes four high quality relays and provides NO/NC interfaces that control the
load of high current. Which means it could be a nice solution for controlling devices that
couldn’t be directly controlled by IIC bus. Standardized shield form factor enables smoothly
connection with the Raspberry Pi . The shield also has four dynamic indicators show the on/off
state of each relay.

Features

 Raspberry Pi compatible
 Interface:IIC , Three hardware SW1 (1, 2, 3) select the fixed I2C-bus address
 Relay screw terminals
 Standardized shield shape and design
 LED working status indicators for each relay
 COM, NO (Normally Open), and NC (Normally Closed) relay pins for each relay
 High quality relays
 Working status indicators for each relay

Specification

Item Min Typical Max Unit

Supply Voltage 4.75 5 5.5 VDC

Working Current 10 / 360 mA

Switching Voltage / / 30/250 VDC/VAC

Switching Current / / 15 A

Frequency / 1 / HZ

Switching Power / / 2770VA/240 W

Relay Life 100,000 / / Cycle

Dimension 91.20 * 56.15*32 mm

Caution

Place 2 layers of electrical tape on the top of the Arduino's usb connector. This will prevent
the relay shield from making contact. Do not operate voltage more than 35V DC.

Interface Function

Usage

Here we can use serial console to Change the state of each the relay or all relays.

Hardware Installation

 1） Raspberry Pi B & Raspberry Pi Motor Driver Board v1.0
 2） Hardware connection as shown

We can select the fixed I2C-bus address by SW1

Software Part

 1) Copy these code as follows;

import time
import smbus
import signal
import sys

bus = smbus.SMBus(1) # 0 = /dev/i2c-0 (port I2C0), 1 = /dev/i2c-1 (port
I2C1)

class Relay():
 global bus
 def __init__(self):
 self.DEVICE_ADDRESS = 0x20 #7 bit address (will be left shifted
to add the read write bit)
 self.DEVICE_REG_MODE1 = 0x06
 self.DEVICE_REG_DATA = 0xff
 bus.write_byte_data(self.DEVICE_ADDRESS, self.DEVICE_REG_MODE1,
self.DEVICE_REG_DATA)

 def ON_1(self):
 print 'ON_1...'
 self.DEVICE_REG_DATA &= ~(0x1<<0)
 bus.write_byte_data(self.DEVICE_ADDRESS, self.DEVICE_REG_MODE1,
self.DEVICE_REG_DATA)
 def ON_2(self):
 print 'ON_2...'
 self.DEVICE_REG_DATA &= ~(0x1<<1)

 bus.write_byte_data(self.DEVICE_ADDRESS, self.DEVICE_REG_MODE1,
self.DEVICE_REG_DATA)
 def ON_3(self):
 print 'ON_3...'
 self.DEVICE_REG_DATA &= ~(0x1<<2)
 bus.write_byte_data(self.DEVICE_ADDRESS, self.DEVICE_REG_MODE1,
self.DEVICE_REG_DATA)
 def ON_4(self):
 print 'ON_4...'
 self.DEVICE_REG_DATA &= ~(0x1<<3)
 bus.write_byte_data(self.DEVICE_ADDRESS, self.DEVICE_REG_MODE1,
self.DEVICE_REG_DATA)

 def OFF_1(self):
 print 'OFF_1...'
 self.DEVICE_REG_DATA |= (0x1<<0)
 bus.write_byte_data(self.DEVICE_ADDRESS, self.DEVICE_REG_MODE1,
self.DEVICE_REG_DATA)

 def OFF_2(self):
 print 'OFF_2...'
 self.DEVICE_REG_DATA |= (0x1<<1)
 bus.write_byte_data(self.DEVICE_ADDRESS, self.DEVICE_REG_MODE1,
self.DEVICE_REG_DATA)

 def OFF_3(self):
 print 'OFF_3...'
 self.DEVICE_REG_DATA |= (0x1<<2)
 bus.write_byte_data(self.DEVICE_ADDRESS, self.DEVICE_REG_MODE1,
self.DEVICE_REG_DATA)

 def OFF_4(self):
 print 'OFF_4...'
 self.DEVICE_REG_DATA |= (0x1<<3)
 bus.write_byte_data(self.DEVICE_ADDRESS, self.DEVICE_REG_MODE1,
self.DEVICE_REG_DATA)

 def ALLON(self):
 print 'ALLON...'
 self.DEVICE_REG_DATA &= ~(0xf<<0)
 bus.write_byte_data(self.DEVICE_ADDRESS, self.DEVICE_REG_MODE1,
self.DEVICE_REG_DATA)

 def ALLOFF(self):
 print 'ALLOFF...'
 self.DEVICE_REG_DATA |= (0xf<<0)
 bus.write_byte_data(self.DEVICE_ADDRESS, self.DEVICE_REG_MODE1,
self.DEVICE_REG_DATA)

if __name__=="__main__":
 relay = Relay()
 # Called on process interruption. Set all pins to "Input" default mode.
 def endProcess(signalnum = None, handler = None):
 relay.ALLOFF()
 sys.exit()

 signal.signal(signal.SIGINT, endProcess)

 while True:
 ct = raw_input("input: ")
 if ct == '1on':
 relay.ON_1()
 elif ct == '2on':

 relay.ON_2()
 elif ct == '3on':
 relay.ON_3()
 elif ct == '4on':
 relay.ON_4()
 elif ct == '1off':
 relay.OFF_1()
 elif ct == '2off':
 relay.OFF_2()
 elif ct == '3off':
 relay.OFF_3()
 elif ct == '4off':
 relay.OFF_4()
 elif ct == 'allon':
 relay.ALLON()
 elif ct == 'alloff':
 relay.ALLOFF()

 2) Saved in the Raspberry Pi, According to your own path.
 3) Run this program

The terminal will print "input:",then you can change the state of each the relay or all relays.you
should input like "1on","2on","3on" or "1off","allon","alloff"

 4) Note that you should select set the correct I2C-bus address.

You can see :

terminal:

Raspberry Pi Relay Board v1.0:

Which relay is turn on ,the corresponding LED will also turn on.

