SPECIFICATION

SPEC. No. A-SoftC-e D A T E : Aug, 2018

То

Non-Controlled Copy

CUSTOMER'S PRODUCT NAME	TDK'S PRODUCT NAME
	Multilayer Ceramic Chip Capacitors
	CGA series/ Automotive grade
	Soft Termination

Please return this specification to TDK representatives with your signature. If orders are placed without returned specification, please allow us to judge that specification is accepted by your side.

RECEIPT CONFIRMATION

Test conditions in this specification based on AEC-Q200 for automotive application.

TDK Corporation	
Sales	Engineering
Electronic Components	Electronic Components Business Company
Sales & Marketing Group	Ceramic Capacitors Business Group

APPROVED	Person in charge	APPROVED	CHECKED	Person in charge

CATALOG NUMBER CONSTRUCTION

(1) Series

(2) Dimensions L x W (mm)

Code	EIA	Length	Width	Terminal width
2	CC0402	1.00	0.50	0.10
3	CC0603	1.60	0.80	0.20
4	CC0805	2.00	1.25	0.20
5	CC1206	3.20	1.60	0.20
6	CC1210	3.20	2.50	0.20
7	CC1808	4.50	2.00	0.20
8	CC1812	4.50	3.20	0.20
9	CC2220	5.70	5.00	0.20
D	CC3025	7.50	6.30	0.30

(3)Thickness code

Code	Thickness	
В	0.50 mm	
С	0.60 mm	
E	0.80 mm	
F	0.85 mm	
н	1.15 mm	
J	1.25 mm	
К	1.30 mm	
L	1.60 mm	
M	2.00 mm	
N	2.30 mm	
P	2.50 mm	

(4) Voltage condition for life test

Symbol	Condition	
1	1 × R.V.	
2	2 × R.V.	
3	1.5 × R.V.	
4	1.2 × B.V.	

(5) Temperature characteristics

Temperature coefficient or capacitance change	Temperature range	
0±30 ppm/°C	-55 to +125°C	
±15%	-55 to +125°C	
±22%	-55 to +125°C	
+22,-33%	-55 to +125°C	
±15%	-55 to +150°C	
	or capacitance change 0±30 ppm/°C ±15% ±22% +22,-33%	

(6) Rated voltage (DC)

Code	Voltage (DC)	
OJ	6.3V	_
1A	10V	_
1C	16V	_
1E	25V	_
1V	35V	_
1H	50V	_
2A	100V	
2E	250V	
2W	450V	
2J	630V	_
ЗA	1000V	_
3D	2000V	_
3F	3000V	_

(7) Nominal capacitance (pF)

The capacitance is expressed in three digit codes and in units of pico Farads (pF). The first and second digits identify the first and second significant figures of the capacitance. The third digit identifies the multiplier. R designates a decimal point.

(Example)0R5 = 0.5pF 101 = 100pF 225 = 2,200,000pF = 2.2µF

(8) Capacitance tolerance

Code	Tolerance	
J	±5%	
к	±10%	
M	±20%	

(9) Thickness

Code	Thickness
050	0.50 mm
060	0.60 mm
080	0.80 mm
085	0.85 mm
115	1.15 mm
125	1.25 mm
130	1.30 mm
160	1.60 mm
200	2.00 mm
230	2.30 mm
250	2.50 mm

(10) Packaging style

Code	Style	
A	178mm reel, 4mm pitch	
B	178mm reel, 2mm pitch	
к	178mm reel, 8mm pitch	
L	330mm reel, 12mm pitch	

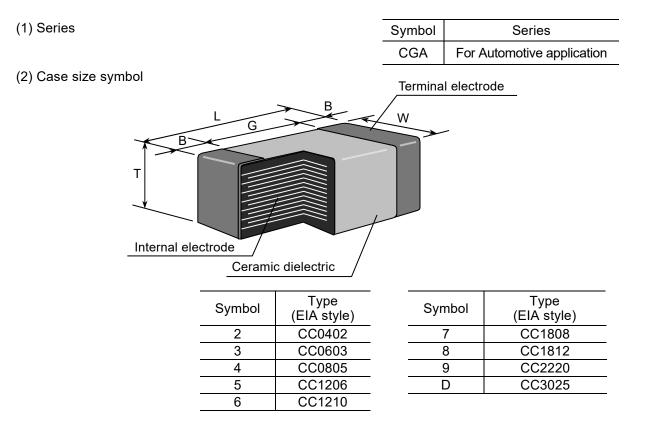
(11) Special reserved code

Code	Description	
E	Soft termination	

1. SCOPE

This specification is applicable to chip type multilayer ceramic capacitors with a priority over the other relevant specifications.

Production places defined in this specification shall be TDK Corporation Japan, TDK(Suzhou)Co.,Ltd and TDK Components U.S.A. Inc.


EXPLANATORY NOTE:

This specification warrant the quality of the ceramic chip capacitor. The chips should be evaluated or confirmed a state of mounted on your product.

If the use of the chips go beyond the bounds of this specification, we can not afford to guarantee.

2. CODE CONSTRUCTION

(Example)											
Catalog Number:	CGA	6	<u>P</u>	3	X7S	<u>1H</u>	106	K	250	Α	E
(Web)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Item Description:	CGA	6	<u>P</u>	3	<u>X7S</u>	<u>1H</u>	106	K	<u> T </u>	xxxS	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(12)	(13)	

*As for dimensions of each product, please refer to detailed information on TDK web.

(3) Thickness

Symbol	Dimension (mm)	Symbol	Dimension (mm)
В	0.50	K	1.30
E	0.80	L	1.60
F	0.85	М	2.00
Н	1.15	N	2.30
J	1.25	Р	2.50

(4) Voltage condition in the life test

(Details are shown in table 1 No.16 at 8.PERFORMANCE.)

Condition
Rated Voltage
Rated Voltage x 2
Rated Voltage x 1.5
Rated Voltage x 1.2

(5) Temperature Characteristics

(Details are shown in table 1 No.6 and No.7 at 8.PERFORMANCE.)

(6) Rated Voltage

Rated Voltage		
DC 6.3 V		
DC 10 V		
DC 16 V		
DC 25 V		
DC 35 V		
DC 50 V		
DC 100 V		

Symbol	Rated Voltage		
2 E	DC 250 V		
2 W	DC 450 V		
2 J	DC 630 V		
3 A	DC 1000 V		
3 D	DC 2000 V		
3 F	DC 3000 V		

(8) Capacitance tolerance

Over 10µF parts.

Stated in three digits and in units of pico farads (pF). The first and Second digits identify the first and second significant figures of the capacitance, the third digit identifies the multiplier.

Symbol	Rated Capacitance
101	100pF
225	2,200,000pF (=2.2µF)

Symbol	Tolerance		
J	± 5 %		
K	± 10 %		
M*	± 20 %		

(9) Thickness code (Only catalog number)

*M tolerance shall be TDK standard for

(10) Package code (Only catalog number)

(11) Special code (Only catalog number)

(11) Special code (Unly catalog number)	Symbol	Description			
	E	Soft termination			
(12) Packaging (Only item description)	Symbol	Packaging			
(Bulk is not applicable for CGA2 [CC0402] type.)	В	Bulk			
	Т	Taping			

(13) TDK internal code (Only item description)

XXX

S: Soft termination
 These TDK internal codes are subject to change without notice.

3. RATED CAPACITANCE AND TOLERANCE

3.1 Standard combination of rated capacitance and tolerances

Class	Temperature Characteristics	Capacitanc	e tolerance	Rated capacitance	
1	C0G	J (± 5 %) K (± 10 %)		E – 6 series	
2	X7R X7S	Cap≦ 10µF	K (± 10 %) M (± 20 %)	E – 6 series	
2	X7T X8R	Сар> 10µF	M (± 20 %)	E – 3 series	

3.2 Capacitance Step in E series

E se	ries	Capacitance Step						
E-	3	1.0			2	.2	4.7	
E-	6	1.0		1.5	2.2	3.3	4.7	6.8

4. OPERATING TEMPERATURE RANGE

T.C.	Min. operating Temperature	Max. operating Temperature	Reference Temperature	
C0G, X7R,X7S,X7T	-55°C	125°C	25°C	
X8R	-55°C	150°C	25°C	

5. STORING CONDITION AND TERM

5 to 40°C at 20 to 70%RH 6 months Max.

6. P.C. BOARD

When mounting on an aluminum substrate, large case size such as CGA6 [CC1210]~ CGAD [CC3025] types are more likely to be affected by heat stress from the substrate. Please inquire separate specification for the large case sizes when mounted on the substrate.

7. INDUSTRIAL WASTE DISPOSAL

Dispose this product as industrial waste in accordance with the Industrial Waste Law.

8. PERFORMANCE

No. 1	Item External Appearance	Performance		Test or inspec	tion met	hod		
1	External Appearance		Test or inspection method					
		No defects which may affect performance.	Inspect	ect with magnifying glass (3×)				
2	Insulation Resistance	Resistance 10,000M Ω or 500M Ω · μ F min. (As for the capacitors of rated voltage 16V DC and,10,000 M Ω or 100M Ω · μ F min.,) whichever smaller.		Apply rated voltage for 60s. As for the capacitor of rated voltage 630V DC and above, apply 500V DC.				
3	Voltage Proof	Withstand test voltage without insulation breakdown or other	Class	Rated voltage (RV)	Арр	ly voltage		
		damage.		RV≦100V		ted voltage		
			1	100V <rv≦500< td=""><td></td><td>ated voltage</td></rv≦500<>		ated voltage		
				630V		ated voltage		
				630V <rv< td=""><td></td><td>ated voltage</td></rv<>		ated voltage		
				RV≦100V		ated voltage		
			2	100V <rv≦500\< td=""><td></td><td>ated voltage</td></rv≦500\<>		ated voltage		
				630V 630V <rv< td=""><td></td><td>ated voltage</td></rv<>		ated voltage		
			Above DC voltage shall be applied for 1s.					
			Charge/ exceed	discharge curr 50mA.	ent shal	l not		
4	Capacitance	Within the specified tolerance.		Canacitance	<i>l</i> leasuring requency	Measuring voltage		
			1		MHz±10% kHz±10%	0.5-5 Vrms.		
			2	Cap≦10µF 1	kHz±10%	1.0±0.2Vms		
			2	Cap>10µF 12	20Hz±20%	0.5±0.2Vms		
			measuri	rmation which p ng voltage, ple presentative.				
5	Q (Class1)	As for spec of each product, please refer to detailed information on TDK	See No.4 in this table for measuring condition.					
	Dissipation Factor (Class2)	web.						
6	Temperature Characteristics of Capacitance (Class1)	T. C.Temperature CoefficientC0G $0 \pm 30 \text{ (ppm/°C)}$ Capacitance drift within $\pm 0.2\%$ or $\pm 0.05 \text{pF}$, whichever larger.	based o tempera Measuri	ature coefficien n values at 25° ture. ng temperature C and -25°C.	C and 8	5°C		

No. Item Performance Test or inspection method 7 Temperature Capacitance shall be measured by the Capacitance Change (%) Characteristics steps shown in the following table after of Capacitance thermal equilibrium is obtained for each No voltage applied (Class2) step. X7R: ±15 X7S: ±22 ΔC be calculated ref. STEP3 reading X7T: +22,-33 Temperature(°C) Step X8R: ±15 1 25 ± 2 2 -55 ± 3 3 25 ± 2 4* Max. operating Temp. ± 2 *X7R, X7S, X7T: 125°C X8R: 150°C Reflow solder the capacitors on a P.C. 8 Robustness of No sign of termination coming off, Terminations breakage of ceramic, or other board shown in Appendix2 and apply a pushing force of 17.7N with 10±1s abnormal signs. (2N is applied for CGA2 [CC0402] type). Pushing force P.C. board Capacitor 9 Bending No mechanical damage. Reflow solder the capacitors on a P.C. board shown in Appendix1 and bend it for 5mm (2mm is applied for CGA7 [CC1808] ~ CGA9 [CC2220] parts, 1mm is applied for C7563 [CC3025] parts). R230 45 45 (Unit : mm) Solderability 10 New solder to cover over 75% of Completely soak both terminations termination. in solder at the following conditions. 25% may have pin holes or rough spots but not concentrated in one Solder : Sn-3.0Ag-0.5Cu or Sn-37Pb spot. Ceramic surface of A sections Temperature: 245±5°C (Sn-3.0Ag-0.5Cu) shall not be exposed due to 235±5°C (Sn-37Pb) melting or shifting of termination Soaking time: 3±0.3s (Sn-3.0Ag-0.5Cu) material. 2±0.2s (Sn-37Pb) Flux: Isopropyl alcohol (JIS K 8839) Rosin (JIS K 5902) 25% solid solution. A section

(continued)

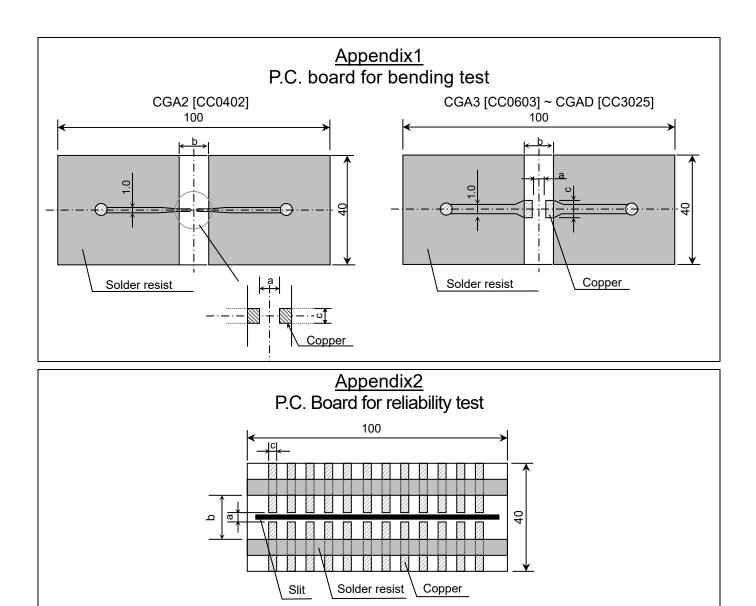
(continued)

No.	Item		Performance		Test or inspection method		
11	Resistance to solder heat	External appearance Capacitance	least 60% with new solder.		Completely soak both terminations in solder at the following conditions. - 260±5°C for 10±1s.		
		Capacitance	Characteristics	Change from the value before test*	Preheating condition		
			Class1/ C0G	± 2.5 %	Temp.: 110 - 140°C Time : 30 - 60s.		
			Class2/ X7R, X7S, X7T, X8R	± 7.5 %	Solder : Sn-3.0Ag-0.5Cu or Sn-37Pb		
					Flux : Isopropyl alcohol (JIS K 8839)		
		Q (Class1)	Meet the initial	spec.	Rosin (JIS K 5902) 25% solid solution.		
		D.F. (Class2)	Meet the initial	spec.	Leave the capacitors in ambient condition for 6 to 24h (Class1) or		
		Insulation Resistance	Meet the initial	spec.	24±2h (Class2) before measurement.		
		Voltage proof	No insulation br other damage.	reakdown or			
12	Vibration	External appearance	No mechanical	damage.	Reflow solder the capacitors on a P.C board shown in Appendix2 before		
		Capacitance	Characteristics	Change from the value before test*	testing.		
			Class1/ C0G	± 2.5 %	Vibrate the capacitors with following conditions.		
			Class2/ X7R, X7S, X7T, X8R	± 7.5 %	Applied force : 5G max. Frequency : 10 - 2,000Hz Duration : 20 min.		
		Q (Class1)	Meet the initia	al spec.	 Cycle : 12 cycles in each 3 mutually perpendicular directions. 		
		D.F. (Class2)	Meet the initial	spec.			

*Typical SPEC.

(continued)

No.	Item		Performance		Test or inspection method				
13	Temperature cycle	External appearance	No mechanical	damage.		Reflow solder the capacitors on a P.C. board shown in Appendix2 before – testing.			
		Capacitance	Characteristics	Change from the value before test*	Expose the capacitors in the or step1 through step 4 and report				
			Class1/ C0G	± 2.5 %	Leave t	onsecutively. he capacitors in aml on for 6 to 24h (Class			
			Class2/ X7R, X7S,	±7.5%		?) before measureme			
			X7T, X8R	± 7.5 %	Step	Temperature(°C)	Time (min.)		
		Q	Meet the initia	spec.	1	-55 ±3	30 ± 3		
		(Class1)			2	25	2 - 5		
		D.F.	Meet the initial spec.		3*	Max. operating Temp. ±2	30 ± 2		
		(Class2)			4	25	2 - 5		
		Insulation Resistance	Meet the initial	spec.	*C0G, X7R, X7S, X7T: 125°C				
		Voltage proof	No insulation breakdown or other damage.		X8R: 150°C				
14	Moisture Resistance	External appearance	No mechanical	damage.	Reflow solder the capacitors on a P.C. board shown in Appendix2 before testing.				
	(Steady State)	Capacitance	Characteristics	Change from the value before test*					
			Class1/ C0G	±5%		Leave at temperature 40±2°C, 90 to 95%RH for 500 +24,0h.			
			Class2/ X7R, X7S, X7T, X8R	± 12.5 %	Leave the capacitors in ambient condition for 6 to 24h (Class1) or 24±2h (Class2) before measurement.				
		Q (Class1)	350 min.						
		D.F. (Class2)	200% of initial s	pec. max.					
		Insulation Resistance	1,000MΩ or 50 (As for the capa voltage 16V DC 10MΩ·μF min., smaller.	acitors of rated c, 1,000 MΩ or					


*Typical SPEC.

(continued)

`	,				Test on increasing weather d
No.		em		ormance	Test or inspection method
15	Moisture Resistance	External appearance	No mechanical	damage.	Reflow solder the capacitors on a P.C. board shown in Appendix2 before testing.
		Capacitance	Characteristics	Change from the value before test*	Apply the rated voltage (DC 1kV is applied for 3D and 3F products) at
			Class1/ C0G	± 7.5 %	temperature 85°C and 85%RH for 1,000 +48,0h.
			Class2/ X7R, X7S, X7T, X8R	± 12.5 %	Charge/ discharge current shall not exceed 50mA.
		Q (Class1)	200 min.		Leave the capacitors in ambient condition for 6 to 24h (Class1) or 24±2h (Class2)
		D.F. (Class2)	200% of initial s	pec. max.	before measurement. Voltage conditioning (only for Class2)
		Insulation Resistance	500MΩ or 25Mg (As for the capa	acitors of rated	Voltage treat the capacitors under testing temperature and voltage for 1 hour.
			voltage 16V DC 5MΩ·µF min.,)	, 500 MΩ or whichever smaller.	Leave the capacitors in ambient condition for 24±2h before measurement.
					Use this measurement for initial value.
16	Life	External appearance	No mechanical	damage.	Reflow solder the capacitors on a P.C. board shown in Appendix2 before testing.
		Capacitance	Characteristics	Change from the value before test*	Below the voltage shall be applied at Max. operating Temp. ±2°C for 1,000 +48,0h.
			C0G Class2/ X7R, X7S,	± 3 % ± 15 %	Applied Voltage Rated voltage x2
			X7T, X8R	10 /0	Rated voltage x1.5
		Q	350 min.		Rated voltage x1.2
		(Class1)			Rated voltage x1 As for applied voltage, please refer
		D.F. (Class2)	200% of initial spec. max.		"Voltage condition in the life test" on p-2.
		Insulation Resistance	1,000MΩ or 50MΩ·μF min. (As for the capacitors of rated voltage 16V DC,1,000 MΩ or 10MΩ·μF min.,) whichever smaller.		Charge/ discharge current shall not exceed 50mA. Leave the capacitors in ambient condition for 6 to 24h (Class1) or 24±2h (Class2) before measurement.
					Voltage conditioning (only for Class2) Voltage treat the capacitors under testing temperature and voltage for 1 hour. Leave the capacitors in ambient condition for 24±2h before measurement. Use this measurement for initial value.

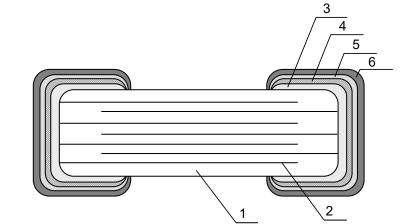
*Typical SPEC.

**As for the initial measurement of capacitors (Class2) on number 7,11,12,13 and 14 leave capacitors at 150 –10,0°C for 1 hour and measure the value after leaving capacitors for 24±2h in ambient condition.

(It is recommended to provide a slit on P.C. board for CGA6 [CC1210] ~ CGAD [CC3025].)

			(Unit : mm)
Туре		Dimensions	
TDK(EIA style)	а	b	С
CGA2 [CC0402]	0.4	1.5	0.5
CGA3 [CC0603]	1.0	3.0	1.2
CGA4 [CC0805]	1.2	4.0	1.65
CGA5 [CC1206]	2.2	5.0	2.0
CGA6 [CC1210]	2.2	5.0	2.9
CGA7 [CC1808]	3.5	7.0	2.5
CGA8 [CC1812]	3.5	7.0	3.7
CGA9 [CC2220]	4.5	8.0	5.6
CGAD [CC3025]	5.5	9.1	6.9

1. Material : Glass Epoxy(As per JIS C6484 GE4)


Copper (Thickness:0.035mm)

2. Thickness : Appendix 1 — 0.8mm (CGA2 [CC0402])

— 1.6mm (CGA3 [CC0603] ~ CGAD [CC3025])

: Appendix 2 — 1.6mm

9. INSIDE STRUCTURE AND MATERIAL

No.	NAME	MATERIAL				
NO.		Class1	Class2			
1	Dielectric	CaZrO₃	BaTiO₃			
2	Electrode	Nicke	el (Ni)			
3		Copper (Cu)				
4	Termination	Conductive resin (Filler: Ag)				
5	remination	Nicke	l (Ni)			
6		Tin (Sn)				

10. PACKAGING

Packaging shall be done to protect the components from the damage during transportation and storing, and a label which has the following information shall be attached.

- 1) Total number of components in a plastic bag for bulk packaging : 1000pcs
- 2) Tape packaging is as per 14. TAPE PACKAGING SPECIFICATION.
 - (CGA2 [CC0402] types are applicable only to tape packaging.)
 - 1) Inspection No.
 - 2) TDK P/N
 - 3) Customer's P/N
 - 4) Quantity

*Composition of Inspection No.

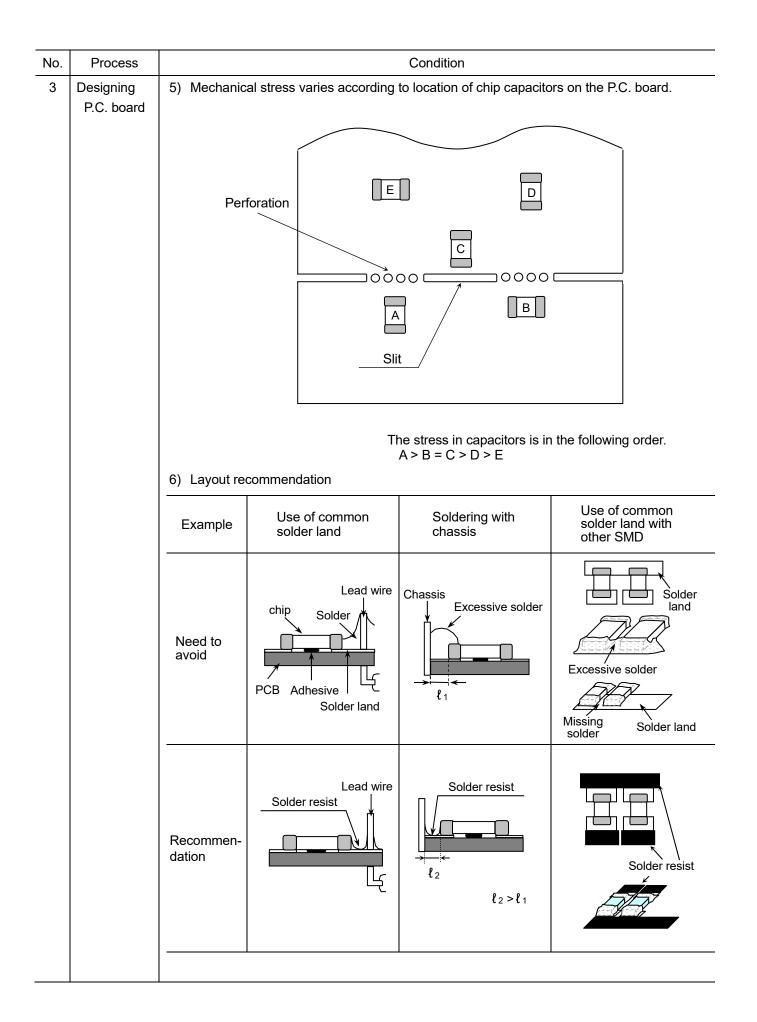
Example

- a) Line code
- b) Last digit of the year
- c) Month and A for January and B for February and so on. (Skip I)
- d) Inspection Date of the month.
- e) Serial No. of the day

11. RECOMMENDATION

As for CGA6 [CC1210] and larger, it is recommended to provide a slit (about 1mm width) in the board under the components to improve washing Flux. And please make sure to dry detergent up completely before.

12. SOLDERING CONDITION


As for CGA2 [CC0402], CGA6 [CC1210] and larger, reflow soldering only.

13. Caution

No.	Process	Condition
1	Operating Condition (Storage, Transportation)	 1-1. Storage The capacitors must be stored in an ambient temperature of 5 to 40°C with a relative humidity of 20 to 70%RH. The products should be used within 6 months upon receipt. The capacitors must be operated and stored in an environment free of dew condensation and these gases such as Hydrogen Sulphide, Hydrogen Sulphate, Chlorine, Ammonia and sulfur. Avoid storing in sun light and falling of dew. Do not use capacitors reliability. Capacitors should be tested for the solderability when they are stored for long time. Handling in transportation In case of the transportation of the capacitors, the performance of the capacitors may be deteriorated depending on the transportation condition. (Refer to JEITA RCR-2335C 9.2 Handling in transportation)
2	Circuit design ! Caution	 2-1. Operating temperature Operating temperature should be followed strictly within this specification, especially be careful with maximum temperature. 1) Do not use capacitors above the maximum allowable operating temperature. 2) Surface temperature including self heating should be below maximum operating temperature. (Due to dielectric loss, capacitors will heat itself when AC is applied. Especially at high frequencies around its SRF, the heat might be so extreme that it may damage itself or the product mounted on. Please design the circuit so that the maximum temperature of the capacitors including the self heating to be below the maximum allowable operating temperature. Temperature rise at capacitor surface shall be below 20°C) 3) The electrical characteristics of the capacitors will vary depending on the temperature into consideration. 2-2. Operating voltage across the terminals should be below the rated voltage. (When AC and DC are super imposed, Vo-P must be below the rated voltage. (When AC and DC are super imposed, Vo-P must be below the rated voltage. (AC or pulse with overshooting, VF-P must be below the rated voltage. (Pluster) When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage (1) DC voltage (2) DC+AC voltage (3) AC voltage Voltage (1) DC voltage (2) DC+AC voltage (3) AC voltage Voltage (4) Pulse voltage (A) (5) Pulse voltage (B) Voltage (4) Pulse voltage (A) (5) Pulse voltage (B) Voltage (4) Pulse voltage (A) (5) Pulse voltage (B) Voltage (4) Pulse voltage (A) (5) Pulse voltage (B) Voltage (4) Pulse voltage (A) (5) Pulse voltage (B) Voltage (4) Pulse voltage (A) (5) Pulse voltage (B)

No.	Process	Condition								
2	Circuit design ! Caution	2) Even below the rated voltage, if repetitive high frequency AC or pulse is applied, the reliability of the capacitors may be reduced.								
		3) The effective The capacito consideratior	rs should be							
			apacitors (Cla nay vibrate th							
3	Designing P.C. board	capacitors. 1) The greater t and the more shape and si terminations.	 The amount of solder at the terminations has a direct effect on the reliability of the capacitors. 1) The greater the amount of solder, the higher the stress on the chip capacitors, and the more likely that it will break. When designing a P.C. board, determine the shape and size of the solder lands to have proper amount of solder on the terminations. 							
		 Avoid using on solder land for so			ultiple te	rmina	ations and pro	ovide individual		
		3) Size and rec	ommended la	and dimensio	ns.					
				Chip capa	acitors	Solde	er land			
		Flow solde								
			CGA3	CG	A4		(mm) CGA5			
		Symbol	[CC0603]		,	-	CC1206]			
		A	0.7 - 1.0	1.0 -			2.1 - 2.5			
		В С	0.8 - 1.0	1.0 - 0.8 -			.1 - 1.3 .0 - 1.3			
			0.0 - 0.0	0.0 -	1.1		.0 - 1.5			
		Reflow sold		0040			0045	(mm)		
		Type Symbol	CGA2 [CC0402]	CGA3 [CC0603]	CGA [CC08		CGA5 [CC1206]			
		A	0.3 - 0.5	0.6 - 0.8	0.9 - 1	1.2	2.0 - 2.4	-		
		В	0.35 - 0.45	0.6 - 0.8	0.7 - (0.9	1.0 - 1.2			
		С	0.4 - 0.6	0.6 - 0.8	0.9 -	1.2	1.1 - 1.6	-		
		Туре	CGA6	CGA7	CGA	8	CGA9	CGAD		
		Symbol	[CC1210]	[CC1808]	[CC18		[CC2220]	[CC3025]		
		A	2.0 - 2.4	3.1 – 3.7	3.1 - 3	3.7	4.1 - 4.8	5.2 - 5.8		
		В	1.0 - 1.2	1.2 - 1.4	1.2 - 7	1.4	1.2 - 1.4	1.7 - 1.9		
		C	1.9 - 2.5	1.5 - 2.0	2.4 - 3	3.2	4.0 - 5.0	6.4 - 7.4		

No.	Process		Condition					
3	Designing P.C. board	4) Recor	4) Recommended chip capacitors layout is as following.					
				Disadvantage against bending stress	Advantage against bending stress			
			unting ace	Perforation or slit	Perforation or slit			
				Break P.C. board with mounted side up.	Break P.C. board with mounted side down.			
				Mount perpendicularly to perforation or slit	Mount in parallel with perforation or slit			
		Chip arrangement (Direction)	Perforation or slit	Perforation or slit				
				Closer to slit is higher stress	Away from slit is less stress			
			stance m slit	ℓ_1 ℓ_1 ℓ_1 ℓ_1 ℓ_1 $\ell_1 < \ell_2$)	ℓ_2			

No.	Process	Condition					
4	Mounting	 4-1. Stress from mounting head If the mounting head is adjusted too low, it may induce excessive stress in the chip capacitors to result in cracking. Please take following precautions. 1) Adjust the bottom dead center of the mounting head to reach on the P.C. board surface and not press it. 2) Adjust the mounting head pressure to be 1 to 3N of static weight. 3) To minimize the impact energy from mounting head, it is important to provide support from the bottom side of the P.C. board. See following examples. 					
		Not recommended Recommended					
		Single sided mounting					
		Double-sides mounting Solder peeling Crack					
		When the centering jaw is worn out, it may give mechanical impact on the capacitors to cause crack. Please control the close up dimension of the centering jaw and provide sufficient preventive maintenance and replacement of it.					
		4-2. Amount of adhesive					
		→ ° k → ° k					
		a 0.2mm min.					
		b 70 - 100μm					
		c Do not touch the solder land					

No.	Process		C	ondition		
5	Soldering	 5-1. Flux selection Although highly-activat activity may also degra degradation, it is recom 1) It is recommended to Strong flux is not reco 2) Excessive flux must b 3) When water-soluble f 5-2. Recommended sold Wave sold 	de the insulation mended followi o use a mildly a ommended. De avoided. Plea lux is used, eno ering profile by v	n of the chip cang. ctivated rosin f use provide pro ugh washing is	pacitors. To ave lux (less than 0 per amount of fl necessary.	oid such .1wt% chlorine lux.
		Peak Temp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Natural cooling → Over 60 sec.	Peak Temp (C) O O Ove	Preheating	Idering Natural cooling
		Manual s (Solde Peak Temp (D) di u U O O O O O O O O O O O O O O O O O O	r iron)	As for applie solder As for CGA6 only to	CGA2 [CC0402] ar [CC1210] ~ CGAD o reflow soldering.	and reflow nd [CC3025], applied
		5-3. Recommended sold	ering peak temp	and peak tem	p duration	
		Temp./Duration	Wave so		Reflow so	-
		Solder	Peak temp(°C)	Duration(sec.)	Peak temp(°C)	Duration(sec.)
		Sn-Pb Solder	250 max.	3 max.	230 max.	20 max.
		Lead Free Solder Recommended solde Sn-37Pb (Sn-Pb sol Sn-3.0Ag-0.5Cu (Le	der)	5 max.	260 max.	10 max.

No.	Process	Condition					
5	Soldering	5-4. Avoiding thermal shock					
		1) Preheating condition					
		Soldering		Туре		Temp. (°C)	
		Wave soldering	CGA3 [CC06	03], CGA4 [CC0805	5], CGA5 [CC120	6] ∆T ≤ 150	
		Reflow	CGA2 [CC04 CGA5 [CC12	02], CGA3 [CC0603 06]	3], CGA4 [CC080	^{5],} ∆T ≤ 150	
		soldering	CGA9 [CC22	10], CGA7 [CC1808 20], CGAD [CC302	5]		
		Manual	CGA2 [CC04 CGA5 [CC12	02], CGA3 [CC0603 06]	3], CGA4 [CC080	^{5],} ∆T ≤ 150	
		soldering	-	10], CGA7 [CC1808 20], CGAD [CC302		2], ∆T ≤ 130	
	- - 5-6.	5-5. Amount of solder Excessive sol	der will induc nanges and it r	lifference (∆T) mu e higher tensile nay result in chip e P.C. board.	force in chip	capacitors wh	
		Excessive solder				sile force in itors to cause	
		Adequate			Maximum amoun Minimum amount —	-	
		Insufficient solder				act failure or itors come off	
		land size. The high heat shock may Please make sur time in accordan	oldering iron tip of solder iron v gher the tip ten cause a crack i re the tip temp. ce with followir	aries by its type, F nperature, the quid n the chip capacit before soldering a ng recommended on in 5-4 to avoid t	cker the operation fors. and keep the per condition. (Plea	on. However, eak temp and se preheat the	
		Recommended	solder iron cor	dition (Sn-Pb Sol	der and Lead F	ree Solder)	
		Туре	Temp. (°C)	Duration (sec.)	Wattage (W)	Shape (mm)	
		CGA2 [CC0402] CGA3 [CC0603] CGA4 [CC0805] CGA5 [CC1206]	350 max.			~ ~ ~	
		CGA6 [CC1210]		3 max.	20 max.	Ø 3.0 max.	

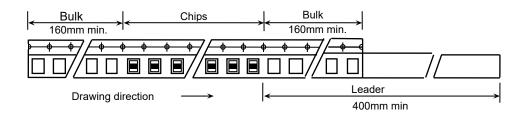
No.	Process	Condition
5	Soldering	 2) Direct contact of the soldering iron with ceramic dielectric of chip capacitors may cause crack. Do not touch the ceramic dielectric and the terminations by solder iron. 3) It is not recommended to reuse dismounted capacitors. 5-7. Sn-Zn solder Sn-Zn solder affects product reliability. Please contact TDK in advance when utilize Sn-Zn solder. 5-8. Countermeasure for tombstone The misalignment between the mounted positions of the capacitors and the land patterns should be minimized. The tombstone phenomenon may occur especially the capacitors are mounted (in longitudinal direction) in the same direction of the reflow soldering. (Refer to JEITA RCR-2335C Annex A (Informative) Recommendations to prevent the tombstone phenomenon)
6	Cleaning	 If an unsuitable cleaning fluid is used, flux residue or some foreign articles may stick to chip capacitors surface to deteriorate especially the insulation resistance. If cleaning condition is not suitable, it may damage the chip capacitors. Insufficient washing Terminal electrodes may corrode by Halogen in the flux.
		(2) Halogen in the flux may adhere on the surface of capacitors, and lower the insulation resistance.
		(3) Water soluble flux has higher tendency to have above mentioned problems (1) and (2).
		2)-2. Excessive washing
		When ultrasonic cleaning is used, excessively high ultrasonic energy output can affect the connection between the ceramic chip capacitor's body and the terminal electrode. To avoid this, following is the recommended condition.
		Power : 20 W/ • max.
		Frequency : 40 kHz max. Washing time : 5 minutes max.
		 2)-3. If the cleaning fluid is contaminated, density of Halogen increases, and it may bring the same result as insufficient cleaning.

No.	Process	Condition
7	Coating and molding of the P.C. board	 When the P.C. board is coated, please verify the quality influence on the product Please verify carefully that there is no harmful decomposing or reaction gas emission during curing which may damage the chip capacitors. Please verify the curing temperature.
8	Handling after chip mounted ! Caution	1) Please pay attention not to bend or distort the P.C. board after soldering in handling otherwise the chip capacitors may crack.
		 2) Printed circuit board cropping should not be carried out by hand, but by using the proper tooling. Printed circuit board cropping should be carried out using a board cropping jig as shown in the following figure or a board cropping apparatus of prevent inducing mechanical stress on the board. (1)Example of a board cropping jig Recommended example: The board should be pushed from the back sid close to the cropping jig so that the board is not bent and the stress applied the capacitor is compressive. Unrecommended example: If the pushing point is far from the cropping jig ar the pushing direction is from the front side of the board, large tensile stress applied to the capacitor, which may cause cracks.
		Outline of jig Printed circuit board Slot Printed circuit board Slot Printed components Components Components Components Components Components Components Components Components Slot Components Slot

No.	Process		Condition					
8	Handling after chip mounted ! Caution	 (2)Example of a board cropping machine An outline of a printed circuit board cropping machine is shown below. The top and bottom blades are aligned with one another along the lines with the V-grooves on printed circuit board when cropping the board. Unrecommended example: Misalignment of blade position between top and bottom, right and left, or front and rear blades may cause a crack in the capacitor. 						
			Outline of mach	Ton	To ted circuit board V-groove Bo Croc Printed circuit bo		blade	
		to be adju and benc	Recommended Top blade Board Board Bottom blade Ctional check of t sted higher for fe d the P.C. boar ns off. Please ad	ear of loose con rd, it may cra	tact. But if the ack the chip	Front-rear misalignment Top blade Bottom blade heck pin pressure pressure is exce capacitors or	essive peel the	
		Item	Not recon	nmended Termination peeling	Re	commended Support p		
		Board bending		Check pin			ck pin	
		Item Board		nmended Termination peeling			mmended Support p	

No.	Process	Condition
9	Handling of loose chip capacitors	 If dropped the chip capacitors may crack. Once dropped do not use it. Especially, the large case sized chip capacitors are tendency to have cracks easily, so please handle with care. Crack Floor Piling the P.C. board after mounting for storage or handling, the corner of the P.C. board more bit the chip capacitors of another beard to cause grade.
		board may hit the chip capacitors of another board to cause crack.
10	Capacitance aging	The capacitors (Class 2) have aging in the capacitance. They may not be used in precision time constant circuit. In case of the time constant circuit, the evaluation should be done well.
11	Estimated life and estimated failure rate of capacitors	As per the estimated life and the estimated failure rate depend on the temperature and the voltage. This can be calculated by the equation described in JEITA RCR-2335C Annex F (Informative) Calculation of the estimated lifetime and the estimated failure rate (Voltage acceleration coefficient : 3 multiplication rule, Temperature acceleration coefficient : 10°C rule) The failure rate can be decreased by reducing the temperature and the voltage but they will not be guaranteed.

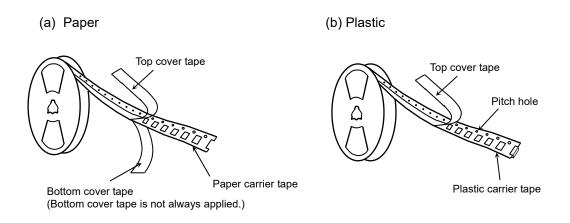
No.	Process	Condition
12	Caution during operation of equipment	 A capacitor shall not be touched directly with bare hands during operation in order to avoid electric shock. Electric energy held by the capacitor may be discharged through the human body when touched with a bare hand. Even when the equipment is off, a capacitor may stay charged. The capacitor should be handled after being completely discharged using a resistor.
		2) The terminals of a capacitor shall not be short-circuited by any accidental contact with a conductive object. A capacitor shall not be exposed to a conductive liquid such as an acid or alkali solution. A conductive object or liquid, such as acid and alkali, between the terminals may lead to the breakdown of a capacitor due to short circuit
		 3) Confirm that the environment to which the equipment will be exposed during transportation and operation meets the specified conditions. Do not to use the equipment in the following environments. (1) Environment where a capacitor is spattered with water or oil (2) Environment where a capacitor is exposed to direct sunlight (3) Environment where a capacitor is exposed to Ozone, ultraviolet rays or radiation (4) Environment where a capacitor exposed to corrosive gas(e.g. hydrogen sulfide, sulfur dioxide, chlorine. ammonia gas etc.) (5) Environment where a capacitor exposed to vibration or mechanical shock exceeding the specified limits. (6) Atmosphere change with causes condensation
13	Others ! Caution	The products listed on this specification sheet are intended for use in general electronic equipment (AV equipment, telecommunications equipment, home appliances, amusement equipment, computer equipment, personal equipment, office equipment, measurement equipment, industrial robots) and automotive application under a normal operation and use condition. The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or quality require a more stringent level of safety or reliability, or whose failure, malfunction or trouble could cause serious damage to society, person or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below or for any other use exceeding the range or conditions set forth in this specification, please contact us. (1) Aerospace/Aviation equipment (electric trains, ships, etc. except automotive application) (3) Medical equipment (Excepting Pharmaceutical Affairs Law classification Class1, 2) (4) Power-generation control equipment (8) Public information-processing equipment (9) Military equipment (10) Electric heating apparatus, burning equipment (11) Disaster prevention/crime prevention equipment (12) Safety equipment (13) Other applications that are not considered general-purpose applications, you are kindly requested to take into consideration securing protection circuit/device or providing backup circuits in your equipment.


14. TAPE PACKAGING SPECIFICATION

1. CONSTRUCTION AND DIMENSION OF TAPING

1-1. Dimensions of carrier tape

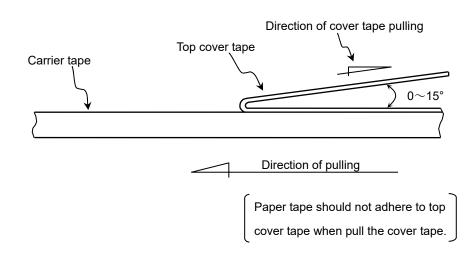
Dimensions of paper tape shall be according to Appendix 3, 4. Dimensions of plastic tape shall be according to Appendix 5, 6, 7.


1-2. Bulk part and leader of taping

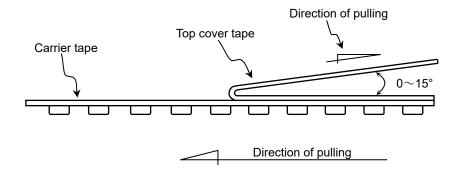
1-3. Dimensions of reel

Dimensions of Ø178 reel shall be according to Appendix 8, 9. Dimensions of Ø330 reel shall be according to Appendix 10, 11, 12.

1-4. Structure of taping

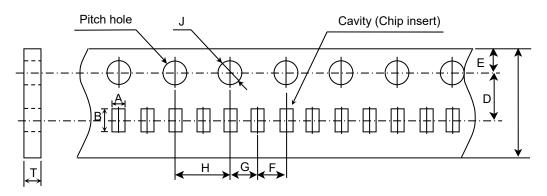


2. CHIP QUANTITY


As for chip quantity and taping material of each product, please refer to detailed information on TDK web.

3. PERFORMANCE SPECIFICATIONS

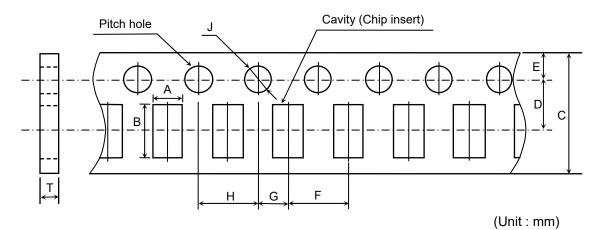
- 3-1. Fixing peeling strength (top tape)
 - 0.05 0.7N. (See the following figure.)


<Plastic>

- 3-2. Carrier tape shall be flexible enough to be wound around a minimum radius of 30mm with components in tape.
- 3-3. The missing of components shall be less than 0.1%
- 3-4. Components shall not stick to fixing tape.
- 3-5. The fixing tapes shall not protrude beyond the edges of the carrier tape not shall cover the sprocket holes.

<Paper>

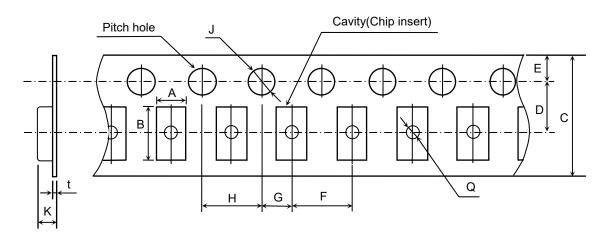
Paper Tape



(Unit : mm)

Symbol Type	А	В	С	D	E	F			
CGA2 [CC0402]	(0.65)	(1.15)	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	2.00 ± 0.05			
Symbol Type	G	Н	J	Т					
CGA2 [CC0402]	2.00 ± 0.05	4.00 ± 0.10	Ø 1.50 +0.10 0	0.60 ± 0.15					
()									

() Reference value.

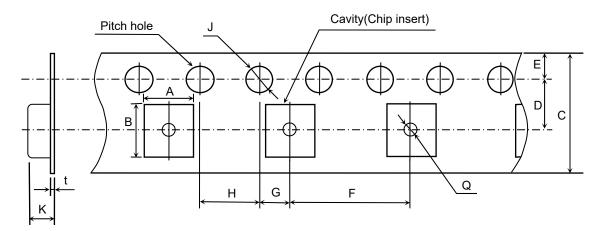

Paper Tape

						(- /
Symbol Type	А	В	С	D	E	F
CGA3 [CC0603]	(1.10)	(1.90)				
CGA4 [CC0805]	(1.50)	(2.30)	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	4.00 ± 0.10
CGA5 [CC1206]	(1.90)	(3.50)				
Symbol Type	G	Н	J	Т		
CGA3 [CC0603]						
CGA4 [CC0805]	2.00 ± 0.05	4.00 ± 0.10	Ø 1.50 +0.10 0	1.20 max.		
CGA5 [CC1206]						

() Reference value.

Plastic Tape

(Unit : mm)


Symbol Type	А	В	С	D	E	F
CGA4 [CC0805]	(1.50)	(2.30)	8 00 1 0 20	3.50 ± 0.05		
CGA5 [CC1206]	(1.90)	(3.50)	8.00 ± 0.30 * 12.00 ± 0.30	3.50 ± 0.05 $*5.50 \pm 0.05$	1.75 ± 0.10	4.00 ± 0.10
CGA6 [CC1210]	(2.90)	(3.60)	12.00 ± 0.00	*0.00 ± 0.00		
Symbol Type	G	Н	J	К	t	Q
CGA4 [CC0805]				2.50 max.		
CGA5 [CC1206]	2.00 ± 0.05	4.00 ± 0.10	Ø 1.50 +0.10 0	2.50 max.	0.60 max.	Ø 0.50 min.
CGA6 [CC1210]				3.40 max.		

() Reference value.

Exceptionally no hole in the cavity is applied. Please inquire if hole in cavity is mandatory.

* Applied to 2.5mm thickness products.

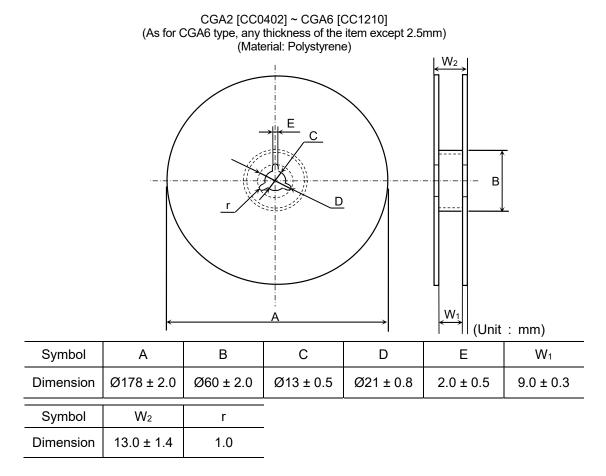
Plastic Tape



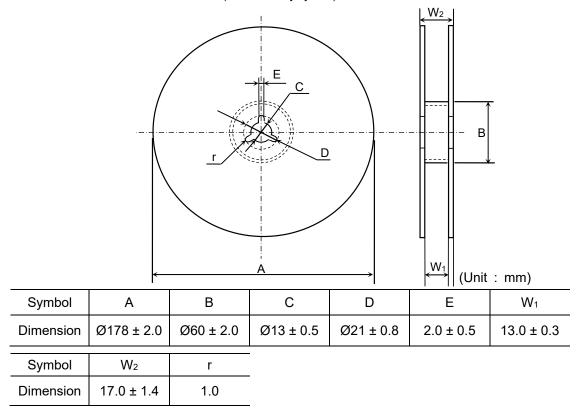
(Unit : mm)

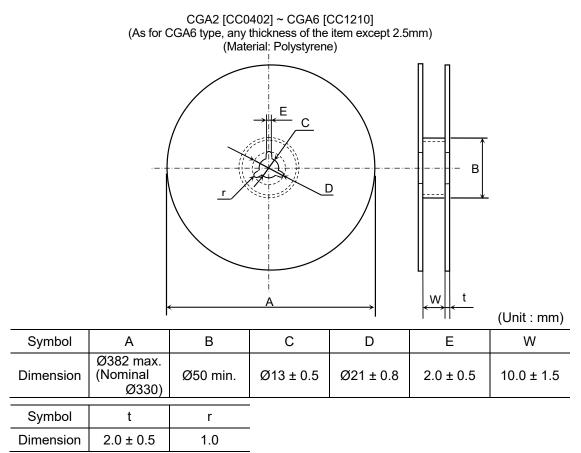
Symbol Type	А	В	С	D	E	F
CGA7 [CC1808]	(2.50)	(5.10)				
CGA8 [CC1812]	(3.60)	(4.90)	12.00 ± 0.30	5.50 ± 0.05	1.75 ± 0.10	8.00 ± 0.10
CGA9 [CC2220]	(5.40)	(6.10)				
Symbol Type	G	Н	J	К	t	Q
CGA7 [CC1808]						
CGA8	0.00.005	4 00 1 0 40	Ø 1.50 +0.10	6.50 max.	0.60 max.	Ø 1.50 min.
[CC1812]	2.00 ± 0.05	4.00 ± 0.10	0 0	0.50 max.	0.00 max.	Ø 1.00 mm.

() Reference value.

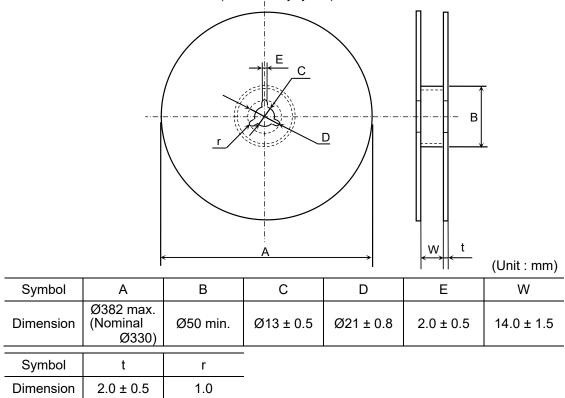

Plastic Tape

(Unit : mm)


Symbol Type	А	В	С	D	E	F			
CGAD [CC3025]	(6.9)	(8.0)	16.0 ± 0.3	7.5 ± 0.1	1.75 ± 0.1	12.0 ± 0.1			
Symbol Type	G	Н	J	К	t				
CGAD [CC3025]	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 +0.10 0	6.50 max.	0.60 max.				


() Reference value.

Appendix 9


CGA6 [CC1210] ~ CGA9 [CC2220] (As for CGA6 type, applied to 2.5mm thickness products) (Material: Polystyrene)

Appendix 11

CGA6 [CC1210] ~ CGA9 [CC2220] (As for CGA6 type, applied to 2.5mm thickness products) (Material: Polystyrene)

		Арр	bendix '	12					
	C7563 [CC3025]								
		(Mat	erial : Polystyrer	ne)					
		r			B B 	- (Unit : mm)			
Symbol	А	В	С	D	E	W			
Dimension	Ø382 max. (Nominal Ø330)	Ø50 min.	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	17.5 ± 1.5			
Symbol	t	r							
Dimension	2.0 ± 0.5	1.0							