

REF3012, REF3020, REF3025, REF3030, REF3033, REF3040

SBVS032H-MARCH 2002-REVISED FEBRUARY 2018

REF30xx 50-ppm/°C Max, 50-μA, CMOS Voltage Reference in SOT-23-3

Features

microSize Package: SOT-23-3

Low Dropout: 1 mV

High Output Current: 25 mA

High Accuracy: 0.2% Low I_O: 42 μA (Typical)

Excellent Specified Drift Performance:

50 ppm/°C (Maximum) From 0°C to 70°C

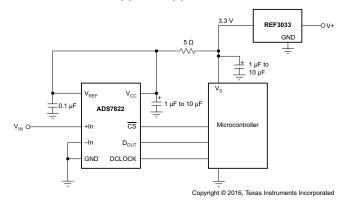
75 ppm/°C (Maximum) From –40°C to +125°C

Applications

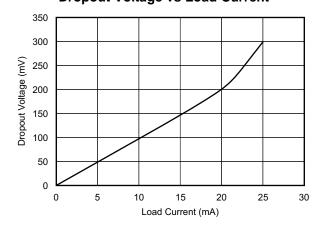
- Temperature and Pressure Transmitters
- Portable, Battery-Powered Equipment
- **Data Acquisition Systems**
- Medical Equipment
- Handheld Test Equipment

3 Description

The REF30xx is a precision, low-power, low-dropout voltage, reference family available in a tiny 3-pin SOT-23 package. The REF30xx offers excellent temperature drift and initial accuracy while operating at a quiescent current of 42 µA (typical).


The low power consumption and the relatively high precision make the REF30xx very attractive for looppowered industrial applications such as pressure and temperature transmitter applications. The REF30xx is easy to use in intrinsically safe and explosion-proof applications because it does not require a load capacitor to be stable. The REF30xx is specified over the extended industrial temperature range of -40°C to +125°C.

The REF30xx operates with supplies within 1 mV of output voltage under zero-load conditions. Engineers can use the low dropout, small size, and low power consumption of the REF30xx in portable and batterypowered applications.


Device Information

PART NUMBER	PACKAGE	BODY SIZE (NOM)
REF30xx	SOT-23 (3)	2.92 mm x 1.30 mm

Typical Application

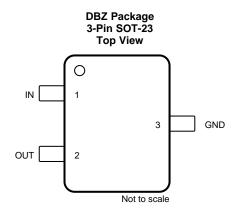
Dropout Voltage vs Load Current

Table of Co	ntents
-------------	--------

1	Features 1		8.4 Device Functional Modes	13
2	Applications 1	9	Application and Implementation	
3	Description 1		9.1 Application Information	
4	Revision History2		9.2 Typical Application	
5	Device Comparison Table	10	Power Supply Recommendations	17
6	Pin Configuration and Functions	11	Layout	17
7	Specifications 4		11.1 Layout Guidelines	17
•	7.1 Absolute Maximum Ratings 4		11.2 Layout Example	17
	7.2 ESD Ratings	12	Device and Documentation Support	18
	7.3 Recommended Operating Conditions		12.1 Documentation Support	18
	7.4 Thermal Information		12.2 Related Links	18
	7.5 Electrical Characteristics 5		12.3 Receiving Notification of Documentation Update	es 18
	7.6 Typical Characteristics		12.4 Community Resources	18
8	Detailed Description 11		12.5 Trademarks	18
•	8.1 Overview		12.6 Electrostatic Discharge Caution	18
	8.2 Functional Block Diagram 11		12.7 Glossary	18
	8.3 Feature Description	13	Mechanical, Packaging, and Orderable Information	19

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


С	hanges from Revision G (November 2015) to Revision H	Page
•	Changed section header From: REF33xx (REF3312, REF3318, REF3320, REF3325, REF3330, REF3333) To: REF30xx (REF3012, REF3020, REF3025, REF3030, REF30333, REF3040) in the <i>Electrical Characteristics</i>	6
•	Added turnon settling time TYP value of 120 µs (deleted by mistake in the previous revision)	6
•	Added NOTE to the Application and Implementation section	15
•	Added Device Information, ESD Ratings, Recommended Operating Conditions, and Thermal Information tables	
_	Changes from Revision F (August 2008) to Revision G	Page
•	Added Detailed Description, Applications and Implementation, Power-Supply Recommendations, Layout, Device	
		4
	and Documentation Support, and Mechanical, Packaging, and Orderable Information sections	
•	and Documentation Support, and Mechanical, Packaging, and Orderable Information sections	
•	and Documentation Support, and Mechanical, Packaging, and Orderable Information sections	1

5 Device Comparison Table

PART NUMBER	VOLTAGE (V)
REF3012	1.25
REF3020	2.048
REF3025	2.5
REF3030	3.0
REF3033	3.3
REF3040	4.096

6 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION	
NO.	NAME	1/0	DESCRIPTION	
1	IN	Input	Input supply voltage	
2	OUT	Output	Reference output voltage	
3	GND	_	Ground	

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

	MIN	MAX	UNIT
Supply voltage, V+ to V-		7.0	V
Output short-circuit current ⁽²⁾	Continuous		
Operating temperature	-40	125	°C
Junction temperature		150	°C
Storage temperature, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
V	Floatractatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±4000	.,
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

at $T_A = 25$ °C, $V_{IN} = 5$ V, and $I_{LOAD} = 0$ mA (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V_{IN}	Input voltage	V _{REF} + 0.05 ⁽¹⁾		5.5	V
I _{LOAD}	Load current			25	mA
T _A	Operating temperature	-40		125	°C

⁽¹⁾ For I_I > 0, see *Typical Characteristics*. Minimum supply voltage for REF3012 is 1.8 V .

7.4 Thermal Information

		REF30xx	
	THERMAL METRIC ⁽¹⁾	DBZ (SOT-23)	UNIT
		3 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	297.3	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	128.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	91.7	°C/W
ΨЈТ	Junction-to-top characterization parameter	12.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	90.3	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Submit Documentation Feedback

⁽²⁾ Short circuit to ground.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.5 Electrical Characteristics

at $T_A = 25$ °C, $V_{IN} = 5$ V, and $I_{LOAD} = 0$ mA (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
REF3012	! (1.25 V) ⁽¹⁾					
V _{OUT}	Output voltage		1.2475	1.25	1.2525	V
	Initial accuracy				0.2%	
	0	f = 0.1 Hz to 10 Hz		14		μV_{PP}
	Output voltage noise	f = 10 Hz to 10 kHz		42		μVrms
	Line regulation	1.8 V ≤ V _{IN} ≤ 5.5 V		60	190	μV/V
REF3020	(2.048 V)					
V _{OUT}	Output voltage		2.044	2.048	2.052	V
	Initial accuracy				0.2%	
	0	f = 0.1 Hz to 10 Hz		23		μV_{PP}
	Output voltage noise	f = 10 Hz to 10 kHz		65		μVrms
	Line regulation	V_{REF} + 50 mV \leq V_{IN} \leq 5.5 V		110	290	μV/V
REF3025	(2.5 V)					
V _{OUT}	Output voltage		2.495	2.50	2.505	V
	Initial accuracy				0.2%	
	0.1.1.1	f = 0.1 Hz to 10 Hz		28		μV_{PP}
	Output voltage noise	f = 10 Hz to 10 kHz		80		μVrms
	Line regulation	V_{REF} + 50 mV \leq V_{IN} \leq 5.5 V		120	325	μV/V
REF3030	(3.0 V)					
V _{OUT}	Output voltage		2.994	3.0	3.006	V
	Initial accuracy				0.2%	
	0.1.1.1	f = 0.1 Hz to 10 Hz		33		μV_{PP}
	Output voltage noise	f = 10 Hz to 10 kHz		94		μVrms
	Line regulation	V _{REF} + 50 mV ≤ V _{IN} ≤ 5.5 V		120	375	μV/V
REF3033	(3.3 V)					
V _{OUT}	Output voltage		3.294	3.30	3.306	V
	Initial accuracy				0.2%	
	0	f = 0.1 Hz to 10 Hz		36		μV_{PP}
	Output voltage noise	f = 10 Hz to 10 kHz		105		μVrms
	Line regulation	V _{REF} + 50 mV ≤ V _{IN} ≤ 5.5 V		130	400	μV/V
REF3040	(4.096 V)					
V _{OUT}	Output voltage		4.088	4.096	4.104	V
	Initial accuracy				0.2%	
	Outrot valtage as a sign	f = 0.1 Hz to 10 Hz		45		μV_{PP}
	Output voltage noise	f = 10 Hz to 10 kHz		128		μVrms
	Line regulation	$V_{REF} + 50 \text{ mV} \le V_{IN} \le 5.5 \text{ V}$		160	410	μV/V

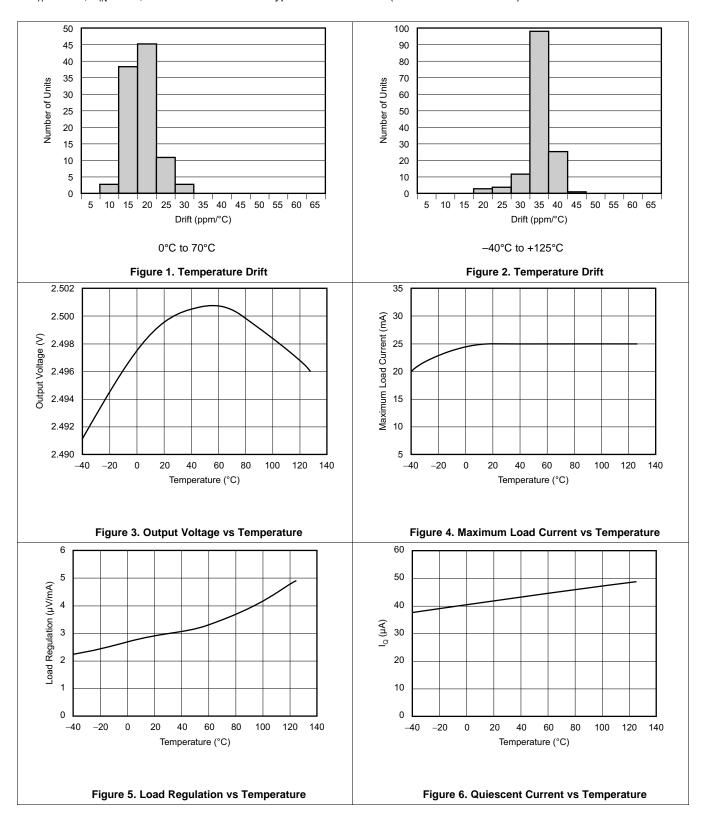
⁽¹⁾ The minimum supply voltage for the REF3012 is 1.8 V.

Electrical Characteristics (continued)

at $T_A = 25$ °C, $V_{IN} = 5$ V, and $I_{LOAD} = 0$ mA (unless otherwise noted)

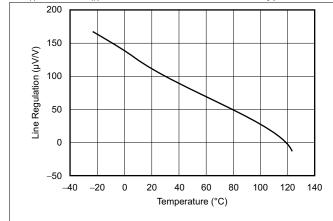
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
REF30xx (R	EF3012, REF3020, REF3025, REF30	30, REF30333, REF3040)				
		0°C ≤ T _A ≤ 70°C		20	50	10.0
D. / / IT	0.4.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	-30°C ≤ T _A ≤ +85°C		28	60	
dV _{OUT} /dT	Output voltage temperature drift ⁽²⁾	-40°C ≤ T _A ≤ +85°C		30	65	ppm/°C
		-40°C ≤ T _A ≤ +125°C		35	75	
	Louis de sons de la litte.	0000h to 1000h		24		ppm
	Long-term stability	1000h to 2000h		15		
$\Delta V_{O(\Delta IL)}$	Load regulation (3)	$0 \text{ mA} < I_{LOAD} < 25 \text{ mA}, V_{IN} = V_{REF} + 500 \text{ mV}^{(1)}$		3	100	μV/mA
dT	Thermal hysteresis ⁽⁴⁾			25	100	ppm
$V_{IN} - V_{OUT}$	Dropout voltage			1	50	mV
I _{SC}	Short-circuit current			45		mA
	Turnon settling time	To 0.1% with $C_L = 1 \mu F$		120		μs
POWER SU	PPLY				•	
	0			42	50	
IQ	Quiescent current	-40°C ≤ T _A ≤ +125°C			59	μΑ

⁽²⁾ Box method used to determine over temperature drift.


⁽³⁾ Typical value of load regulation reflects measurements using a force and sense contacts; see *Load Regulation* section.

⁽⁴⁾ Thermal hysteresis procedure explained in more detail in *Thermal Hysteresis* section.

7.6 Typical Characteristics


at $T_A = 25$ °C, $V_{IN} = 5$ V, and REF3025 used for typical characteristics (unless otherwise noted)

TEXAS INSTRUMENTS

Typical Characteristics (continued)

at T_A = 25°C, V_{IN} = 5 V, and REF3025 used for typical characteristics (unless otherwise noted)

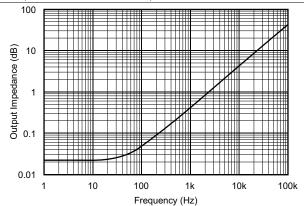
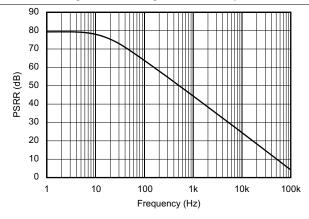



Figure 7. Line Regulation vs Temperature

Figure 8. Output Impedance vs Frequency

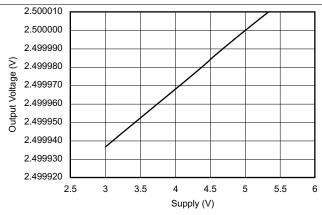
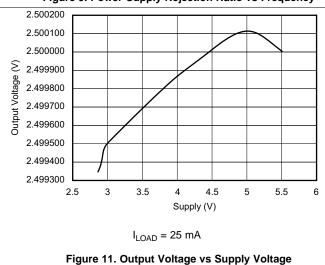



Figure 9. Power-Supply Rejection Ratio vs Frequency

Figure 10. Output Voltage vs Supply Voltage

No Load

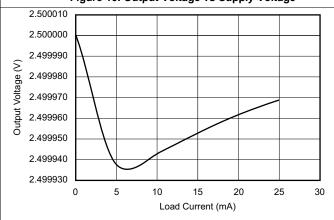
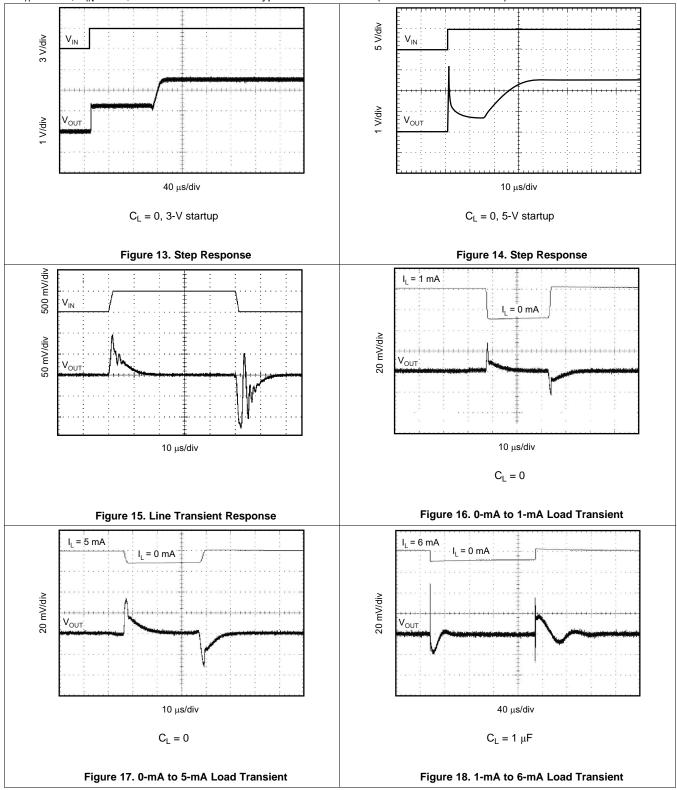



Figure 12. Output Voltage vs Load Current

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_{IN} = 5$ V, and REF3025 used for typical characteristics (unless otherwise noted)

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_{IN} = 5$ V, and REF3025 used for typical characteristics (unless otherwise noted)

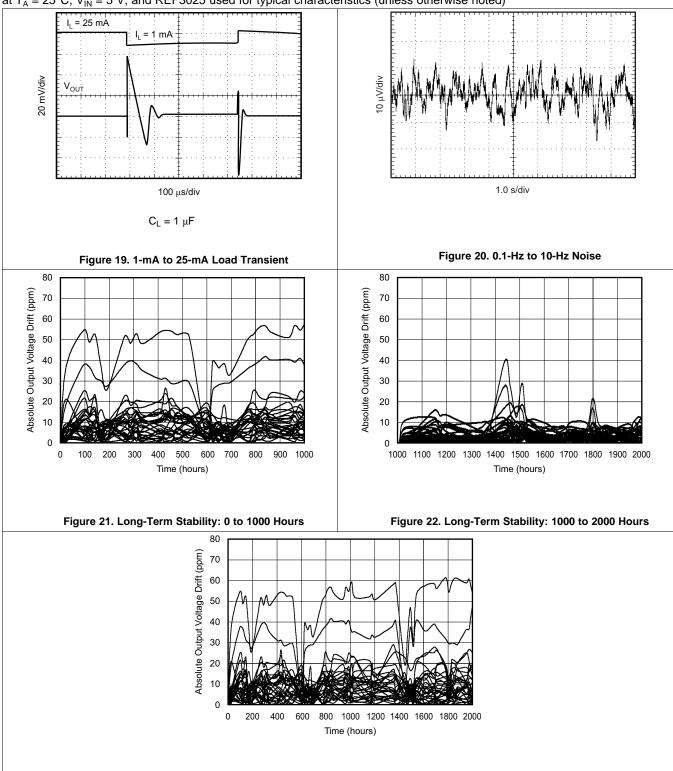
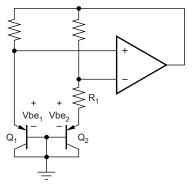


Figure 23. Long-Term Stability: 0 to 2000 Hours



8 Detailed Description

8.1 Overview

The REF30xx is a series, CMOS, precision bandgap voltage reference. Its basic topology is shown in the *Functional Block Diagram* section. Transistors Q_1 and Q_2 are biased so that the current density of Q_1 is greater than that of Q_2 . The difference of the two base-emitter voltages, $Vbe_1 - Vbe_2$, has a positive temperature coefficient and is forced across resistor R_1 . This voltage is gained up and added to the base-emitter voltage of Q_2 , which has a negative coefficient. The resulting output voltage is virtually independent of temperature. The curvature of the bandgap voltage, as shown in Figure 3, is due to the slightly nonlinear temperature coefficient of the base-emitter voltage of Q_2 .

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Supply Voltage

The REF30xx family of references features an extremely low dropout voltage. With the exception of the REF3012, which has a minimum supply requirement of 1.8 V, the REF30xx can be operated with a supply of only 1 mV above the output voltage in an unloaded condition. For loaded conditions, a typical dropout voltage versus load is shown on the front page.

The REF30xx features a low quiescent current that is extremely stable over changes in both temperature and supply. The typical room temperature quiescent current is 42 μ A, and the maximum quiescent current over temperature is just 59 μ A. Additionally, the quiescent current typically changes less than 2.5 μ A over the entire supply range, as shown in Figure 24.

Supply voltages below the specified levels can cause the REF30xx to momentarily draw currents greater than the typical quiescent current. Use a power supply with a fast rising edge and low output impedance to easily prevent this issue.

Feature Description (continued)

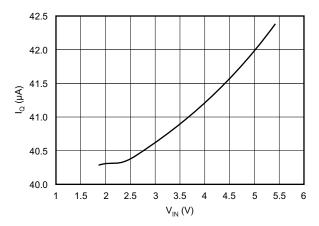


Figure 24. Supply Current vs Supply Voltage

8.3.2 Thermal Hysteresis

Thermal hysteresis for the REF30xx is defined as the change in output voltage after operating the device at 25°C, cycling the device through the specified temperature range, and returning to 25°C, and can be expressed as shown in Equation 1:

$$V_{HYST} = \left(\frac{abs|V_{PRE} - V_{POST}|}{V_{NOM}}\right) \cdot 10^6 \text{ (ppm)}$$

where

- V_{HYST} = Calculated hysteresis
- V_{PRE} = Output voltage measured at 25°C pretemperature cycling
- V_{POST} = Output voltage measured when device has been operated at 25°C, cycled through specified range of -40°C to +125°C, and returned to operation at 25°C.

8.3.3 Temperature Drift

The REF30xx exhibits minimal drift error, defined as the change in output voltage over varying temperature. Using the *box* method of drift measurement, the REF30xx features a typical drift coefficient of 20 ppm from 0°C to 70°C, the primary temperature range of use for many applications. For industrial temperature ranges of –40°C to +125°C, the REF30xx family drift increases to a typical value of 50 ppm.

8.3.4 Noise Performance

The REF30xx generates noise less than 50 μ V_{PP} between frequencies of 0.1 Hz to 10 Hz, and can be seen in Figure 20 The noise voltage of the REF30xx increases with output voltage and operating temperature. Additional filtering may be used to improve output noise levels; however, ensure the output impedance does not degrade AC performance.

8.3.5 Long-Term Stability

Long-term stability refers to the change of the output voltage of a reference over a period of months or years. This effect lessens as time progresses as is apparent by the long-term stability curves. The typical drift value for the REF30xx is 24 ppm from 0 hours to 1000 hours, and 15 ppm from 1000 hours to 2000 hours. This parameter is characterized by measuring 30 units at regular intervals for a period of 2000 hours.

Feature Description (continued)

8.3.6 Load Regulation

Load regulation is defined as the change in output voltage as a result of changes in load current. Load regulation for the REF30xx is measured using force and sense contacts as shown in Figure 25. The force and sense lines tied to the contact area of the output pin reduce the impact of contact and trace resistance, resulting in accurate measurement of the load regulation contributed solely by the REF30xx. For applications requiring improved load regulation, use force and sense lines.

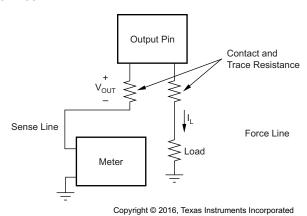
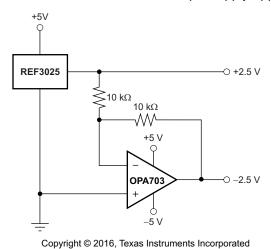



Figure 25. Accurate Load Regulation of REF30xx

8.4 Device Functional Modes

8.4.1 Negative Reference Voltage

For applications requiring a negative and positive reference voltage, the OPA703 and REF30xx can be used to provide a dual-supply reference from a ±5-V supply. Figure 26 shows the REF3025 used to provide a ±2.5-V supply reference voltage. The low offset voltage and low drift of the OPA703 complement the low drift performance of the REF30xx to provide an accurate solution for split-supply applications.

..., 3

Figure 26. REF3025 Combined With OPA703 to Create Positive and Negative Reference Voltages.

Device Functional Modes (continued)

8.4.2 Data Acquisition

Often data acquisition systems require stable voltage references to maintain necessary accuracy. The REF30xx family features stability and a wide range of voltages suitable for most microcontrollers and data converters. Figure 27 and Figure 28 show two basic data acquisition systems.

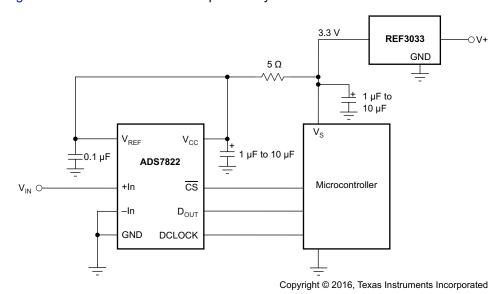


Figure 27. Basic Data Acquisition System 1

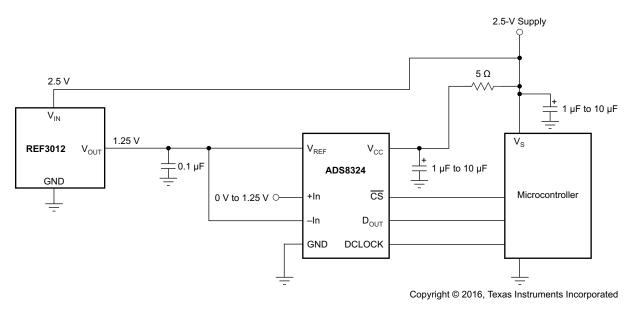
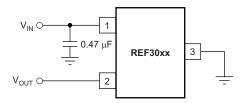


Figure 28. Basic Data Acquisition System 2


9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

For normal operation, the REF30xx does not require a capacitor on the output. If a capacitive load is connected, take special care when using low equivalent series resistance (ESR) capacitors and high capacitance. This precaution is especially true for low-output voltage devices; therefore, for the REF3012 use a low-ESR capacitance of 10 μ F or less. Figure 29 shows the typical connections required for operation of the REF30xx. A supply bypass capacitor of 0.47 μ F is always recommended.

Copyright © 2016, Texas Instruments Incorporated

Figure 29. Typical Connections for Operating REF30xx

9.2 Typical Application

Figure 30 shows a low-power reference and conditioning circuit. This circuit attenuates and level-shifts a bipolar input voltage within the proper input range of a single-supply low power 16-Bit $\Delta\Sigma$ ADC, such as the one inside the MSP430 or other similar single-supply ADCs. Precision reference circuits are used to level-shift the input signal, provide the ADC reference voltage and to create a well-regulated supply voltage for the low-power analog circuitry. A low-power, zero-drift, op-amp circuit is used to attenuate and level-shift the input signal.

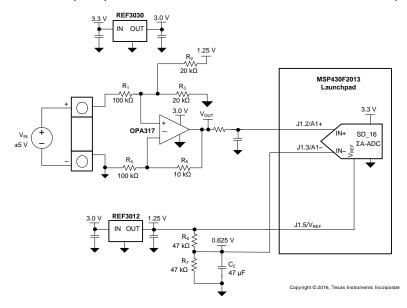
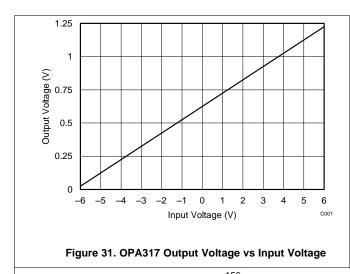


Figure 30. Low-Power Reference and Bipolar Voltage Conditioning Circuit for Low-Power ADCs

Typical Application (continued)

9.2.1 Design Requirements

Supply Voltage: 3.3 V


Maximum Input Voltage: ±6 V
 Specified Input Voltage: ±5 V
 ADC Reference Voltage: 1.25 V

The goal for this design is to accurately condition a ± 5 -V bipolar input voltage into a voltage suitable for conversion by a low-voltage ADC with a 1.25-V reference voltage, V_{REF} , and an input voltage range of V_{REF} / 2. The circuit should function with reduced performance over a wider input range of at least ± 6 V to allow for easier protection of overvoltage conditions.

9.2.2 Detailed Design Procedure

Figure 30 depicts a simplified schematic for this design showing the MSP430 ADC inputs and full input conditioning circuitry. The ADC is configured for a bipolar measurement where final conversion result is the differential voltage between the voltage at the positive and negative ADC inputs. The bipolar, GND-referenced input signal must be level-shifted and attenuated by the op amp so that the output is biased to VREF / 2 and has a differential voltage that is within the ±VREF / 2 input range of the ADC.

9.2.3 Application Curves

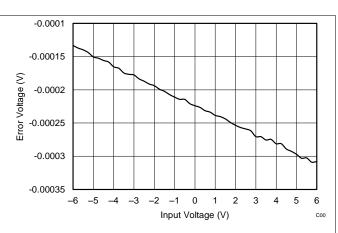


Figure 32. OPA317 Output Voltage Error vs Input Voltage

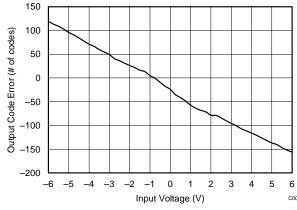


Figure 33. Output Code Error vs Input Voltage

10 Power Supply Recommendations

The REF30xx family of references feature an extremely low-dropout voltage. These references can be operated with a supply of only 50 mV above the output voltage. For loaded reference conditions, a typical dropout voltage versus load is shown in the front page plot, *Dropout Voltage vs Load Current*. Use a supply bypass capacitor greater than 0.47 µF.

11 Layout

11.1 Layout Guidelines

Figure 34 illustrates an example of a printed-circuit board (PCB) layout using the REF30xx. Some key considerations are:

- Connect low-ESR, 0.1-μF ceramic bypass capacitors at V_{IN} of the REF30xx
- Decouple other active devices in the system per the device specifications
- Use a solid ground plane to help distribute heat and reduces electromagnetic interference (EMI) noise pickup
- Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring
- Minimize trace length between the reference and bias connections to the INA and ADC to reduce noise pickup
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when absolutely necessary

11.2 Layout Example

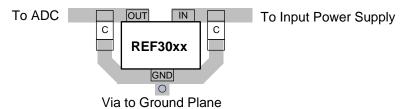


Figure 34. Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

CMOS, Rail-to-Rail, I/O Operational Amplifiers (SBOS180)

REF29xx 100 ppm/°C, 50 µA in 3-Pin SOT-23 CMOS Voltage Reference (SBVS033)

12.2 Related Links

Table 1 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

SUPPORT & TOOLS & PRODUCT FOLDER **PARTS SAMPLE & BUY** COMMUNITY **DOCUMENTS SOFTWARE** REF3012 Click here Click here Click here Click here Click here REF3020 Click here Click here Click here Click here Click here REF3025 Click here Click here Click here Click here Click here REF3030 Click here Click here Click here Click here Click here REF3033 Click here Click here Click here Click here Click here REF3040 Click here Click here Click here Click here Click here

Table 1. Related Links

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2002–2018, Texas Instruments Incorporated

Submit Documentation Feedback

7-Mar-2019

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
REF3012AIDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30A	Sample
REF3012AIDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30A	Sample
REF3012AIDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30A	Sample
REF3012AIDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30A	Sample
REF3020AIDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30B	Sample
REF3020AIDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30B	Sample
REF3020AIDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30B	Sample
REF3020AIDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30B	Sample
REF3025AIDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30C	Sample
REF3025AIDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30C	Sample
REF3025AIDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30C	Sample
REF3025AIDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30C	Sample
REF3030AIDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30F	Sample
REF3030AIDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30F	Sample
REF3030AIDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30F	Sample
REF3030AIDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30F	Sample
REF3033AIDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30D	Sample

PACKAGE OPTION ADDENDUM

7-Mar-2019

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
REF3033AIDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	(6) CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30D	Samples
REF3033AIDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30D	Samples
REF3033AIDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30D	Samples
REF3040AIDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30E	Samples
REF3040AIDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30E	Samples
REF3040AIDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	R30E	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: Til defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

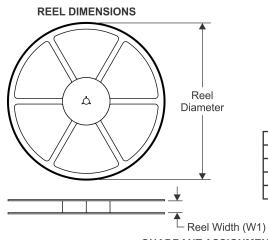
7-Mar-2019

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF REF3033:

Automotive: REF3033-Q1


NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

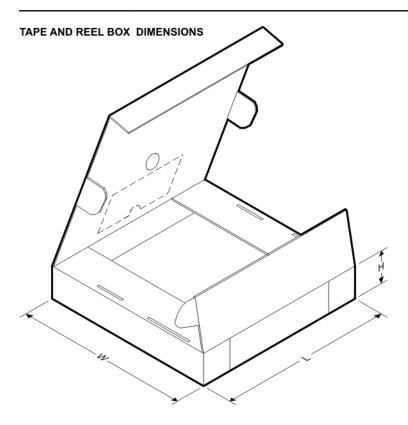
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017

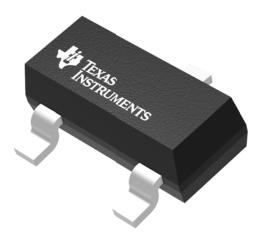
TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity A0

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

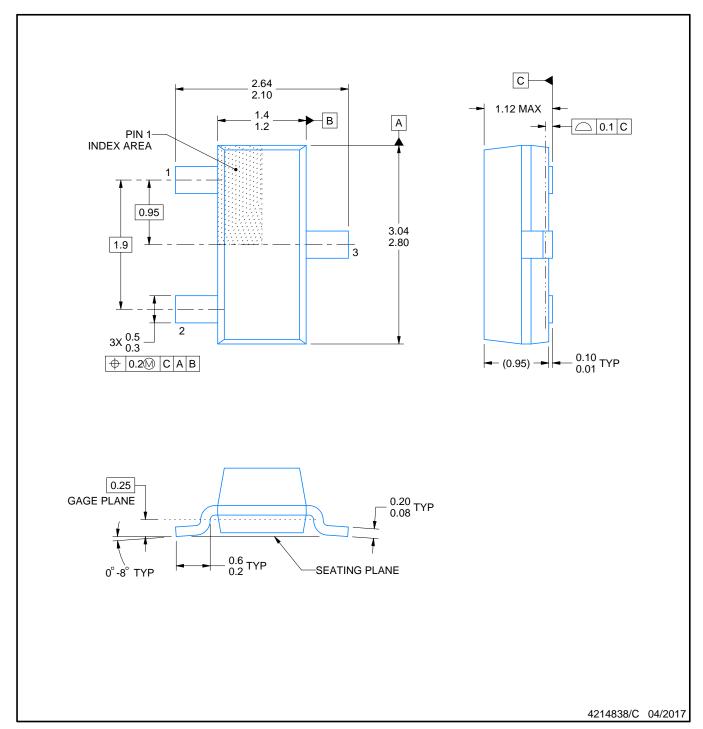
*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
REF3012AIDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3012AIDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3020AIDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3020AIDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3025AIDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3025AIDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3030AIDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3030AIDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3033AIDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3033AIDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3040AIDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
REF3040AIDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3

www.ti.com 3-Aug-2017

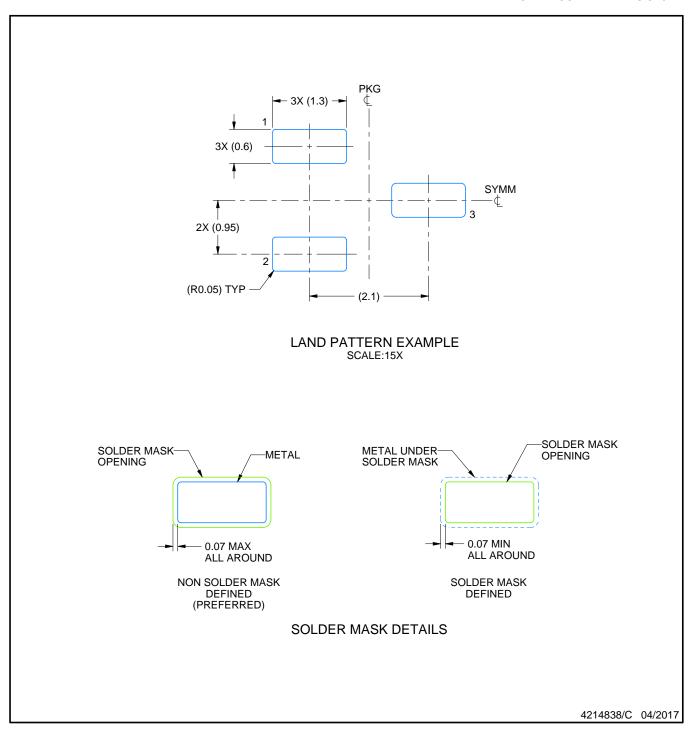
*All dimensions are nominal

7 til dillionorono dro nominar							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
REF3012AIDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
REF3012AIDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
REF3020AIDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
REF3020AIDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
REF3025AIDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
REF3025AIDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
REF3030AIDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
REF3030AIDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
REF3033AIDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
REF3033AIDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
REF3040AIDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
REF3040AIDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4203227/C

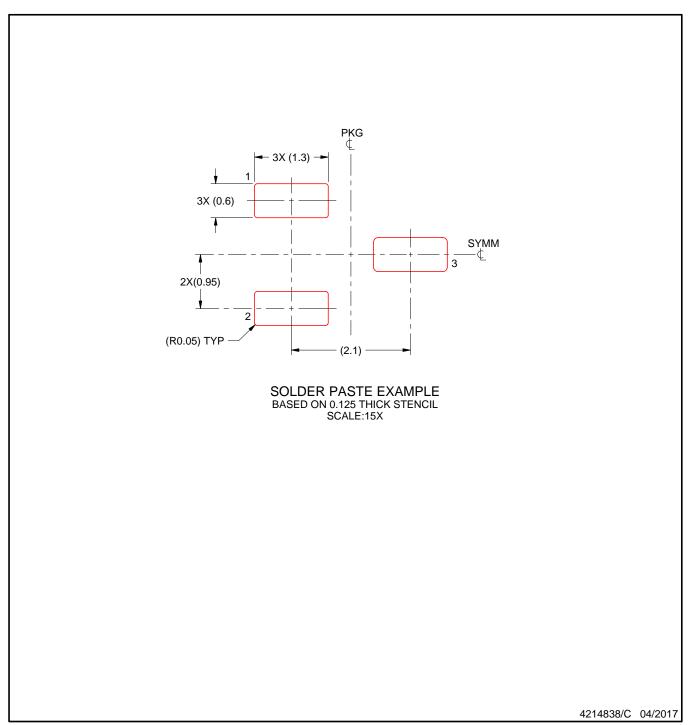
SMALL OUTLINE TRANSISTOR



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration TO-236, except minimum foot length.

SMALL OUTLINE TRANSISTOR



NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.

