SPECIFICATION

SPEC. No. A-High-d

D A T E : Aug , 2018

To

Non-Controlled Copy

CUSTOMER'S PRODUCT NAME

TDK'S PRODUCT NAME

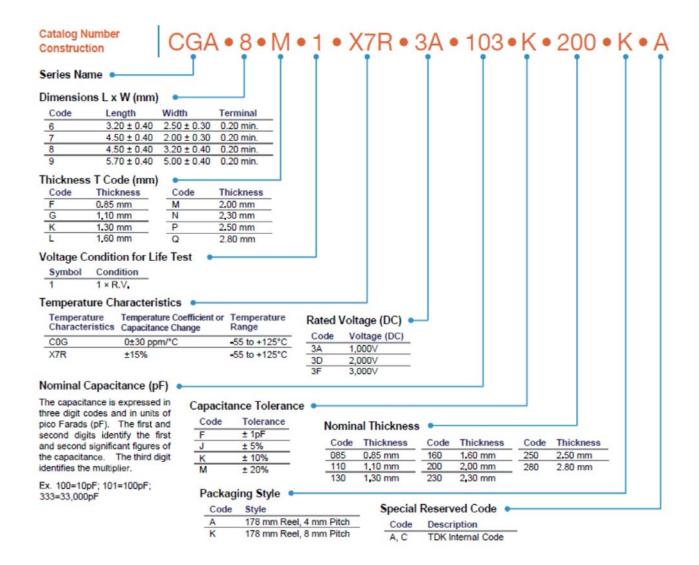
Multilayer Ceramic Chip Capacitors
High Voltage Series
Bulk and Tape packaging 【RoHS compliant】
CGA6,CGA7,CGA8,CGA9 Type
C0G,X7R Characteristics

Please return this specification to TDK representatives with your signature. If orders are placed without returned specification, please allow us to judge that specification is accepted by your side.

RECEIPT CONFIRMATION

DATE: YEAR MONTH DAY

Test conditions in this specification based on AEC-Q200 for automotive application.


TDK Corporation

Sales Engineering

Electronic Components Electronic Components Business Company Sales & Marketing Group Ceramic Capacitors Business Group

APPROVED	Person in charge

APPROVED	CHECKED	Person in charge

1. SCOPE

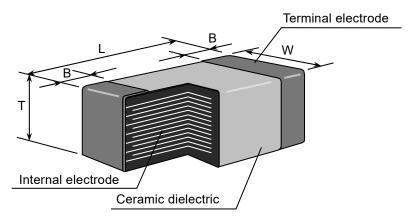
This specification is applicable to chip type multilayer ceramic capacitors with a priority over the other relevant specifications.

Production places defined in this specification shall be TDK Corporation Japan,

TDK(Suzhou)Co.,Ltd and TDK Components U.S.A. Inc.

EXPLANATORY NOTE:

This specification warrants the quality of the ceramic chip capacitor. Capacitors should be evaluated or confirmed a state of mounted on your product.


If the use of capacitors goes beyond the bounds of this specification, we can not afford to guarantee.

2. CODE CONSTRUCTION

(Example)	CGA	6	М	1	C0G	3 A	102	J	Τ	0000
	CGA	8	<u>K</u>	1	X7R	3 D	222	M	<u>T</u>	0000
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)

(1) Series Symbol Series CGA For automotive application

(2) Type

Case size	Туре	Dimensions (Unit : mm)			
Symbol	(EIA style)	L	W	Т	В
6	CGA6	0.00.0.40	2.00±0.20	0.20 min.	
U	(CC1210)	3.20±0.40	2.50±0.30	2.50±0.30	0.20 11111.
				0.85±0.15	
	001-			1.10±0.20	0.20 min.
7	7 CGA7 (CC1808)	4.50±0.40	2.00±0.20	1.30±0.20	
				1.60±0.20	
				2.00±0.20	
	8 CGA8 (CC1812)	7 50+0 70		1.30±0.20	
0			3.20±0.40	1.60±0.20	0.20 min.
0			3.20±0.40	2.00±0.20	0.20 11111.
				2.50±0.30	
9	CGA9 (CC2220)	5.70±0.40	5.00±0.40	2.80±0.30	0.20 min.

^{*}As for each item, please refer to the table A in the end of the specification.

(3) Thickness

Thickness	Dimension(mm)
F	0.85
G	1.10
K	1.30
ı	1 60

Thickness	Dimension(mm)
М	2.00
Р	2.50
Q	2.80
Q	2.80

(4) Voltage condition in the life test

* Details are shown in table1 No.16 at 8.PERFORMANCE.

Sign	Condition
1	Rated Voltage

(5) Temperature Characteristics

* Details are shown in table 1 No.6 and No.7 at 8.PERFORMANCE.

(6) Rated Voltage

Symbol	Rated Voltage
3 A	DC 1kV
3 D	DC 2kV
3 F	DC 3kV

(7) Rated Capacitance

Stated in three digits and in units of pico farads (pF). The first and second digits identify the first and second significant figures of the capacitance, the third digit identifies the multiplier.

(Example)	Symbol	Rated Capacitance
·-	101	100 pF
_	222	2,200 pF

(8) Capacitance tolerance

Symbol	Tolerance	Capacitance
F	± 1 pF	10pF
J	± 5%	
K	± 10 %	Over 10pF
М	± 20 %	

(9) Packaging

Symbol	Packaging
В	Bulk
Т	Taping

(10) TDK internal code

3. RATED CAPACITANCE AND TOLERANCE

3.1 Standard combination of rated capacitance and tolerances

Class	Temperature Characteristics	Capacitar	nce tolerance	Rated capacitance
1	606	10pF	F (±1 pF)	10
ļ	1 COG	Over 10pF	K (± 10 %)	E – 12 series
2	X7R	K (± 10 %) M (± 20 %)		E – 3 series

3.2 Capacitance Step in E series

E series		Capacitance Step										
E- 3	1.0				2.2			4.7				
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2

4. OPERATING TEMPERATURE RANGE

T.C.	Min. operating Temperature	Max. operating Temperature	Reference Temperature	
C0G	-55°C	125°C	25°C	
X7R	-55°C	125°C	25°C	

5. STORING CONDITION AND TERM

5 to 40°C at 20 to 70%RH

6 months Max. upon receipt.

6. P.C. BOARD

This specification not applicable to Aluminum or some other substrate for such application, please state so and inquire separate specification.

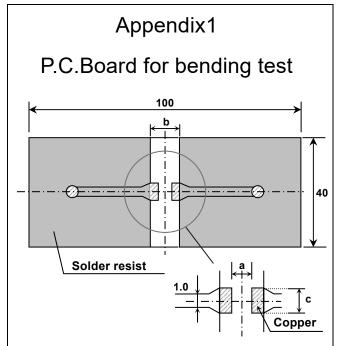
7. INDUSTRIAL WASTE DISPOSAL

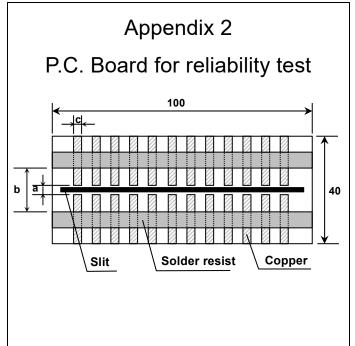
Dispose this product as industrial waste in accordance with the Industrial Waste Law.

8. PERFORMANCE

table 1

No.	Item	Performance	Test or inspection method			
1	External Appearance	No defects which may affect performance.	Inspect with magnifying glass (3×).			
2	Insulation Resistance	10,000M Ω min.	Apply 500V DC for 60s.			
3	Voltage Proof	Withstand test voltage without insulation breakdown or other damage.	1.2 times of rated voltage Above DC voltage shall be applied for 1s. Charge / discharge current shall not exceed 50mA.			
4	Capacitance	Within the specified tolerance.	Class 1 Measuring Measuring requency voltage 1000pF and under Over 1MHz±10% 0.5~5 Vrms.			
			Over 1000pF 1kHz±10%			
			«Class 2»			
			Measuring Measuring frequency voltage			
			1kHz±10% 1.0±0.2Vrms			
5	Q (Class1) Dissipation Factor (Class2)	Please refer to the table A in the end of the specification.	See No.4 in this table for measuring condition.			
6	Temperature Characteristics of Capacitance (Class1)	T.C. Temperature Coefficient (ppm/°C) COG 0 ± 30 Capacitance drift within ± 0.2% or ± 0.05pF, whichever larger.	Temperature coefficient shall be calculated based on values at 25°C and 85°C temperature. Measuring temperature below 25°C shall be -10°C and -25°C.			
7	Temperature Characteristics of Capacitance (Class2)	Capacitance Change (%) No voltage applied	Capacitance shall be measured by the steps shown in the following table after thermal equilibrium is obtained for each step.			
		X7R : ± 15	ΔC be calculated ref. STEP3 reading			
			Step Temperature(°C)			
			1 25 ± 2			
			$\frac{2}{3}$ $\frac{-55 \pm 2}{3}$			
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
			As for measuring voltage, please refer to the table A.			


No.	Item	Performance	Tost or inspection method
			Test or inspection method
8	Robustness of Terminations	No sign of termination coming off, breakage of ceramic, or other abnormal signs.	Reflow solder the capacitors on a P.C.Board shown in Appendix 2 and apply a pushing force of 17.7N with 10±1s. Pushing force Capacitor P.C.Board
9	Bending	No mechanical damage.	Reflow solder the capacitors on a P.C.Board shown in Appendix 1 and bend it for 2mm. (1mm is applied for 1.30mm or thinner thickness of Class2 items.) The solder the capacitors on a P.C.Board shown in Appendix 1 and bend it for 2mm. (1mm is applied for 1.30mm or thinner thickness of Class2 items.) The solder the capacitors on a P.C.Board shown in Appendix 1 and bend it for 2mm. (1mm is applied for 1.30mm or thinner thickness of Class2 items.)
10	Solderability	New solder to cover over 75% of termination. 25% may have pin holes or rough spots but not concentrated in one spot. Ceramic surface of A sections shall not be exposed due to melting or shifting of termination material. A section	Completely soak both terminations in solder at the following conditions. Solder: Sn-3.0Ag-0.5Cu or Sn-37Pb Temperature: 245±5°C(Sn-3.0Ag-0.5Cu)

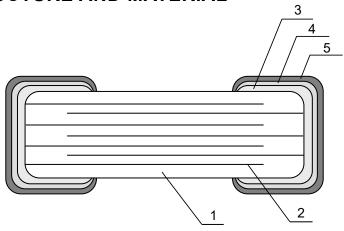

No.	lt.	em		Perf	ormance	Test or inspection method		
11	Resistance to solder heat	External appearance	termination	ons sh	llowed and all be covered at new solder.	Completely soak both terminations in solder at the following conditions. 260±5°C for 10±1s.		
		Capacitance	Characteristics Change from the value before test			Preheating condition		
			Class1	C0G	± 2.5 %	Temp.: 110 ~ 140°C Time : 30 ~ 60s.		
			Class2	X7R	± 7.5 %	Solder: Sn-3.0Ag-0.5Cu or Sn-37Pb		
		Q (Class1)	Meet the	initial	spec.	Flux: Isopropyl alcohol (JIS K 8839)		
		D.F. (Class2)	Meet the	initial	spec.	Rosin (JIS K 5902) 25% solid solution		
		Insulation Resistance	Meet the	initial	spec.	Leave the capacitors in ambient condition for 6 to 24h (Class1) or 24±2		
		Voltage proof	No insula other dar		eakdown or	(Class2) before measurement.		
12	Vibration	External appearance	No mech	anical	damage.	Reflow solder the capacitors on a P.C.Board shown in Appendix 2 before		
		Capacitance	Charact	eristics	Change from the value before test	testing.		
			Class1	C0G	± 2.5 %	Vibrate the capacitors with following conditions.		
			Class2	X7R	± 7.5 %	Applied force : 5G max. Frequency : 10~2,000Hz		
		Q (Class1)	Meet the	initial	spec.	Duration : 20 min. Cycle : 12 cycles in each 3 mutually perpendicular directions.		
		D.F. (Class2)	Meet the	initial	spec.	perpendicular directions.		

No.	Item		Performance				Test or inspection method			
13	Temperature cycle	External appearance	No mechanical damage.			Reflow solder the capacitors on a P.C.Board shown in Appendix 2 before testing.				
		Capacitance	Charact	eristics	Change from the value before test	step1 th	Expose the capacitors in the condition step1 through step 4 and repeat 1,000			
			Class1	C0G	Please refer to the table A in		onsecutively.	L:4		
			Class2	X7R	the end of the specification.	condition	he capacitors in am on for 6 to 24h (Clas (Class 2) before mea	s 1) or		
		Q	Meet the initial spec.			Step	Temperature(°C)	Time (min.)		
		(Class1)			1	-55 ± 3	30 ± 3			
		D.F. (Class2)	Meet the initial spec.			2	Ambient Temp.	2 ~ 5		
		Insulation	Meet the initial spec.			3	125 ± 2	30 ± 2		
		Resistance				4	Ambient Temp.	2 ~ 5		
14	Moisture Resistance	External appearance	No mechanical damage.			Reflow solder the capacitors on a P.C.Board shown in Appendix 2 before testing.				
	(Steady State)	Capacitance	Characteristics Change from the value before test							
			Class1	COG	Please refer to the table A in	Leave at temperature 40±2°C, 90 to 95%RH for 500 +24,0h.				
			Class2 X7R		the end of the specification.	Leave t	he capacitors in am	bient		
		Q			<u> </u>		on for 6 to 24h (Clas	•		
		(Class1)		citance	Q	24±2n ((Class2) before mea	surement.		
			-	nd over	<u> </u>					
			under	nd over 30pF	2/5+5/2×C min.					
		D.F.			citance (pF)	_	_			
		(Class2)	200% of	initial s	spec. max.					
		Insulation Resistance	1,000MΩ	Σ min.						

	nunuea)							
No.	Item			Perfo	rmance	Test or inspection method		
15	Moisture Resistance	External appearance	No mech	anical d	damage.	Reflow solder the capacitors on a P.C.Board shown in Appendix2 before		
		Capacitance	Characteristics Change from the value before test			testing. Apply DC1kV at temperature 85±2°C		
			Class1	C0G	Please refer to he table A in	and 85%RH for 1,000 +48,0h. Charge/discharge current shall not		
			Class2	X7R	the end of the specification.	exceed 50mA.		
		_				Leave the capacitors in ambient		
		Q (Class1)	Capac		Q	condition for 6 to 24h (Class1) or 24±2h (Class2) before measurement.		
		,	30pF ai	nd over	200 min.	()		
			Under	·	100+10/3×C min.	Voltage conditioning (only for class 2) Voltage treat the capacitors under testing		
			C : Rate	d capac	itance (pF)	temperature and voltage for 1 hour.		
		D.F. (Class2)	200% of	initial sp	oec. max.	Leave the capacitors in ambient condition for 24±2h before		
		Insulation	500MΩ n	nin.		measurement.		
		Resistance				Use this measurement for initial value.		
16	Life	External appearance	No mech	anical d	damage.	Reflow solder the capacitors on a P.C.Board shown in Appendix2 before		
		Capacitance				testing.		
			Charact	eristics	Change from the value before test	Test condition : maximum operating		
			Class1 C0G	C0G	Please refer to the table A in	temperature ±2°C for 1,000 +48,0h As for applied voltage, please refer to		
			Class2	X7R	the end of the specification.	the table A in the end of the specification. Charge/discharge current shall not		
						exceed 50mA.		
		Q (Close1)	Capa	ncitance	Q	Leave the capacitors in ambient		
		(Class1)	30pF a	nd over	350 and over	condition for 6 to 24h (Class1) or 24±2h		
			•	and ove	r 275+5/2×C min.	(Class2) before measurement.		
			under 3	•	_			
		D.F.			itance (pF)	Voltage conditioning (only for class 2)		
		(Class2)	200% of	initial sp	pec. max.	Voltage treat the capacitors under testing temperature and voltage for 1 hour.		
		Insulation	1,000ΜΩ	min.		Leave the capacitors in ambient		
		Resistance				condition for 24±2h before measurement.		
						Use this measurement for initial value.		

^{*}As for the initial measurement of capacitors (Class2) on number 7,11,12,13 and 14 leave capacitors at 150 –10,0°C for 1 hour and measure the value after leaving capacitors for 24±2h in ambient condition.

(Unit: mm)


Туре	Dimensions			
TDK(EIA style)	а	b	С	
CGA6 (CC1210)	2.2	5.0	2.9	
CGA7 (CC1808)	3.5	7.0	2.5	
CGA8 (CC1812)	3.5	7.0	3.7	
CGA9 (CC2220)	4.5	8.0	5.6	

1. Material : Glass Epoxy(As per JIS C6484 GE4)

2. Thickness: 1.6mm Copper(Thickness: 0.035mm)

Solder resist

9. INSIDE STRUCTURE AND MATERIAL

No	NAME	MATERIAL				
No.	INAIVIE	Class1	Class2			
1	Dielectric	CaZrO₃	BaTiO₃			
2	Electrode	Nickel (Ni)				
3		Copper (Cu)				
4	Termination	Nickel (Ni)				
5		Tin (Sn)				

10. PACKAGING

Packaging shall be done to protect the components from the damage during transportation and storing, and a label which has the following information shall be attached.

- 1) Total number of components in a plastic bag for bulk packaging: 1000pcs
- 2) Tape packaging is as per 14. TAPE PACKAGING SPECIFICATION.
 - 1) Inspection No.
 - 2) TDK P/N
 - 3) Customer's P/N
 - 4) Quantity

*Composition of Inspection No.

Example
$$\frac{F}{(a)} \frac{8}{(b)} \frac{A}{(c)} - \frac{23}{(d)} - \frac{001}{(e)}$$

- a) Line code
- b) Last digit of the year
- c) Month and A for January and B for February and so on. (Skip I)
- d) Inspection Date of the month.
- e) Serial No. of the day

*Composition of new Inspection No.

(Will be implemented on and after Jan. 1, 2019)

- (a) Prefix
 - (b) Line code
 - (c) Last digit of the year
 - (d) Month and A for January and B for February and so on. (Skip I)
 - (e) Inspection Date of the month.
 - (f) Serial No. of the day $(00 \sim ZZ)$
 - (g) Suffix($00 \sim ZZ$)

^{*} It is planned to shift to the new inspection No. on and after January 2019, but the implementation timing may be different depending on shipment bases.

Until the shift is completed, either current or new composition of inspection No. will be applied.

11. RECOMMENDATION

It is recommended to provide a slit (about 1mm wide) in the board under the components to improve washing Flux. And please make sure to dry detergent up completely before.

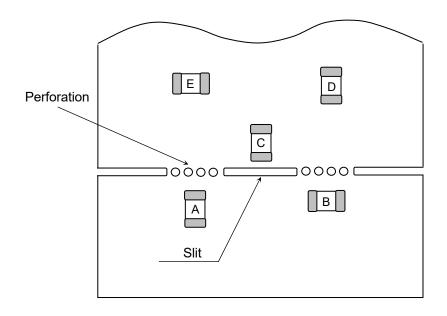
It is recommended to use activated flux (Chlorine content : less than 0.1wt%) such Rosin due to high voltage usage.

12. SOLDERING CONDITION

Reflow soldering only.

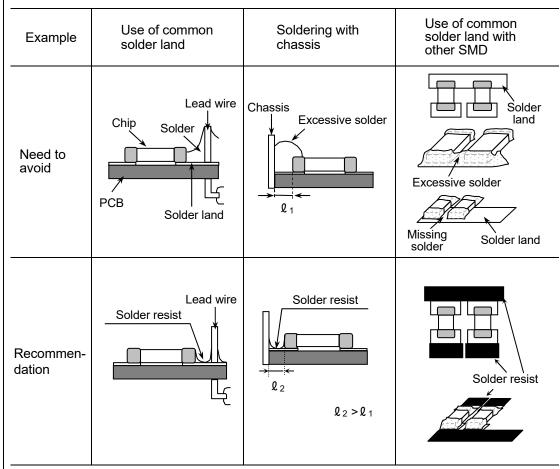
13. CAUTION

	_							
No.	Process	Condition						
1	Operating Condition (Storage, Use, Transportation)	 1-1. Storage, Use The capacitors must be stored in an ambient temperature of 5 to 40°C with a relative humidity of 20 to 70%RH. The products should be used within 6 months upon receipt. The capacitors must be operated and stored in an environment free of dew condensation and these gases such as Hydrogen Sulphide, Hydrogen Sulphate, Chlorine, Ammonia and sulfur. Avoid storing in sun light and falling of dew. Do not use capacitors under high humidity and high and low atmospheric pressure which may affect capacitors reliability. Capacitors should be tested for the solderability when they are stored for long time. Handling in transportation In case of the transportation of the capacitors, the performance of the capacitors may be deteriorated depending on the transportation condition. (Refer to JEITA RCR-2335C 9.2 Handling in transportation) 						
2	Circuit design Caution	2-1. Operating temperature Operating temperature should be followed strictly within this specification, especially be careful with maximum temperature. 1) Do not use capacitors above the maximum allowable operating temperature. 2) Surface temperature including self heating should be below maximum operating temperature. (Due to dielectric loss, capacitors will heat itself when AC is applied. Especially at high frequencies around its SRF, the heat might be so extreme that it may damage itself or the product mounted on. Please design the circuit so that the maximum temperature of the capacitors including the self heating to be below the maximum allowable operating temperature. Temperature rise at capacitor surface shall be below 20°C) 3) The electrical characteristics of the capacitors will vary depending on the temperature. The capacitors should be selected and designed in taking the temperature into consideration. 2-2. Operating voltage 1) Operating voltage across the terminals should be below the rated voltage. ———————————————————————————————————						


No.	Process			Condition			
2	Circuit design Caution		he rated voltage, ne capacitors may		requency AC or	oulse is applied, the	
			s should be selec	vary depending or cted and designed			
				e) are used in AC a elves and genera	•	•	
3	Designing P.C.board	l capacitors					
			ommon solder la r each terminatio	nd for multiple teri ns.	minations and pro	ovide individual	
		3) Size and reco	ommended land d	limensions.			
		Chip capacitors Slit Solder resi					
		Reflow solo	lering			(mm)	
		Type Symbol	CGA6 (CC1210)	CGA7 (CC1808)	CGA8 (CC1812)	CGA9 (CC2220)	
		Α	2.0 - 2.4	3.1 - 3.7	3.1 - 3.7	4.1 - 4.8	
		В	1.0 - 1.2	1.2 - 1.4	1.2 - 1.4	1.2 - 1.4	
		C	1.9 - 2.5	1.5 – 2.0	2.4 - 3.2	4.0 - 5.0	
		D	1.0 - 1.3	1.0 - 1.3	1.0 - 1.3	1.0 - 1.3	
		components completely to the left is recomm	to improve was pefore.	hing flux. And ple	ease make sure	ne board under the to dry detergent up	

No.	Process		Condition	
3	Designing P.C.board	5) Recommended	d chip capacitors layout is as follo	wing.
			Disadvantage against bending stress	Advantage against bending stress
		Mounting face	Perforation or slit Break P.C.board with mounted side up.	Perforation or slit Break P.C.board with mounted side down.
		Chip arrangement (Direction)	Mount perpendicularly to perforation or slit Perforation or slit	Mount in parallel with perforation or slit Perforation or slit
		Distance from slit	Closer to slit is higher stress (Q1 <q2)< td=""><td>Away from slit is less stress</td></q2)<>	Away from slit is less stress

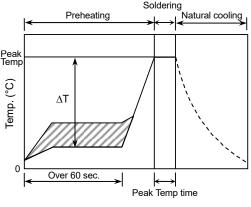
Condition No. **Process** 3

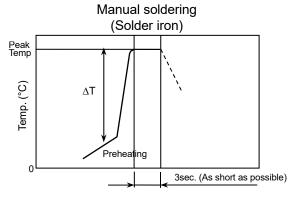

Designing P.C.board

6) Mechanical stress varies according to location of chip capacitors on the P.C.board.

The stress in capacitors is in the following order. A > B = C > D > E

7) Layout recommendation




When mounting on an aluminum substrate, it is more likely to be affected by heat stress from the substrate.

Please inquire separate specification when mounted on the substrate.

No.	Process		Condition					
4	Mounting	 If the mounting head is adjusted too low, it may induce excessive stress in to capacitors to result in cracking. Please take following precautions. 1) Adjust the bottom dead center of the mounting head to reach on the P.C.board surface and not press it. 2) Adjust the mounting head pressure to be 1 to 3N of static weight. 3) To minimize the impact energy from mounting head, it is important to provide support from the bottom side of the P.C.board. See following examples. 						
			Not recommended Recommended					
		Single sided mounting	Crack	Support pin				
		Double-sides mounting	Solder peeling Crack	Support pin				
		to cause crack. F	ing jaw is worn out, it may give me Please control the close up dimens preventive maintenance and repla	ion of the centering jaw and				

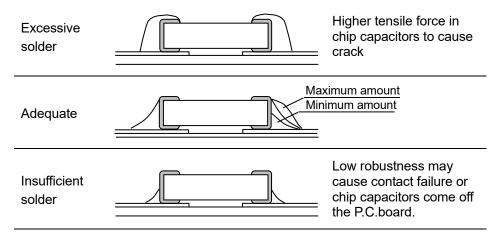
No.	Process	Condition			
5	Soldering	5-1. Flux selection Flux can seriously affect the performance of capacitors. Confirm the following to select the appropriate flux.			
		1) It is recommended to use a mildly activated rosin flux (less than 0.1wt% chlorine). Strong flux is not recommended.			
		2) Excessive flux must be avoided. Please provide proper amount of flux.			
		3) When water-soluble flux is used, enough washing is necessary.			
		5-2. Recommended soldering profile by various methods			
		Reflow soldering			
		Soldering Preheating Natural cooling			

* As for peak temperature of manual soldering, please refer "5-6. Solder repair by solder iron" .

5-3. Recommended soldering peak temp and peak temp duration

Temp./Duration	Reflow soldering		
Solder	Peak temp(°C)	Duration(sec.)	
Sn-Pb Solder	230 max.	20 max.	
Lead Free Solder	260 max.	10 max.	

Recommended solder compositions Lead Free Solder : Sn-3.0Ag-0.5Cu


Sn-Pb solder: Sn-37Pb

No.	Process	Condition				
5	Soldering	5-4. Avoiding thermal shock				
		Preheating condition				
		Soldering	Temp. (°C)	-		
		Reflow soldering	$\Delta T \leq 130$			
		Manual soldering	ΔT ≦ 130	-		
				-		
		2) Cooling condition				

Natural cooling using air is recommended. If the chips are dipped into a solvent for cleaning, the temperature difference (ΔT) must be less than 100°C.

5-5. Amount of solder

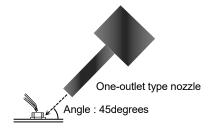
Excessive solder will induce higher tensile force in chip capacitors when temperature changes and it may result in chip cracking. In sufficient solder may detach the capacitors from the P.C.board.

5-6. Solder repair by solder iron

1) Selection of the soldering iron tip

Tip temperature of solder iron varies by its type, P.C.board material and solder land size. The higher the tip temperature, the quicker the operation. However, heat shock may cause a crack in the chip capacitors.

Please make sure the tip temp. before soldering and keep the peak temp and time in accordance with following recommended condition.


Recommended solder iron condition (Sn-Pb Solder and Lead Free Solder)

Temp. (°C)	Duration (sec.)	Wattage (W)	Shape (mm)	
280 max.	3 max.	20 max.	Ø 3.0 max.	

^{*} Please preheat the chip capacitors with the condition in 5-4 to avoid the thermal shock.

 Direct contact of the soldering iron with ceramic dielectric of chip capacitors may cause crack. Do not touch the ceramic dielectric and the terminations by solder iron.

۱o.	Process		Condition			
5	Soldering	 (also called a "blower") rather the lit is applied only to adding sold. 1) Reworking using a spot heater capacitor compared to using a uniformly with a small heat grastress caused by quick heating Moreover, where ultra-small capacitors. 	possibly be reduced by using a spot heater nan a soldering iron. er in the case of insufficient solder amount. If may suppress the occurrence of cracks in the soldering iron. A spot heater can heat up a capacite adient which leads to lower thermal g and cooling or localized heating. Appacitors are mounted close together on a printed spot heater can eliminate the risk of direct contact			
		capacitor may occur due to he such an occurrence. Keep more than 5mm between The blower temperature of the The airflow shall be set as were The diameter of the nozzle is a standard and common. Duration of blowing hot air is rearea of the capacitor and melt The angle between the nozzle in order to work easily and to a	If the blower nozzle of a spot heater is too close to a capacitor, a crack in the capacitor may occur due to heat stress. Below are recommendations for avoiding such an occurrence. Keep more than 5mm between a capacitor and a spot heater nozzle. The blower temperature of the spot heater shall be lower than 400°C. The airflow shall be set as weak as possible. The diameter of the nozzle is recommended to be 2mm(one-outlet type). The size is			
		• Recommended rework condi	tion(Consult the component manufactures for details			
		Distance from nozzle	5mm and over			
		Nozzle angle	45degrees			
		Nozzle temp.	400°C and less			
		Airflow	Set as weak as possible (The airflow shall be the minimum value necessary for solder to melt in the conditions mentioned above.)			
		Nozzle diameter	φ2mm (one-outlet type)			
		1				

5-8. Sn-Zn solder

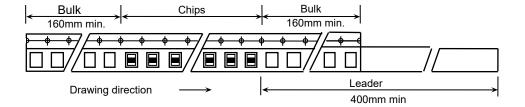
Sn-Zn solder affects product reliability.
Please contact TDK in advance when utilize Sn-Zn solder.

No.	Process	Condition
5	Soldering	5-9. Countermeasure for tombstone The misalignment between the mounted positions of the capacitors and the land patterns should be minimized. The tombstone phenomenon may occur especially the capacitors are mounted (in longitudinal direction) in the same direction of the reflow soldering. (Refer to JEITA RCR-2335C Annex A (Informative) Recommendations to prevent the tombstone phenomenon)
6	Cleaning	If an unsuitable cleaning fluid is used, flux residue or some foreign articles may stick to chip capacitors surface to deteriorate especially the insulation resistance. If cleaning condition is not suitable, it may demand the chip capacitors.
		2) If cleaning condition is not suitable, it may damage the chip capacitors.
		2)-1. Insufficient washing (1) Terminal electrodes may corrode by Halogen in the flux.
		(2) Halogen in the flux may adhere on the surface of capacitors, and lower the insulation resistance.
		(3) Water soluble flux has higher tendency to have above mentioned problems (1) and (2).
		2)-2. Excessive washing When ultrasonic cleaning is used, excessively high ultrasonic energy output
		can affect the connection between the ceramic chip capacitor's body and the terminal electrode. To avoid this, following is the recommended condition.
		Power : 20 W/ Ձ max. Frequency : 40 kHz max. Washing time : 5 minutes max.
		2)-3. If the cleaning fluid is contaminated, density of Halogen increases, and it may bring the same result as insufficient cleaning.
7	Coating and molding of the	When the P.C.board is coated, please verify the quality influence on the product. Please verify carefully that there is no harmful decomposing or reaction gas.
	P.C.board	emission during curing which may damage the chip capacitors. 3) Please verify the curing temperature.
8	Handling after	Please pay attention not to bend or distort the P.C.board after soldering in handling
	chip mounted Caution	otherwise the chip capacitors may crack. Bend Twist

cropping jig as shown in the following figure or a board cropping apparature prevent inducing mechanical stress on the board. (1)Example of a board cropping jig Recommended example: The board should be pushed from the baclose to the cropping jig so that the board is not bent and the stress at the capacitor is compressive. Unrecommended example: If the pushing point is far from the cropping the pushing direction is from the front side of the board, large tensile applied to the capacitor, which may cause cracks. Outline of jig Recommended Unrecommended Printed Grouping if a board cropping machine An outline of a printed circuit board cropping machine is shown below top and bottom blades are aligned with one another along the lines v. V-grooves on printed circuit board when cropping the board. Unrecommended example: Misalignment of blade position between bottom, right and left, or front and rear blades may cause a crac capacitor. Outline of machine Printed circuit board Printed circuit board Cross-section diagram Printed circuit board Cross-section diagram			7							
chip mounted	No.	Process		Condition						
Printed circuit board Outline of machine Printed circuit board Top blade	8	chip mounted	proper tooling. Printed circuit board cropping should be carried out using a board cropping jig as shown in the following figure or a board cropping apparatus to prevent inducing mechanical stress on the board. (1)Example of a board cropping jig Recommended example: The board should be pushed from the back side, close to the cropping jig so that the board is not bent and the stress applied to the capacitor is compressive. Unrecommended example: If the pushing point is far from the cropping jig and the pushing direction is from the front side of the board, large tensile stress is							
(2)Example of a board cropping machine An outline of a printed circuit board cropping machine is shown below top and bottom blades are aligned with one another along the lines of the very service of the ve			Outline of jig	Recommended	Unrecommended					
An outline of a printed circuit board cropping machine is shown below top and bottom blades are aligned with one another along the lines of V-grooves on printed circuit board when cropping the board. Unrecommended example: Misalignment of blade position between bottom, right and left, or front and rear blades may cause a cracic capacitor. Outline of machine Printed circuit board Cross-section diagram Printed circuit board Top blade Top-bottom Top-bottom Top-bottom Top-bottom Top-bottom Top-bottom Top blade			circuit board Board cropping lie	Printed circuit board Components Load point	Load point Printed circuit board V-groove	rection load				
Outline of machine Principle of operation Top blade Printed circuit board Cross-section diagram Printed circuit board Top blade Unrecommended Top-bottom misalignment Top blade			(2)Example of a board cropping machine An outline of a printed circuit board cropping machine is shown below. The top and bottom blades are aligned with one another along the lines with the							
Top blade Printed circuit board Cross-section diagram Printed circuit board V-groove Bottom blade Cross-section diagram Printed circuit board Top blade Top-bottom Top-bot										
Recommended Top-bottom Left-right Front-rear misalignment misalignment misalignment Top blade			Top blade Printed circuit board 0 V-groove Bottom blade							
Top-bottom misalignment Top blade										
Top-bottom misalignment misalignment misalignment misalignment misalignment Top blade Top blade Top blade										
Top blade Top blade Top blade Top blade			Top-bottom Left-right Front-rear							
Bottom blade Bottom blade Bottom blade Bottom blade			Board	Top blade To						

No.	Process		Condition					
8	Handling after chip mounted Caution	3) When functional check of the P.C.board is performed, check pin pressure tends to be adjusted higher for fear of loose contact. But if the pressure is excessive and bend the P.C.board, it may crack the chip capacitors or peel the terminations off. Please adjust the check pins not to bend the P.C.board.						
		Item Not recommended Recommended						
		Board bending	Termination peeling Check pin	Support pin Check pin				
9	Handling of loose chip capacitors	1) If dropped the chip capacitors may crack. Once dropped do not use it. Especially, the large case sized chip capacitors are tendency to have cracks easily, so please handle with care. Floor 2) Piling the P.C.board after mounting for storage or handling, the corner of the P.C. board may hit the chip capacitors of another board to cause crack. P.C.board Crack						
10	Capacitance aging	•	s (Class 2) have aging in the capaci constant circuit. In case of the time ne well.					
11	Estimated life and estimated failure rate of capacitors	and the voltage RCR-2335C A estimated failu Temperature	imated life and the estimated failure ge. This can be calculated by the eq Annex F (Informative) Calculation of ure rate (Voltage acceleration coeff acceleration coefficient : 10°C rule) se can be decreased by reducing the guaranteed.	uation described in JEITA the estimated lifetime and the icient : 3 multiplication rule,				

No.	Process	Condition
12	Caution during operation of equipment	A capacitor shall not be touched directly with bare hands during operation in order to avoid electric shock. Electric energy held by the capacitor may be discharged through the human body when touched with a bare hand. Even when the equipment is off, a capacitor may stay charged. The capacitor should be handled after being completely discharged using a resistor.
		2) The terminals of a capacitor shall not be short-circuited by any accidental contact with a conductive object. A capacitor shall not be exposed to a conductive liquid such as an acid or alkali solution. A conductive object or liquid, such as acid and alkali, between the terminals may lead to the breakdown of a capacitor due to short circuit
		 Confirm that the environment to which the equipment will be exposed during transportation and operation meets the specified conditions. Do not to use the equipment in the following environments. Environment where a capacitor is spattered with water or oil Environment where a capacitor is exposed to direct sunlight Environment where a capacitor is exposed to Ozone, ultraviolet rays or radiation Environment where a capacitor exposed to corrosive gas(e.g. hydrogen sulfide, sulfur dioxide, chlorine. ammonia gas etc.) Environment where a capacitor exposed to vibration or mechanical shock exceeding the specified limits. Atmosphere change with causes condensation
13	Others	The product listed in this specification is intended for use in automotive applications under-normal operation and usage conditions.
	<u> </u>	The product is not designed or warranted to meet the requirements of application listed below, whose performance and/or quality requires a more stringent level of safety or reliability, or whose failure, malfunction or defect could cause serious damage to society, person or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below or for any other use exceeding the range or conditions set forth in this specification sheet. If you intend to use the products in the applications listed below or if you have special requirements exceeding the range or conditions set forth in this specification, please contact us.
		(1) Aerospace/Aviation equipment (2) Transportation equipment (electric trains, ships etc.) (3) Medical equipment (Excepting Pharmaceutical Affairs Law classification Class1, 2) (4) Power-generation control equipment (5) Atomic energy-related equipment (6) Seabed equipment (7) Transportation control equipment (8) Public information-processing equipment (9) Military equipment (10) Electric heating apparatus, burning equipment (11) Disaster prevention/crime prevention equipment (12) Safety equipment (13) Other applications that are not considered general-purpose applications When designing your equipment even for general-purpose applications, you are kindly requested to take into consideration securing protection circuit/device or providing backup circuits in your equipment. In addition, although the product listed in this specification is intended for use in automotive applications as described above, it is not prohibited to use for general electronic equipment, whose performance and/or quality doesn't require a more stringent level of safety or reliability, or whose failure, malfunction or defect could not cause serious damage to society, person or property. Therefore, the description of this caution will be applied, when the product is used in
_		general electronic equipment under a normal operation and usage conditions.

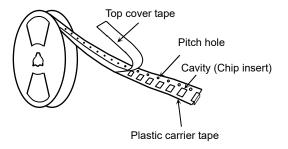

14. TAPE PACKAGING SPECIFICATION

1. CONSTRUCTION AND DIMENSION OF TAPING

1-1. Dimensions of carrier tape

Dimensions of plastic tape shall be according to Appendix 3, 4.

1-2. Bulk part and leader of taping

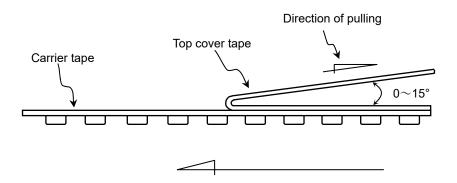


1-3. Dimensions of reel

Dimensions of Ø178 reel shall be according to Appendix 5, 6.

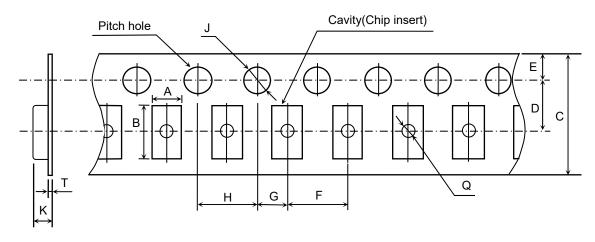
Dimensions of Ø330 reel shall be according to Appendix 7, 8.

1-4. Structure of taping


2. CHIP QUANTITY

Please refer to the table A in the end of the specification.

3. PERFORMANCE SPECIFICATIONS

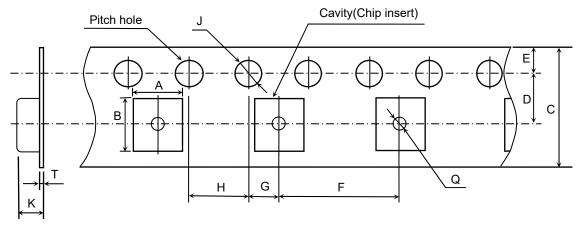

3-1. Fixing peeling strength (top cover tape)

0.05N < Peeling strength < 0.7N

- 3-2. Carrier tape shall be flexible enough to be wound around a minimum radius of 30mm with components in tape.
- 3-3. The missing of components shall be less than 0.1%
- 3-4. Components shall not stick to fixing tape.
- 3-5. When removing the cover tape, there shall not be difficulties by unfitting clearance gap, burrs and crushes of cavities. Also the sprocket holes shall not be covered by absorbing dust into the suction nozzle.

Plastic Tape

(Unit: mm)

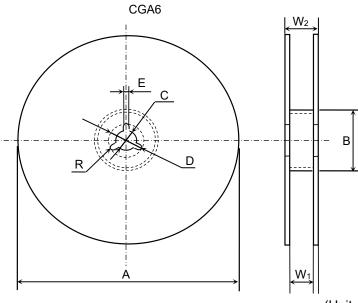

Symbol Type	А	В	С	D	E	F	
CGA6	(2.90)	(3.60)	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	4.00 ± 0.10	
(CC1210)	(=:00)	(0.00)	*12.0 ± 0.30	*5.50 ± 0.05	= 0		
Symbol Type	G	Н	J	K	Т	Q	
CGA6 (CC1210)	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 +0.10	3.20 max.	0.60 max.	Ø 0.50 min.	

⁾ Reference value.

Exceptionally no hole in the cavity is applied. Please inquire if hole in cavity is mandatory.

^{*} Applied to thickness, 2.5mm products.

Plastic Tape

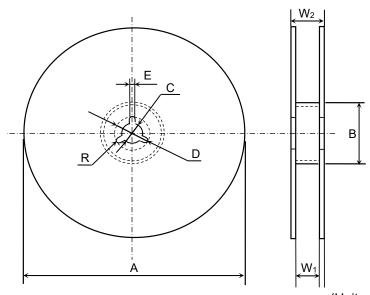


(Unit: mm)

Symbol Type	А	В	С	D	Е	F
CGA7 (CC1808)	(2.50)	(5.10)				
CGA8 (CC1812)	(3.60)	(5.20)	12.0 ± 0.30	5.50 ± 0.05	1.75 ± 0.10	8.00 ± 0.10
CGA9 (CC2220)	(5.40)	(6.10)				
Symbol Type	G	Н	J	К	Т	Q
CGA7 (CC1808)						
CGA8 (CC1812)	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 +0.10	6.50 max.	0.60 max.	Ø 1.50 min.
CGA9 (CC2220)						

) Reference value.

<u>Dimensions of reel</u> (Material : Polystyrene)

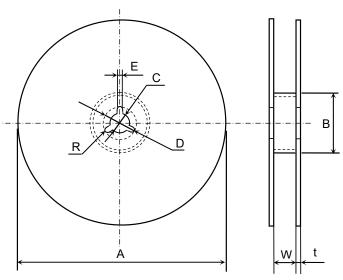

(Unit: mm)

Symbol	A B		С	D	Е	W_1	
Dimension	Ø178 ± 2.0	Ø60 ± 2.0	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	9.0 ± 0.3	

Symbol	W ₂	R			
Dimension	13.0 ± 1.4	1.0			

Appendix 6

<u>Dimensions of reel</u> (Material : Polystyrene) CGA6(2.5mm thickness products), CGA7, CGA8, CGA9

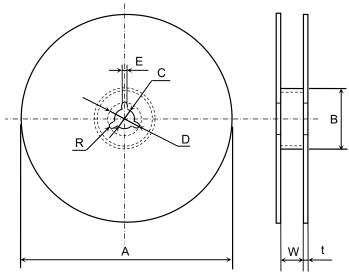

(Unit: mm)

Symbol	A B		С	D	E	W ₁		
Dimension Ø178 ± 2.0		Ø60 ± 2.0	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	13.0 ± 0.3		

Symbol	W ₂	R			
Dimension	17.0 ± 1.4	1.0			

<u>Dimensions of reel</u> (Material : Polystyrene)

CGA6


(Unit : mm)

Symbol	А	В	С	D	E	W	
Dimension	Ø382 max.		Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	10.0 ± 1.5	

Symbol	t	R			
Dimension	2.0 ± 0.5	1.0			

Appendix 8

<u>Dimensions of reel</u> (Material : Polystyrene) CGA6(2.5mm thickness products), CGA7, CGA8, CGA9

(Unit:mm)

Symbol	Α	В	С	D	E	W	
Dimension	Ø382 max. (Nominal Ø330)	Ø50 min.	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	14.0 ± 1.5	

Symbol	t	R				
Dimension	2.0 ± 0.5	1.0				

<u>:</u>31

15.Table A (TDK products line up)

No	Your Part No.	TDK product		Dimensions		Q	tanδ	Temp. Chara	cteristics of Cap.	Temp cycle	Moisture Resistance (Steady state)	Moisture Resistance		Life	Tape packaging	Qty. pe	Qty. per 1 reel	
			L (mm)	W (mm)	T (mm)	(min.)	(max.)	Measuring frequency	Measuring voltage	ΔC/C	ΔC/C	ΔC/C	ΔC/C	Test voltage	materials	φ 178mm	φ330mm	
1		CGA6M1C0G3A102J	3.20±0.40	2.50±0.30	2.00±0.20	1,000		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000	
2		CGA6M1C0G3A152J	3.20±0.40	2.50±0.30	2.00±0.20	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000	
3		CGA6M1C0G3A222J	3.20±0.40	2.50±0.30	2.00±0.20	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000	
4		CGA6M1C0G3A332J	3.20±0.40	2.50±0.30	2.00±0.20	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000	
5		CGA6M1C0G3A472J	3.20±0.40	2.50±0.30	2.00±0.20	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000	
6		CGA6M1C0G3A682J	3.20±0.40	2.50±0.30	2.00±0.20	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000	
7		CGA6P1C0G3A103J	3.20±0.40	2.50±0.30	2.50±0.30	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000	
8		CGA6P1C0G3A153J	3.20±0.40	2.50±0.30	2.50±0.30	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000	
9		CGA6P1C0G3A223J	3.20±0.40	2.50±0.30	2.50±0.30	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000	
10		CGA7F1C0G3F100F	4.50±0.40	2.00±0.20	0.85±0.15	600		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000	
11		CGA7G1C0G3F150K	4.50±0.40	2.00±0.20	1.10±0.20	700		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000	
12		CGA7G1C0G3F220K	4.50±0.40	2.00±0.20	1.10±0.20	840		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000	
13		CGA7L1C0G3F330K	4.50±0.40	2.00±0.20	1.60±0.20	1,000		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	3,000	
14		CGA7L1C0G3F470K	4.50±0.40	2.00±0.20	1.60±0.20	1,000		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	3,000	
15		CGA7M1C0G3F680K	4.50±0.40	2.00±0.20	2.00±0.20	1,000		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	3,000	
16		CGA7M1C0G3F101K	4.50±0.40	2.00±0.20	2.00±0.20	1,000		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	3,000	
17		CGA7K1X7R3D471K	4.50±0.40	2.00±0.20	1.30±0.20		0.03	1kHz	1.0Vrms	±7.5%	±12.5%	±12.5%	±15%	1.0 x R.V.	Plastic	1,000	5,000	
18		CGA7K1X7R3D102K	4.50±0.40	2.00±0.20	1.30±0.20		0.03	1kHz	1.0Vrms	±7.5%	±12.5%	±12.5%	±15%	1.0 x R.V.	Plastic	1,000	5,000	
19		CGA7K1X7R3A471K	4.50±0.40	2.00±0.20	1.30±0.20		0.03	1kHz	1.0Vrms	±7.5%	±12.5%	±12.5%	±15%	1.0 x R.V.	Plastic	1,000	5,000	
20		CGA7K1X7R3A102K	4.50±0.40	2.00±0.20	1.30±0.20		0.03	1kHz	1.0Vrms	±7.5%	±12.5%	±12.5%	±15%	1.0 x R.V.	Plastic	1,000	5,000	
		I					1		I		T				I			
21		CGA8L1C0G3F101K	4.50±0.40	3.20±0.40	1.60±0.20	1,000		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	3,000	
22		CGA8L1C0G3F151K	4.50±0.40	3.20±0.40	1.60±0.20	1,000		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	3,000	
23		CGA8M1C0G3F221K	4.50±0.40	3.20±0.40	2.00±0.20	1,000		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	3,000	
24		CGA8P1C0G3F331K	4.50±0.40	3.20±0.40	2.50±0.30	1,000		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	500	3,000	
25		CGA8K1X7R3D222K	4.50±0.40	3.20±0.40	1.30±0.20		0.03	1kHz	1.0Vrms	±7.5%	±12.5%	±12.5%	±15%	1.0 x R.V.	Plastic	1,000	5,000	
26		CGA8L1X7R3A472K	4.50±0.40	3.20±0.40	1.60±0.20		0.03	1kHz	1.0Vrms	±7.5%	±12.5%	±12.5%	±15%	1.0 x R.V.	Plastic	1.000	3.000	
27		CGA8M1X7R3A103K	4.50±0.40	3.20±0.40	2.00±0.20		0.03	1kHz	1.0Vrms	±7.5%	±12.5%	±12.5%	±15%	1.0 x R.V.	Plastic	1,000	3,000	
00			F 70 . 0 . 10	E 00 . 0 . 10	0.00.000	4.000	1			.0.50	.5.00/	.7.50	.0.00/					
28		CGA9Q1C0G3A103J	5.70±0.40	5.00±0.40	2.80±0.30	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	500	2,000	
29		CGA9Q1C0G3A153J	5.70±0.40	5.00±0.40	2.80±0.30	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	500	2,000	
30		CGA9Q1C0G3A223J	5.70±0.40	5.00±0.40	2.80±0.30	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	500	2,000	
31	%) is also available to	CGA9Q1C0G3A333J	5.70±0.40	5.00±0.40	2.80±0.30	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	500	2,000	

M(±20%) is also available to support for X7R.