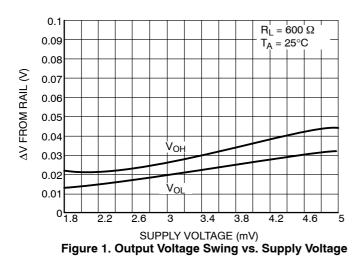
Operational Amplifier, Railto-Rail, Low Voltage, Single and Dual

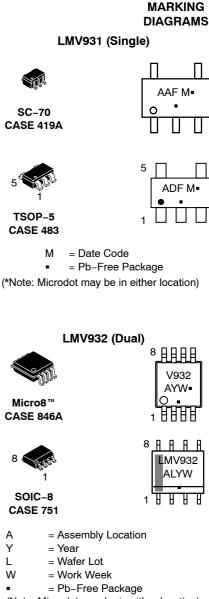
The LMV931 Single and LMV932 Dual are CMOS low-voltage operational amplifiers which can operate on single-sided power supplies (1.8 V to 5.0 V) with rail-to-rail input and output swing. Both devices come in small state-of-the-art packages and require very low quiescent current making them ideal for battery-operated, portable applications such as notebook computers and hand-held instruments. Rail-to-Rail operation provides improved signal-to-noise performance plus the small packages allow for closer placement to signal sources thereby reducing noise pickup.


The single LMV931 is offered in space saving SC70-5 package. The dual LMV932 is in either a Micro8 or SOIC package. These small packages are very beneficial for crowded PCB's.

Features

- Performance Specified on Single-Sided Power Supply: 1.8 V, 2.7 V, and 5 V
- Small Packages: LMV931 in a SC-70 LMV932 in a Micro8 or SOIC-8
- No Output Crossover Distortion
- Extended Industrial Temperature Range: -40°C to +125°C
- Low Quiescent Current 210 µA, Max Per Channel
- No Output Phase-Reversal from Overdriven Input
- These are Pb-Free Devices

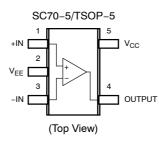
Typical Applications

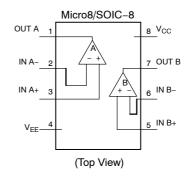

- Notebook Computers, Portable Battery-Operated Instruments, PDA's
- Active Filters, Low-Side Current Monitoring

ON Semiconductor®

http://onsemi.com

(Note: Microdot may be in either location)


A Υ


L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 14 of this data sheet.

PIN CONNECTIONS

MAXIMUM RATINGS

Symbol	Rating		Value	Unit
VS	Supply Voltage (Operating Range $V_S = 1.8 V$ to 5.5 V)	5.5	V	
V _{IDR}	Input Differential Voltage	\pm Supply Voltage	V	
VICR	Input Common Mode Voltage Range	–0.5 to (V _{CC}) + 0.5	V	
	Maximum Input Current		10	mA
t _{So}	Output Short Circuit (Note 1)		Continuous	
TJ	Maximum Junction Temperature (Operating Range -40°C to 8	5°C)	150	°C
θ_{JA}	Thermal Resistance: SC-70 TSOP-5 Micro8		280 333 238	°C/W
T _{stg}	Storage Temperature		-65 to 150	°C
	Mounting Temperature (Infrared or Convection \leq 30 sec)		260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ESD data available upon request.

 Continuous short-circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability. Shorting output to either V_{CC} or V_{EE} will adversely affect reliability.

1.8 V DC ELECTRICAL CHARACTERISTICS (Note 2) Unless otherwise noted, all min/max limits are guaranteed for T _A = 25°C,
V_{S} = 1.8 V, V_{CM} = $V_{S}/2$, V_{O} = $V_{S}/2$ and R_{L} > 1 M Ω . Typical specifications represent the most likely parametric norm.

Parameter	Symbol	Condition	Min	Тур	Мах	Unit
Input Offset Voltage	V _{IO}	LMV931 (Single) (-40°C to +125°C)		1	6	mV
		LMV932 (Dual) (-40°C to +125°C)		1	7.5	
Input Offset Voltage Average Drift	TCVIO			5.5		μV/°C
Input Bias Current	Ι _Β	-40°C to +125°C		< 1		nA
Input Offset Current	I _{IO}	-40°C to +125°C		< 1		nA
Supply Current	I _{CC}	In Active Mode		75	185	μA
(per Channel)		-40°C to +125°C			205	
Common Mode	CMRR	0 V \leq V_{CM} \leq 0.6 V, 1.4 V \leq V_{CM} \leq 1.8 V	50	70		dB
Rejection Ratio		– 40°C to +125°C	50			1
		$-0.2 \text{ V} \leq \text{V}_{\text{CM}} \leq 0 \text{ V}, 1.8 \text{ V} \leq \text{V}_{\text{CM}} \leq 2 \text{ V}$	50	70		
Power Supply	PSRR	$1.8 \text{ V} \le \text{V}^+ \le 5 \text{ V}, \text{ V}_{\text{CM}} = 0.5 \text{ V}$	50	70		dB
Rejection Ratio		-40°C to +125°C	50			
Input Common-Mode Voltage Range	Vсм	For CMRR \geq 50 dB and T _A = 25°C	V _{EE} - 0.2	-0.2 to 2.1	V _{CC} + 0.2	V
		For CMRR \geq 50 dB and T _A = - 40°C to +85°C	V_{EE}		V _{CC}	
		For CMRR \geq 50 dB and T _A = - 40°C to +125°C	V _{EE} + 0.2		V _{CC} - 0.2	
Large Signal Voltage Gain LMV931 (Single)	A _V	$\textrm{R}_{\textrm{L}}$ = 600 Ω to 0.9 V, $\textrm{V}_{\textrm{O}}$ = 0.2 V to 1.6 V, $\textrm{V}_{\textrm{CM}}$ = 0.5 V	77	101		dB
		-40°C to +125°C	73			-
		R_L = 2 k Ω to 0.9V, V_O = 0.2 V to 1.6 V, V_{CM} = 0.5 V	80	105		
		-40°C to +125°C	75			
Large Signal Voltage		R_L = 600 Ω to 0.9 V, V_O = 0.2 V to 1.6 V, V_{CM} = 0.5 V	75	90		
Gain LMV932 (Dual)		-40°C to +125°C	72			
		R_L = 2 k Ω to 0.9 V, V_O = 0.2 V to 1.6 V, V_{CM} = 0.5 V	78	100		
		-40°C to +125°C	75			
Output Swing	V _{OH}	$\rm R_L$ = 600 Ω to 0.9V, $\rm V_{IN}$ = $\pm100~mV$	1.65	1.72		V
		-40°C to +125°C	1.63			
	V _{OL}	R_L = 600 Ω to 0.9V, V_{IN} = $\pm100~mV$		0.077	0.105	
		-40°C to +125°C			0.12	
	V _{OH}	R_L = 2 k\Omega to 0.9V, V_{IN} = $\pm100~mV$	1.75	1.77		
		-40°C to +125°C	1.74			
	V _{OL}	R_L = 2 k\Omega to 0.9 V, VIN = ±100 mV		0.24	0.035	
		-40°C to +125°C			0.04	
Output Short Circuit	Ι _Ο	Sourcing, Vo = 0 V, V _{IN} = +100 mV	4.0	30		mA
Current		-40°C to +125°C	3.3			
		Sinking, Vo = 1.8V, V _{IN} = -100 mV	7.0	60		
		-40°C to +125°C	5.0			

2. Guaranteed by design and/or characterization.

1.8 V AC ELECTRICAL CHARACTERISTICS Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}$ C, $V_S = 1.8$ V, $V_{CM} = V_S/2$, $V_0 = V_S/2$ and $R_L > 1 M\Omega$. Typical specifications represent the most likely parametric norm. Min/Max specifications are guaranteed by testing, characterization, or statistical analysis.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Slew Rate	SR	(Note 3)		0.35		V/μS
Gain Bandwidth Product	GBWP			1.4		MHz
Phase Margin	Θm			67		0
Gain Margin	Gm			7		dB
Input-Referred Voltage Noise	e _n	f = 50 kHz, V _{CM} = 0.5 V		60		nV/√Hz
Total Harmonic Distortion	THD	f = 1 kHz, A _V = +1, R _L = 600 Ω , V _O = 1 V _{PP}		0.023		%
Amplifier-to-Amplifier Isolation		(Note 4)		123		dB

3. Connected as voltage follower with input step from V_{EE} to V_{CC}. Number specified is the slower of the positive and negative slew rates. 4. Input referred, $R_L = 100 \text{ k}\Omega$ connected to V_S/2. Each amp excited in turn with 1 kHz to produce V_O = 3 V_{PP}. (For Supply Voltages < 3 V, $V_{O}^{i} = V_{CC}^{i}$.

2.7 V DC ELECTRICAL CHARACTERISTICS (Note 5) Unless otherwise noted, all min/max limits are guaranteed for T _A = 25°C,
$V_{\rm S}$ = 2.7 V, $V_{\rm CM}$ = $V_{\rm S}/2$, $V_{\rm O}$ = $V_{\rm S}/2$ and $R_{\rm L}$ > 1 M Ω . Typical specifications represent the most likely parametric norm.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	LMV931 (Single) (-40°C to +125°C)		1	6	mV
		LMV932 (Dual) (-40°C to +125°C)		1	7.5	
Input Offset Voltage Average Drift	TCV _{IO}			5.5		μV/°C
Input Bias Current	Ι _Β	-40°C to +125°C		< 1		nA
Input Offset Current	I _{IO}	-40°C to +125°C		< 1		nA
Supply Current (per	Icc	In Active Mode		80	190	μA
Channel)		-40°C to +125°C			210	
Common Mode	CMRR	0 V \leq V_{CM} \leq 1.5 V, 2.3 V \leq V_{CM} \leq 2.7 V	50	70		dB
Rejection Ratio		−40°C to +125°C	50			
		-0.2 V \leq V_{CM} \leq 0 V, 2.7 V \leq V_{CM} \leq 2.9 V	50	70		
Power Supply	PSRR	1.8 V \leq V ⁺ \leq 5 V, V _{CM} = 0.5 V	50	70		dB
Rejection Ratio		−40°C to +125°C	50			
Input Common-Mode Voltage Range	Vсм	For CMRR \geq 50 dB and T _A = 25°C	V _{EE} - 0.2	-0.2 to 3.0	V _{CC} + 0.2	V
		For CMRR \geq 50 dB and T _A = -40°C to +85°C	V _{EE}		V _{CC}	-
		For CMRR \geq 50 dB and T_A = -40°C to +125°C	V _{EE} + 0.2		V _{CC} - 0.2	
Large Signal Voltage Gain LMV931 (Single)	Av	R_L = 600 Ω to 1.35 V, V_O = 0.2 V to 2.5 V	87	104		dB
	-	-40°C to +125°C	86			
		R_L = 2 k Ω to 1.35 V, V_O = 0.2 V to 2.5 V	92	110		
		-40°C to +125°C	91			
Large Signal Voltage	Av	R_L = 600 Ω to 1.35 V, V_O = 0.2 V to 2.5 V	78	90		
Gain LMV932 (Dual)		-40°C to +125°C	75			
		$R_L{=}~2~k\Omega$ to 1.35 V, $V_O{=}~0.2$ V to 2.5 V	81	100		
		−40°C to +125°C	78			
Output Swing	V _{OH}	R_L = 600 Ω to 1.35 V, V_{IN} = $\pm100~mV$	2.55	2.62		V
		−40°C to +125°C	2.53			
	V _{OL}	R_L = 600 Ω to 1.35 V, V_{IN} = $\pm100~mV$		0.083	0.11	
		−40°C to +125°C			0.13	
	V _{OH}	R_L = 2 k Ω to 1.35 V, V_{IN} = $\pm100~mV$	2.65	2.675		
		-40°C to +125°C	2.64			
	V _{OL}	R_L = 2 k Ω to 1.35 V, V _{IN} = ±100 mV		0.025	0.04	
		−40°C to +125°C			0.045	
Output Short Circuit	Ι _Ο	Sourcing, Vo = 0 V, V_{IN} = ±100 mV	20	65		mA
Current		-40°C to +125°C	15	<u> </u>		
		Sinking, Vo = 0 V, V_{IN} = -100 mV	18	75		
		-40°C to +125°C	12			

5. Guaranteed by design and/or characterization.

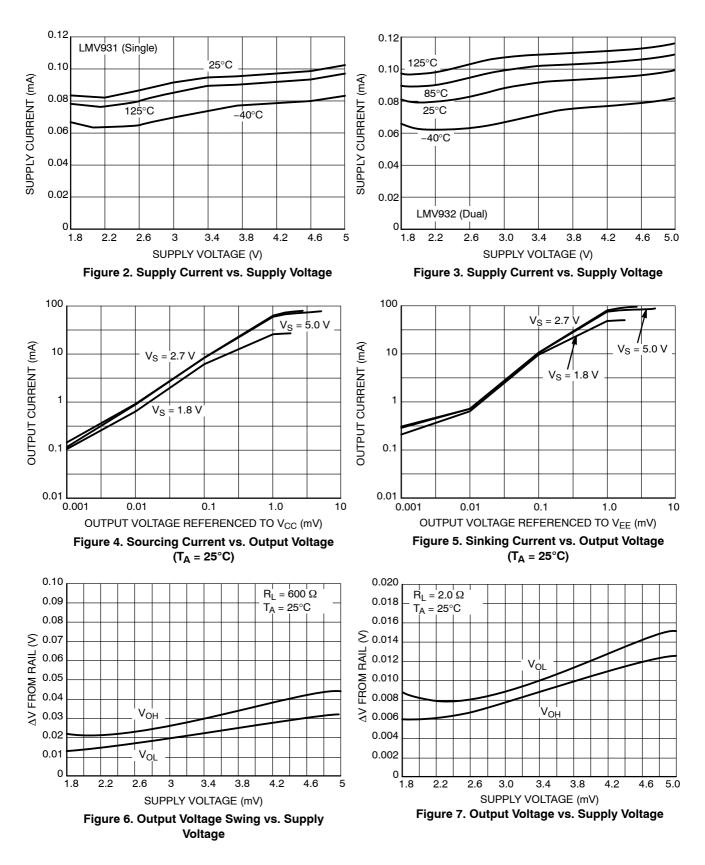
2.7 V AC ELECTRICAL CHARACTERISTICS Unless otherwise specified, all limits are guaranteed for T_A = 25°C, V_S = 2.7 V, $V_{CM} = V_S/2$, $V_0 = V_S/2$ and $R_L > 1$ M Ω . Typical specifications represent the most likely parametric norm. Min/Max specifications are guaranteed by testing, characterization, or statistical analysis.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Slew Rate	SR	(Note 6)		0.4		V/uS
Gain Bandwidth Product	GBWP			1.4		MHz
Phase Margin	Θm			70		0
Gain Margin	Gm			7.5		dB
Input-Referred Voltage Noise	e _n	f = 50 kHz, V _{CM} = 1.0 V		57		nV/√Hz
Total Harmonic Distortion	THD	f = 1 kHz, A _V = +1, R _L = 600 Ω , V _O = 1 V _{PP}		0.022		%
Amplifier-to-Amplifier Isolation		(Note 7)		123		dB

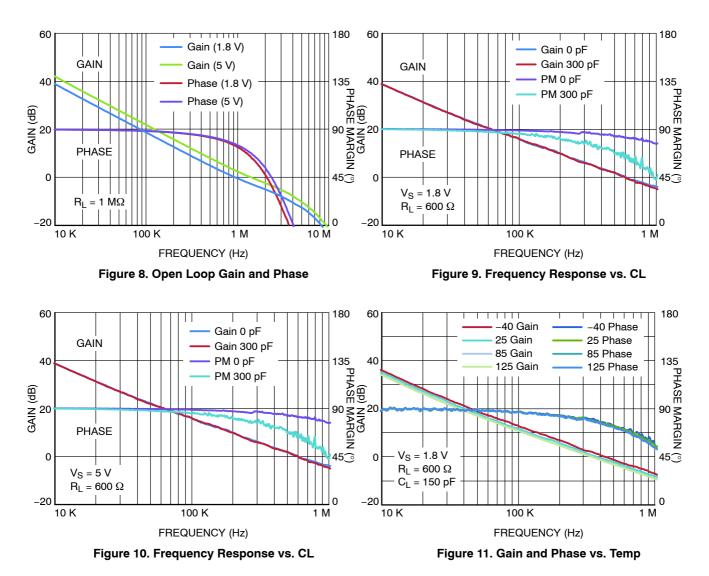
6. Connected as voltage follower with input step from V_{EE} to V_{CC}. Number specified is the slower of the positive and negative slew rates. 7. Input referred, $R_L = 100 \text{ k}\Omega$ connected to V_S/2. Each amp excited in turn with 1 kHz to produce V_O = 3 V_{PP}. (For Supply Voltages < 3 V, $V_{O}^{i} = V_{CC}^{i}$.

5 V DC ELECTRICAL CHARACTERISTICS (Note 8) Unless otherwise noted, all min/max limits are guaranteed for T _A = 25°C,
V_S = 5 V, V_{CM} = $V_S/2$, V_O = $V_S/2$ and R_L > 1 M Ω . Typical specifications represent the most likely parametric norm.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	LMV931 (Single) (-40°C to +125°C)		1	6	mV
		LMV932 (Dual) (-40°C to +125°C)		1	7.5	
Input Offset Voltage Average Drift	TCVIO			5.5		μV/°C
Input Bias Current	Ι _Β	-40°C to +125°C		< 1		nA
Input Offset Current	I _{IO}	-40°C to +125°C		< 1		nA
Supply Current (per	I _{CC}	In Active Mode		95	210	μA
Channel)		−40°C to +125°C			230	
Common-Mode	CMRR	0 V \leq V_{CM} \leq 3.8 V, 4.6 V \leq V_{CM} \leq 5.0 V	50	70		dB
Rejection Ratio		−40°C to +125°C	50			
		-0.2 V \leq V_{CM} \leq 0 V, 5.0 V \leq V_{CM} \leq 5. 2V	50	70		
Power Supply	PSRR	1.8 V \leq V ⁺ \leq 5 V, V _{CM} = 0.5 V	50	70		dB
Rejection Ratio		−40°C to +125°C	50			
Input Common-Mode Voltage Range	Vсм	For CMRR \geq 50 dB and T _A = 25°C	V _{EE} - 0.2	-0.2 to 5.3	V _{CC} + 0.2	V
		For CMRR \geq 50 dB and T _A = -40°C to +85°C	V _{EE}		V _{CC}	1
		For CMRR \geq 50 dB and T _A = -40°C to +125°C	V _{EE} + 0.3		V _{CC} - 0.3	
Large Signal Voltage	Av	R_L = 600 Ω to 2.5 V, V_O = 0.2 V to 4.8 V	88	102		dB
Gain LMV931 (Single)		-40°C to +125°C	87			-
		R_L = 2 k Ω to 2.5 V, V_O = 0.2 V to 4.8 V	94	113		
		−40°C to +125°C	93			
Large Signal Voltage	Av	R_L = 600 Ω to 2.5 V, V_O = 0.2 V to 4.8 V	81	90		
Gain LMV932 (Dual)		−40°C to +125°C	78			
		R_L = 2 k Ω to 2.5 V, V_O = 0.2 V to 4.8 V	85	100		
		−40°C to +125°C	82			
Output Swing	V _{OH}	R_L = 600 Ω to 2.5 V, V_{IN} = $\pm100~mV$	4.855	4.89		V
		−40°C to +125°C	4.835			
	V _{OL}	R_L = 600 Ω to 2.5 V, V_{IN} = $\pm100~mV$		0.12	0.16	
		−40°C to +125°C			0.18	
	V _{OH}	R_L = 2 k Ω to 2.5 V, V_{IN} = $\pm100~mV$	4.945	4.967		
		−40°C to +125°C	4.935			
	V _{OL}	R_L = 2 k Ω to 2.5 V, V_{IN} = $\pm100~mV$		0.037	0.065	
		-40°C to +125°C			0.075	
Output Short-Circuit	Ι _Ο	Sourcing, Vo = 0 V, V_{IN} = +100 mV	55	65		mA
Current		-40°C to +125°C	45			
		Sinking, Vo = 5 V, V_{IN} = -100 mV	58	80		
		-40°C to +125°C	45	1		


8. Guaranteed by design and/or characterization.

5 V AC ELECTRICAL CHARACTERISTICS Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}$ C, $V_S = 5$ V,
$V_{CM} = V_S/2$, Vo = $V_S/2$ and $R_L > 1 M\Omega$. Typical specifications represent the most likely parametric norm.


Parameter	Symbol	Condition	Min	Тур	Max	Unit
Slew Rate	SR	(Note 9)		0.48		V/uS
Gain Bandwidth Product	GBWP			1.5		MHz
Phase Margin	Θm			65		0
Gain Margin	Gm			8		dB
Input-Referred Voltage Noise	e _n	f = 50 kHz, V _{CM} = 2 V		50		nV/√Hz
Total Harmonic Distortion	THD	f = 1 kHz, A_V = +1, R_L = 600 Ω , V_O = 1 V_{PP}		0.022		%
Amplifier-to- Amplifier Isolation		(Note 10)		123		dB

9. Connected as voltage follower with input step from V_{EE} to V_{CC} . Number specified is the slower of the positive and negative slew rates. 10. Input referred, $R_L = 100 \text{ k}\Omega$ connected to $V_S/2$. Each amp excited in turn with 1 kHz to produce $V_O = 3 \text{ V}_{PP}$. (For Supply Voltages < 3 V, $V_O = V_{CC}$).

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

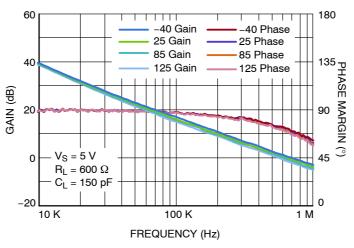
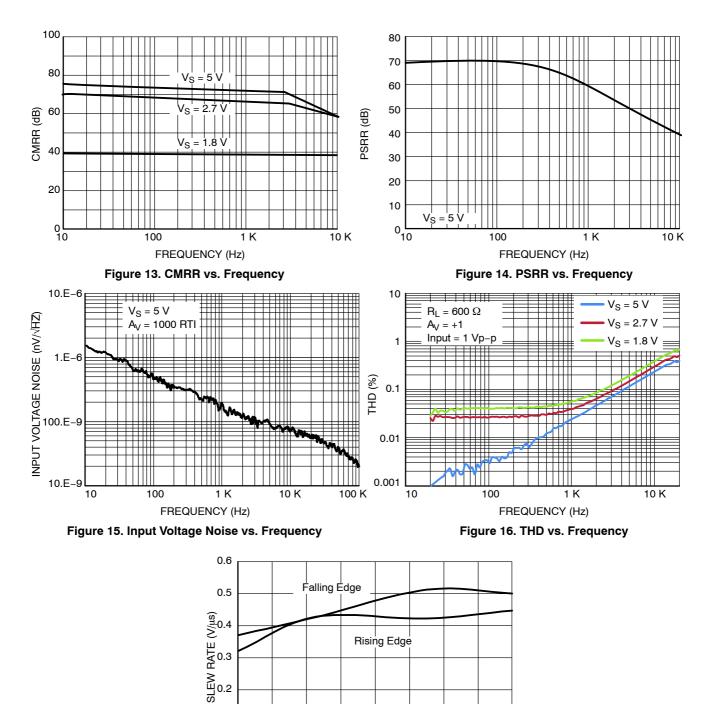



Figure 12. Gain and Phase vs. Temp

TYPICAL CHARACTERISTICS

(T_A = 25°C and V_S = 5 V unless otherwise specified)

3

3.4

SUPPLY VOLTAGE (V) Figure 17. Slew Rate vs. Supply Voltage

3.8

4.2

4.6

5

0.1

0 L

2.2

2.6

TYPICAL CHARACTERISTICS

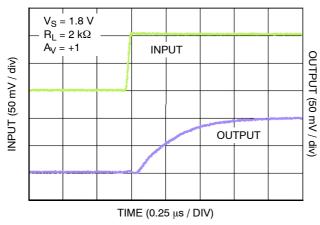


Figure 18. Small Signal Transient Response

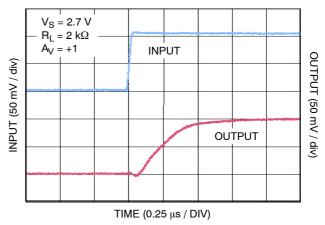


Figure 19. Small Signal Transient Response

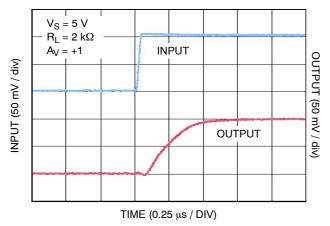
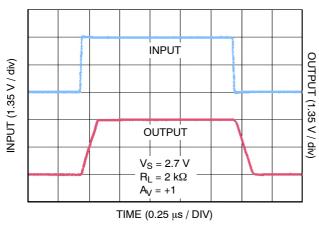



Figure 20. Small Signal Transient Response

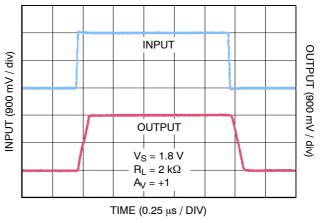
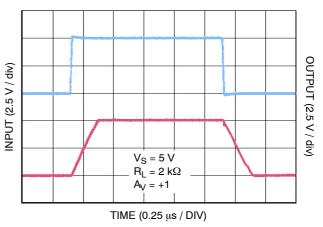
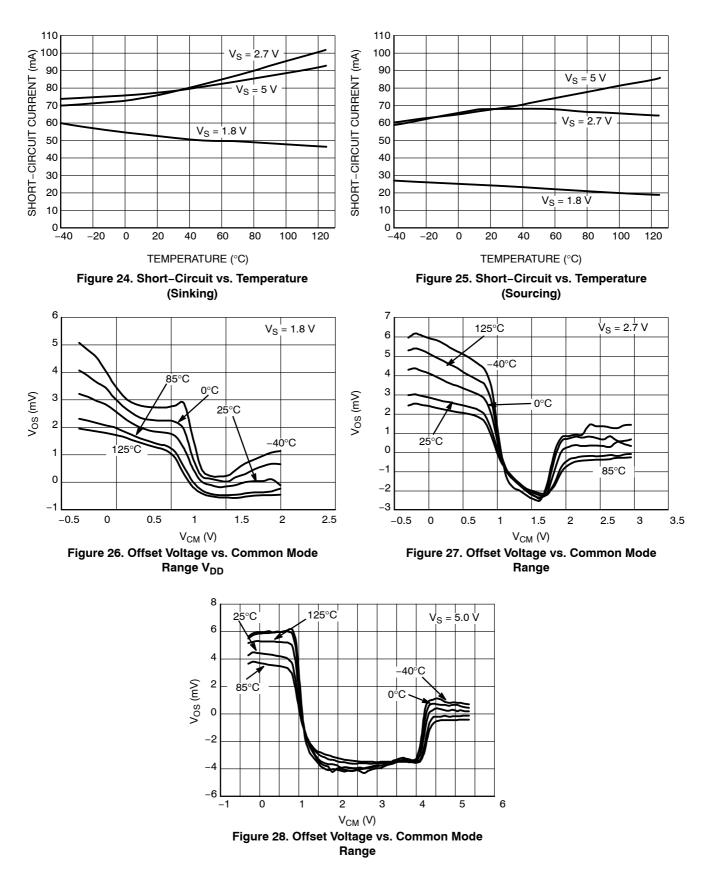
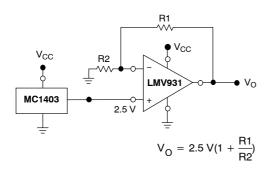
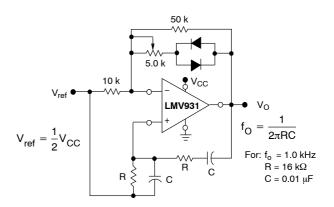
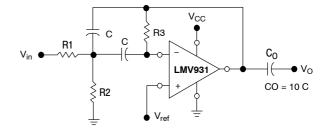




Figure 21. Large Signal Transient Response




TYPICAL CHARACTERISTICS


APPLICATION INFORMATION

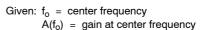


Figure 30. Wien Bridge Oscillator

R2 Hysteresis VOH R1 Vo V_{ref} (\sim LMV931 V_{O} Vin Vol V_{inL} V_{inH} V_{ref} $V_{in}L = \frac{R1}{R1 + R2} \quad (V_{OL} - V_{ref}) + V_{ref}$
$$\begin{split} V_{in}H &= \frac{R1}{R1+R2} \quad (V_{OH}-V_{ref)}+V_{ref} \\ H &= \frac{R1}{R1+R2} \quad (V_{OH}-V_{OL}) \end{split}$$

Figure 31. Comparator with Hysteresis

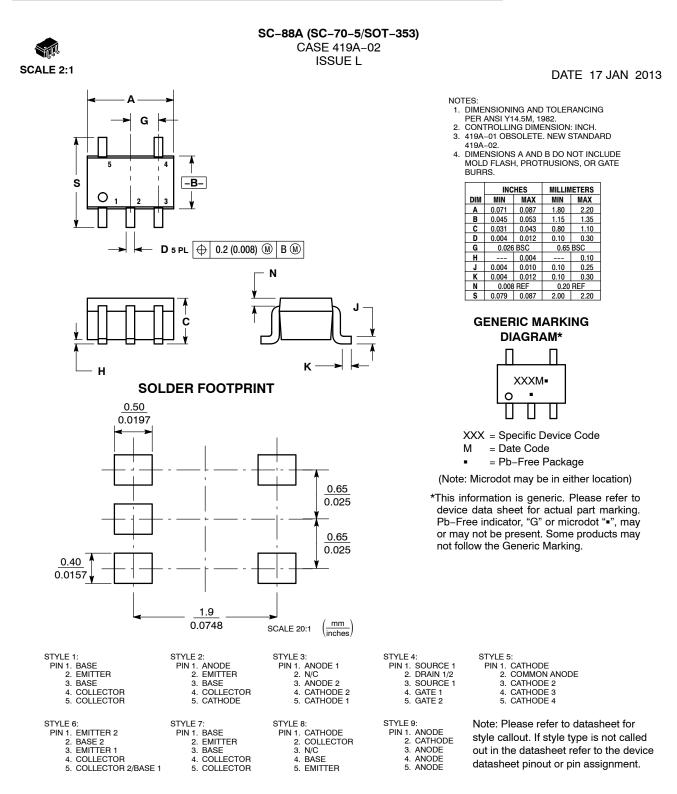
Choose value f_o, C Then: R3 = $\frac{Q}{\pi f_0 C}$ R1 = $\frac{R3}{2 A(f_0)}$ R2 = $\frac{R1 R3}{4Q^2 R1 - R3}$

For less than 10% error from operational amplifier, (($Q_O f_O$)/BW) < 0.1 where f_o and BW are expressed in Hz. If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Figure 32. Multiple Feedback Bandpass Filter

Order Number	Number of Channels	Number of Pins	Package Type	Shipping [†]
LMV931SQ3T2G	Single	5	SC70–5 (Pb–Free)	3000 / Tape & Reel
LMV931SN3T1G	Single	5	TSOP-5 (Pb-Free)	3000 / Tape & Reel
LMV932DMR2G*	Dual	8	Micro8 (Pb–Free)	4000 / Tape & Reel
LMV932DR2G	Dual	8	SOIC-8 (Pb-Free)	2500 / Tape & Reel

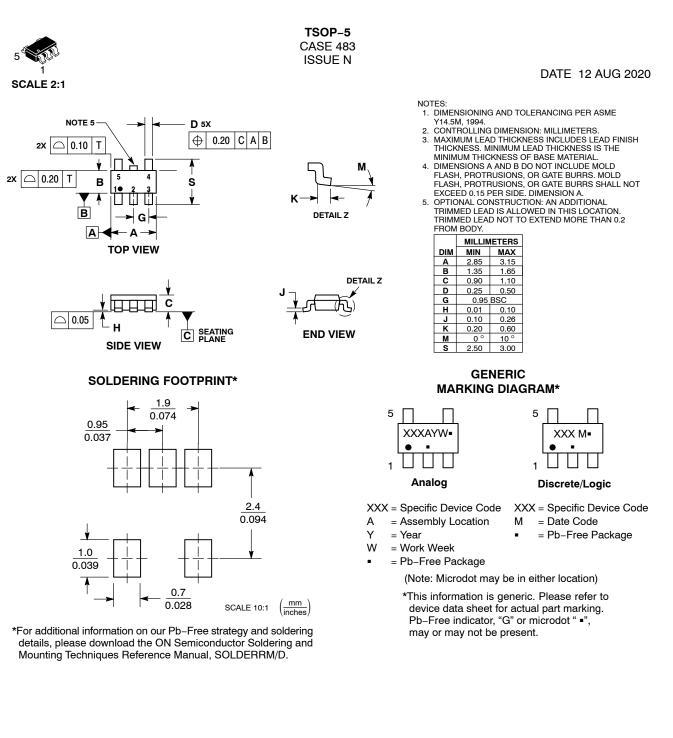
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


*Consult Sales.

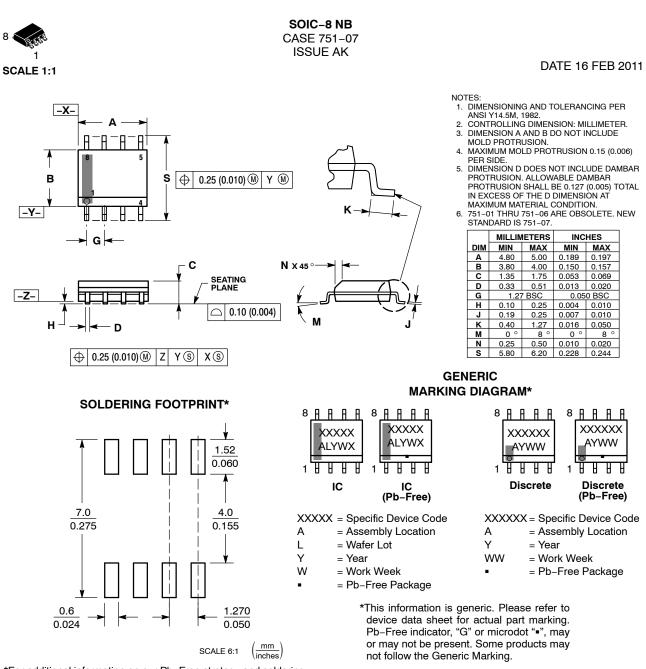
Micro8 is a trademark of International Rectifier.

ORDERING INFORMATION

http://onsemi.com 14



DOCUMENT NUMBER:	98ASB42984B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-88A (SC-70-5/SOT-35	353) PAGE 1 OF	


ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

DOCUMENT NUMBER:	98ARB18753C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSOP-5 PAGE 1 0		PAGE 1 OF 1
ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.			

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB	-8 NB	
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the			

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR 3. 4. EMITTER EMITTER 5. BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: CATHODE 1 PIN 1. 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: PIN 1. GROUND BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC COMMON CATHODE/VCC 3 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 COMMON ANODE/GND 8. STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. 4. DRAIN, #2 GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 DRAIN 1 7. 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. LINE 1 OUT 8. STYLE 27: PIN 1. ILIMIT 2 OVI 0 UVLO З. 4. INPUT+ 5. SOURCE SOURCE 6. SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: ANODE ANODE PIN 1. 2. ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 3. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. 4. GATE 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE 2. EMITTER 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

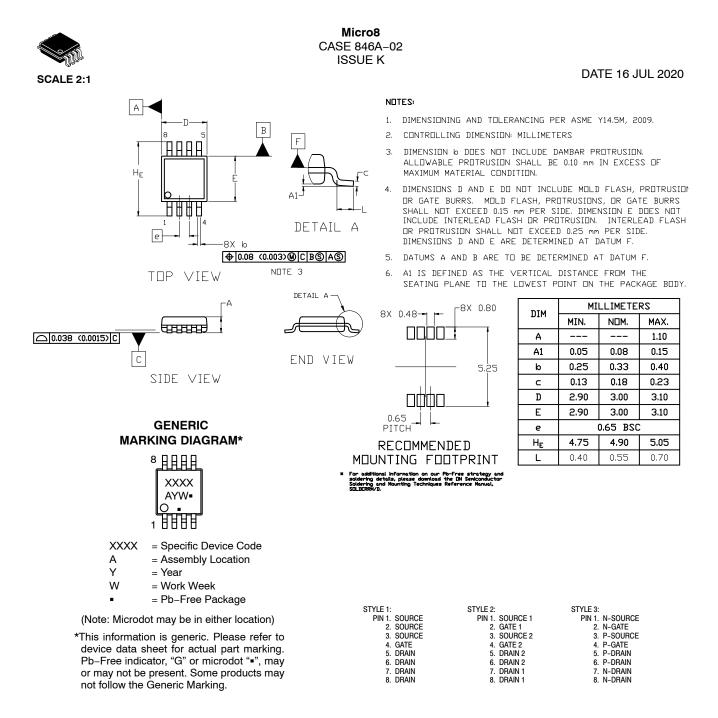
DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2	
ON Semiconductor and 🔊 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the			

SOURCE 1/DRAIN 2

7.

8. GATE 1

7.


8

rights of others

COLLECTOR, #1

COLLECTOR, #1

DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	MICRO8	PAGE 1	
ON Semiconductor and I are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: LMV931SQ3T2G LMV931SN3T1G LMV932DMR2G LMV932DR2G