

Function Diagram

Circuit Diagrams

IK 8805.01

IL 8805.02

IK 8805.11

IL 8805.03

IL 8805.04

Your Advantages

- Optionally with up to max. 4 changeover contacts
- Low energy consumption by impulse operation
- Small amount of wiring required at installations with serval local push buttons

Features

- According to IEC/EN 60669
- Impulse operation
- Pushbutton for manual actuation of the contact
- Operating position display
- Max. glow lamp load: 4 mA
- IK 8805: width 17.5 mm IL 8805: width 35 mm

Approvals and Markings

C ϵ

Applications

For switching several different consumer groups on and off centrally

Connection Terminals

Terminal designation	Signal designation
A1	Local button
A2	Neutral N
ZE	Central button ON
ZA	Central button OFF
$13 / 14,23 / 24,33 / 34,43 / 44$	NO contact LOAD
$11 / 12 / 14,21 / 22 / 24$, $31 / 32 / 34,41 / 42 / 44$	C/O contact LOAD

IL 8805.12

IL 8805.13

IL 8805.14

Function

The remote switch IK 8805 can be used to carry out central switching operations which make it possible to switch several different consumer groups on and off from a central location. Each consumer group needs a remote switch, that can be operated either by a local switch as well as by a central switch. To combine sevearl of theses central switches to a system a large number of devices can be switch on or off simultaneously from a central location.

This remote switch works like a stepper relay, i.e. it is controlled by short pulses. When energising the coil with a pulse on the input the contacts changeover and keep the position until the next pulse is received.

Notes
 Operating Mode: The central switch is designed for pulse operation! In the case of wrong operation (permanent energisation by sticking pushbutton) a built in protection is activated.

Recovery time: When the fault protection is activated a recovery time until next operation of approx. 30 s needs to be observed.

Connection: \quad Local button (RT) and the Central buttons (ZE/ZA) can to neutral.

Glowlamps: If pushbuttons with glowlamps are used the total current for glowlamps has to be limited to 4 mA
(e.g. 8 Glowlamps at 0.5 mA)

Contact load: on parallel compensated fluorescent lamps and when using electronic ballast units high inrush currents can be present. Suitable fuses or line circuit breakers can be used.

Technical Data

Input
Nominal voltage U_{N} :
Voltage range: Nominal consumption:
Minimum on time:
Nominal frequency:
Frequency range:
Glow lamps:
AC 24, 42, 230 V
DC 24 V
$0.9 \ldots 1.1 U_{N}$ 11 W (Impulse power)
$>50 \mathrm{~ms}$
50 or 60 Hz
± 5 \%
8 glow lamps à 0.5 mA via room pushbuttons 5 glow lamps à 0.5 mA
via ZE / ZA
Output
Contacts
IK 8805.01:
IK 8805.11:
IL 8805.02:
IL 8805.03:
IL 8805.04:
IL 8805.12:
IL 8805.13:
IL 8805.14:
Operate time:
Nominal output voltage:
Switching capacity
with lamp load:
bulb load:
fluorescent lamp load:
in Duo circuit:

1 NO contact
1 changeover contact
2 NO contacts
3 NO contacts
4 NO contacts
2 changeover contacts
3 changeover contacts
4 changeover contacts
< 30 ms
AC $230 \mathrm{~V} / 400 \mathrm{~V}$

2000 W
5×10^{4} switching cycles 20 fluorescent lamps with 58 W each 2×20 fluorescent lamps with 58 W each 5×10^{4} switching cycles
The starting current levels can be very high in parallel compensation configurations and when electronic ballast units are being used.
Automatic fuses must be incorporated in the circuit if necessary.

Technical Data

Nominal switching-off

capacity:
cos. $\varphi 1$... 0.7, AC 230 V: 16 A
Thermal current $\mathrm{I}_{\text {th }}$:
Electrical life:
Permissible switching
frequency:
Short circuit strength
max. fuse rating:
Mechanical life:
16 A
5×10^{4} switching cycles
1000 switching cycles / h
16 A gG / gL
IEC/EN 60 947-5-1
2×10^{5} switching cycles

General Data

Nominal operating mode:

Temperature range

Operation:
Storage:
Altitude:
Clearance and creepage

distances

rated impulse voltage /
pollution degree:
EMC
Electrostatic discharge: HF-Einstrahlung:
80 MHz ... 2.7 GHz :
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground: HF wire guided: Interference suppression: Degree of protection:

Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:
Fixing torque:
Mounting:
Weight:

Pulse operation
in case of failure 100% to duty cycle possible
$-20 \ldots+45^{\circ} \mathrm{C}$
$-25 \ldots+55^{\circ} \mathrm{C}$
< 2.000 m

4 kV / 2
IEC 60 664-1
8 kV (air)
IEC/EN 61 000-4-2
$10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
4 kV IEC/EN 61 000-4-4

1 kV
IEC/EN 61 000-4-5
2 kV
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
10 V
EN 55011
value class B
IEC/EN 60529
Terminals: IP 20
IEC/EN 60529
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm
frequency 10 ... 55 Hz IEC/EN 60 068-2-6
Humid heat IEC/EN 60 068-2-30 EN 50005
$2 \times 2.5 \mathrm{~mm}^{2}$ solid or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled
DIN 46 228-1/-2/-3/-4 or
$2 \times 1 \mathrm{~mm}^{2}$ stranded ferruled
DIN 46 228-1/-2/-3/-4
Flat terminals with self-lifting
clamping piece IEC/EN 60 999-1 0.8 Nm

DIN rail
IEC/EN 60715
100 g

IL 8805.02

