


# 16 A Triac for LED light dimmer



TO-220AB Ins.



#### Product status link

T1605G-6I

| Product summary                    |               |  |  |  |
|------------------------------------|---------------|--|--|--|
| Order code                         | T1605G-6I     |  |  |  |
| Package                            | TO-220AB Ins. |  |  |  |
| V <sub>DRM</sub> /V <sub>RRM</sub> | 600 V         |  |  |  |
| I <sub>GT</sub>                    | 5 mA          |  |  |  |
| I <sub>H</sub>                     | 5 mA          |  |  |  |

#### **Features**

- · Three quadrants with logic level gate
- Benefits:
  - Super low holding current I<sub>H</sub> = 5 mA
  - Optimized thermal performance with low power dissipation
  - Optimized turn-off commutation for lighting loads

## **Application**

- · Lighting:
  - Universal light dimmers
  - LED light dimmers
- Heating
- Overvoltage crowbar protection

## **Description**

The T1605G-6I Triac in TO-220AB insulated can be used for the on/off or phase angle control function in general purpose AC switching where high commutation capability is required.

Its super low holding current  $I_H$  enables deep dimming for LED light dimmers without flickering nor jittering.

Package environmentally friendly ECOPACK2, RoHS (2011/65/EU) and halogen free compliant.

TO-220AB insulated package is UL-94, V0 flammability resin compliance.

This component is recognized by UL. Representative samples of this component have been evaluated by UL and meet applicable UL requirements for UL 1557 standard (File Ref. 81734).



# 1 Characteristics

Table 1. Absolute maximum ratings (limiting values)

| Symbol              | Parameters                                                          |                        | Value                   | Unit        |                  |
|---------------------|---------------------------------------------------------------------|------------------------|-------------------------|-------------|------------------|
| I <sub>T(RMS)</sub> | RMS on-state current (full sine wave)                               |                        | T <sub>c</sub> = 85 °C  | 16          | Α                |
| I                   | Non repetitive surge peak on-state current, $t_p = 16.7 \text{ ms}$ |                        | T <sub>j</sub> = 25 °C  | 140         |                  |
| I <sub>TSM</sub>    | (full cycle, T <sub>j</sub> initial = 25 °C)                        | t <sub>p</sub> = 20 ms | T <sub>j</sub> = 25 °C  | 132         | Α                |
| I <sup>2</sup> t    | I <sup>2</sup> t value for fusing                                   | t <sub>p</sub> = 10 ms | T <sub>j</sub> = 25 °C  | 116         | A <sup>2</sup> s |
| dl/dt               | Critical rate of rise of on-state current                           | f = 50 Hz              | T <sub>i</sub> = 25 °C  | 50          | A/µs             |
| u., u.,             | $I_G = 2 \times I_{GT}$ , $t_r \le 100 \text{ ns}$                  | ,                      |                         | , τ μο      |                  |
| $V_{DRM}/V_{RRM}$   | Repetitive peak off-state voltage                                   |                        | T <sub>j</sub> = 125 °C | 600         | V                |
| $V_{DSM}/V_{RSM}$   | Non repetitive surge peak off-state voltage                         | t <sub>p</sub> = 20 ms | T <sub>j</sub> = 25 °C  | 700         | V                |
| $I_{GM}$            | Peak gate current                                                   | t <sub>p</sub> = 20 μs | T <sub>j</sub> = 125 °C | 4           | Α                |
| $P_{G(AV)}$         | Average gate power dissipation                                      |                        | T <sub>j</sub> = 125 °C | 1           | W                |
| T <sub>stg</sub>    | Storage junction temperature range                                  |                        |                         | -40 to +150 | °C               |
| Tj                  | Operating junction temperature range                                |                        | -40 to +125             | °C          |                  |

Table 2. Electrical characteristics ( $T_j$  = 25 °C, unless otherwise specified)

| Symbol                        | Parameters                                                       | Quadrant                |        | Value | Unit |
|-------------------------------|------------------------------------------------------------------|-------------------------|--------|-------|------|
| I <sub>GT</sub>               |                                                                  |                         | Min.   | 0.25  | mA   |
| 'G1                           | $V_D = 12 \text{ V}, R_L = 33 \Omega$                            | 1 - 11 - 111            | Max.   | 5     | IIIA |
| V <sub>GT</sub>               |                                                                  |                         | Max.   | 1.3   | V    |
| $V_{GD}$                      | $V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega, T_j = 125 \text{ °C}$ | 1 - 11 - 111            | Min.   | 0.2   | V    |
| I <sub>H</sub> <sup>(1)</sup> | I <sub>T</sub> = 500 mA, gate open                               |                         | Max.   | 5     | mA   |
| IL                            | I <sub>G</sub> = 1.2 I <sub>GT</sub>                             | 1 - 111                 | Max.   | 10    | - A  |
| 'L                            | IG - 1.2 IG                                                      | II                      | IVIAX. | 15    | mA   |
| dV/dt <sup>(1)</sup>          | V <sub>D</sub> = 67% V <sub>DRM</sub> , gate open                | T <sub>j</sub> = 125 °C | Min.   | 10    | V/µs |
| (dl/dt)c <sup>(1)</sup>       | (dV/dt)c = 0.1 V/µs                                              | T <sub>j</sub> = 125 °C | Min.   | 2.5   | A/ms |

<sup>1.</sup> For both polarities of A2 referenced to A1

Table 3. Static electrical characteristics

| Symbol                             | Test conditions                                   | Tj     |        | Value | Unit |
|------------------------------------|---------------------------------------------------|--------|--------|-------|------|
| V <sub>TM</sub> <sup>(1)</sup>     | I <sub>TM</sub> = 22.5 A, t <sub>p</sub> = 380 μs | 25 °C  | Max.   | 1.55  | V    |
| V <sub>TO</sub> <sup>(1)</sup>     | threshold on-state voltage                        | 125 °C | Max.   | 0.83  | V    |
| R <sub>D</sub> <sup>(1)</sup>      | Dynamic resistance                                | 125 °C | Max.   | 28    | mΩ   |
| I <sub>DRM</sub> /I <sub>RRM</sub> | V <sub>DRM</sub> = V <sub>RRM</sub> = 600 V       | 25 °C  | Max.   | 5     | μΑ   |
|                                    | VDRM - VRRM - OOO V                               | 125 °C | ividX. | 1     | mA   |

<sup>1.</sup> For both polarities of A2 referenced to A1

DS13499 - Rev 2 page 2/10



#### Table 4. Thermal resistance

| Symbol                                   | Parameters                 |      | Value | Unit |
|------------------------------------------|----------------------------|------|-------|------|
| R <sub>th(j-c)</sub>                     | Max. junction to case (AC) | Max. | 2.1   | °C/W |
| R <sub>th(j-a)</sub> Junction to ambient |                            | Тур. | 60    | C/VV |

DS13499 - Rev 2 page 3/10



10

5

0

0

1F-3

2

## 1.1 Characteristics (curves)

Figure 1. Maximum power dissipation versus on-state RMS current (full cycle)

P(W)

25

20

15

I<sub>T(RMS)</sub>(A)

8

Figure 3. Relative variation of thermal impedance versus

10

12

14

16

6

Figure 2. RMS on-state current versus case temperature (full cycle)  $I_{T(RMS)}(A)$ 18 16 14 12 10 8 6 2  $T_c(^{\circ}C)$ 0 0 25 75 100

pulse duration

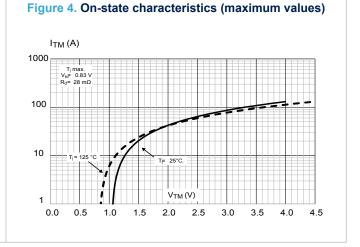
1E+0

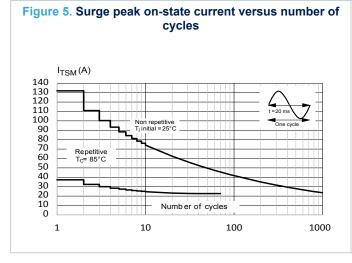
K=[Z<sub>th</sub>/R<sub>th</sub>]

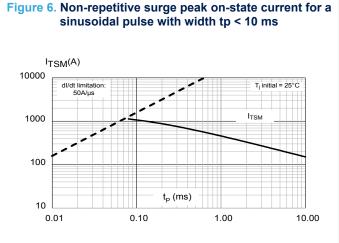
Z<sub>tn(-s)</sub>

1E-1

tp(s)


1F-1


1E+0


1E+1

1E+2

5F+2







DS13499 - Rev 2 page 4/10



Figure 7. Relative variation of critical rate of decrease of main current versus junction temperature

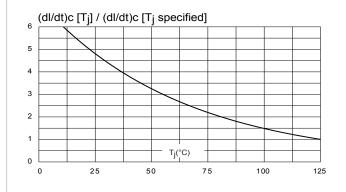
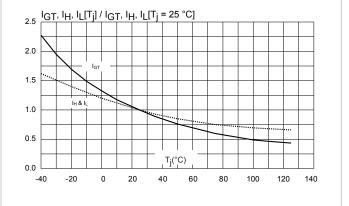




Figure 8. Relative variation of gate trigger current holding current and latching current versus junction temperature (typical values)



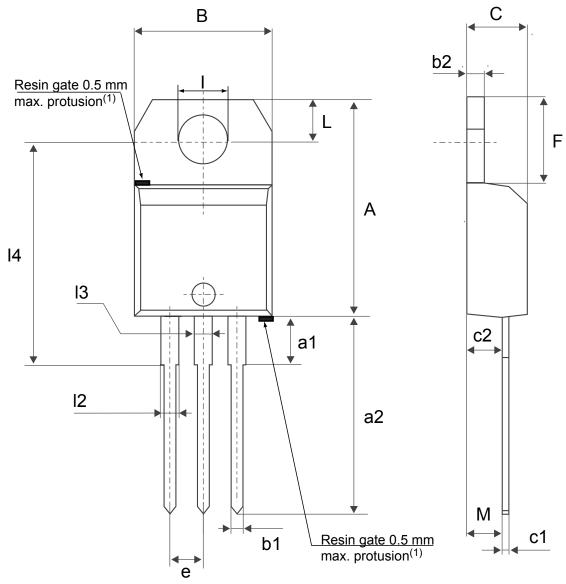
DS13499 - Rev 2 page 5/10



# Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

## 2.1 TO-220AB insulated package information


Epoxy meets UL 94,V0

Cooling method: by conduction (C)

Recommended torque value: 0.55 N·m

Maximum torque value: 0.70 N·m

Figure 9. TO-220AB insulated package outline



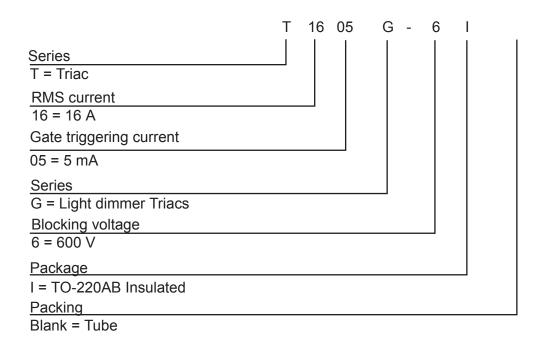
(1)Resin gate position accepted in one of the two positions or in the symmetrical opposites.

DS13499 - Rev 2 page 6/10



Table 5. TO-220AB insulated package mechanical data

|      | Dimensions  |       |       |                       |        |        |  |
|------|-------------|-------|-------|-----------------------|--------|--------|--|
| Ref. | Millimeters |       |       | Inches <sup>(1)</sup> |        |        |  |
|      | Min.        | Тур.  | Max.  | Min.                  | Тур.   | Max.   |  |
| Α    | 15.20       |       | 15.90 | 0.5984                |        | 0.6260 |  |
| a1   |             | 3.75  |       |                       | 0.1476 |        |  |
| a2   | 13.00       |       | 14.00 | 0.5118                |        | 0.5512 |  |
| В    | 10.00       |       | 10.40 | 0.3937                |        | 0.4094 |  |
| b1   | 0.61        |       | 0.88  | 0.0240                |        | 0.0346 |  |
| b2   | 1.23        |       | 1.32  | 0.0484                |        | 0.0520 |  |
| С    | 4.40        |       | 4.60  | 0.1732                |        | 0.1811 |  |
| c1   | 0.49        |       | 0.70  | 0.0193                |        | 0.0276 |  |
| c2   | 2.40        |       | 2.72  | 0.0945                |        | 0.1071 |  |
| е    | 2.40        |       | 2.70  | 0.0945                |        | 0.1063 |  |
| F    | 6.20        |       | 6.60  | 0.2441                |        | 0.2598 |  |
| I    | 3.73        |       | 3.88  | 0.1469                |        | 0.1528 |  |
| L    | 2.65        |       | 2.95  | 0.1043                |        | 0.1161 |  |
| 12   | 1.14        |       | 1.70  | 0.0449                |        | 0.0669 |  |
| 13   | 1.14        |       | 1.70  | 0.0449                |        | 0.0669 |  |
| 14   | 15.80       | 16.40 | 16.80 | 0.6220                | 0.6457 | 0.6614 |  |
| M    |             | 2.6   |       |                       | 0.1024 |        |  |


<sup>1.</sup> Inch dimensions are for reference only.

DS13499 - Rev 2 page 7/10



# 3 Ordering information

Figure 10. Ordering information scheme



**Table 6. Ordering information** 

| Order code | Marking   | Package       | Weight | Base qty. | Delivery mode |
|------------|-----------|---------------|--------|-----------|---------------|
| T1605G-6I  | T1605G-6I | TO-220AB-Ins. | 2.3 g  | 50        | Tube          |

DS13499 - Rev 2 page 8/10



# **Revision history**

Table 7. Document revision history

| Date        | Version | Changes          |
|-------------|---------|------------------|
| 07-Oct-2020 | 1       | Initial release. |
| 28-Oct-2020 | 2       | Updated Table 6. |

DS13499 - Rev 2 page 9/10



#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

DS13499 - Rev 2 page 10/10