

On-State Current
12 Amp

Gate Trigger Current
200 µA to 25 mA

Off-Satate Voltage

400 V ÷ 800 V

FEATURES

- Glass/passivated die junctions
- Low current SCR
- Low thermal resistance
- High surge current capability
- Low forward voltage drop
- Solder dip 260 °C, 10s
- Component in accordance to RoHS 2011/65/EU and WEEE 2002/96/EC
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C

Pb

RoHS COMPLIANT

MECHANICAL DATA

- Case: (DPAK)/ (D2PAK)/ (IPAK)/ (TO-220F)/ (TO-220AB). Epoxy meets UL 94V-0 flammability rating.
- Polarity: As marked on the body.
- Terminals: Matte tin plated leads, solderable per MIL-STD-750 Method 2026, J-STD-002 and JESD22-B102. Consumer grade, meets JESD 201 class 1A whisker test.

TYPICAL APPLICATIONS

The **standard** gate SCR FS1208, FS1209 and FS1210 series is suitable for a wide range of applications, e.g., Overvoltage Crowbar protection, Motor Control circuits in Power Tools and domestic appliances, inrush current limiting circuits, capacitive discharge ignition and voltage regulation circuits. The **sensitive** gate SCR FS1202 series is suitable for applications where the available gate current is limited, e.g., Ground Fault Interruptors, Solid State Relays, Standby mode power supplies, smoke and alarm detectors.

Maximun Ratings and Electrical Characteristics at 25 °C

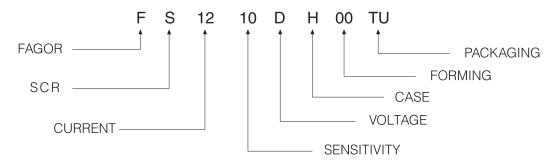
SYMBOL	PARAMETER	CONDITIONS		Value	Unit
I _{T(RMS)}	On-State Current	180 ° Conduction Angel	(Note 1)	12	А
I _{T(AV)}	Average On-State Current	180 ° Conduction Angel	(Note 1)	8	Α
I _{TSM}	Non-repetitive On-State Current	Half Cycle, 60 Hz		145	А
I _{TSM}	Non-repetitive On-State Current	Half Cycle, 50 Hz		140	А
l²t	Fusing Current	tp = 10 ms, Half Cycle		98	A^2s
I _{GM}	Peak Gate Current	20 μs max.	(Note 1)	4	А
P _{GM}	Peak Gate Dissipation	20 μs max.	(Note 1)	10	W
$P_{G(AV)}$	Gate Dissipation	20 ms max.		0.1	W
T _i	Operating Temperature			(-40 to + 125)	°C
T _{stg}	Storage Temperature			(-40 to + 150)	°C
T _{sld}	Soldering Temperature	10s max.		260	°C
V _{RGM}	Max. Peak Reverse Gate Voltage (For FS1208, FS1209 and FS1210 only)			5	V
T _{iso}	R.M.S. isolation voltage 50/60 Hz sinusoidal waveform			2500	Vac

Note 1: TO-220 $T_{\rm C}=70\,^{\circ}{\rm C}$ DPAK/D2PAK/IPAK/TO-220AB $T_{\rm C}=105\,^{\circ}{\rm C}$

SYMBOL PARAMETER			Voltage	Unit	
STIVIDOL	MINBOL PARAMETER		М	N	Offic
V _{DRM} V _{RRM}	Repetitive Peak Off State Voltage	400	600	800	V

Electrical Characteristics at Tamb = 25 °C

CVMDOL	DADAMETED	AMETER		SG	STA	NDAI	RD	I I mit	
SYMBOL	PARAMETER	CONDITIONS	•		02	08	09	10	Unit
		$V_D = 12 V_{DC}$	$R_L=140\Omega$	MAX	200	-	-	-	μΑ
I _{GT}	I _{GT} Gate Trigger Current		$R_L = 33\Omega$	MIN MAX	-	0.5 5	2 15	2 25	mA mA
V _{GT}	Gate Trigger Voltage	$V_D = 12 V_{DC}$	$R_L = 140\Omega$ $R_L = 33\Omega$	MAX	0.8		1.3	'	V
$V_{\sf GD}$	Gate Non Trigger Voltage	$V_D = V_{DRM}, T_j = 125 ^{\circ}\text{C}, R_L = 3.3 \text{k}\Omega,$	$R_{GK} = 220\Omega$ Gate open	MIN	0.1 -		- 0.2		V
V_{RGM}	Reverse Gate Voltage	$I_{RG} = 10\mu A$,		MIN	8		-		V
I _H	Holding Current	$I_T = 500 \text{ mA},$	$R_{GK} = 1k\Omega$ Gate open	MAX	5 -	- 15	30	- 40	mA
IL	Latching Current	I _G = 1.2 I _{GT}	$R_{GK} = 1k\Omega$ Gate open	MAX	6 -	- 30	- 60	- 60	mA
dV / dt	Critical Rate of Voltage Rise	$V_D = 0.67 \ V_{DRM} , T_j = 125 \ ^{\circ}C$	$R_{GK} = 1k\Omega$ Gate open	MIN	5 -	- 40	- 200	- 400	V/µs
dI / dt	Critical Rate of Current Rise	$I_{G} = 2 \times I_{GT,} tr \le 100 \text{ ns}, f = 60 \text{ F}$	Hz , $T_j = 125$ °C	MIN	MIN 50		A/µs		
V_{TM}	On-state Voltage	at $I_T = 24$ Amp, tp = 380 μ s, $T_j = 25$ °C MAX 1.6				V			
$V_{t(o)}$	Threshold Voltage	$T_j = 125 ^{\circ}\text{C}$ MAX 0.85				V			
r _d	Dynamic resistance	$T_{j} = 125 ^{\circ}\text{C}$ MAX 30				mΩ			
I _{DRM} / I _{RRM}	Off-State Leakage Current	$V_{DRM} = V_{RRM}, R_{GK} = 220\Omega$	$T_j = 125 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$	MAX MAX	1 5		2 5		mΑ μΑ


Thermal resistance

SYMBOL	PARAMETER	CONDITIONS		Value	Unit
D .	Thermal Resistance		DPAK, IPAK, D2PAK,TO-220AB	1.3	0000
$R_{th(j-c)}$	Junction-Case for DC		TO-220F	4.6	°C/W
	Thermal Resistance	$S = 0.5 cm^2$	DPAK	70	
	Junction-Amb for DC	$S = 1 cm^2$	D2PAK	45	
$R_{th(j-a)}$			IPAK	100	°C/W
			TO-220F	60	
			TO-220AB	60	

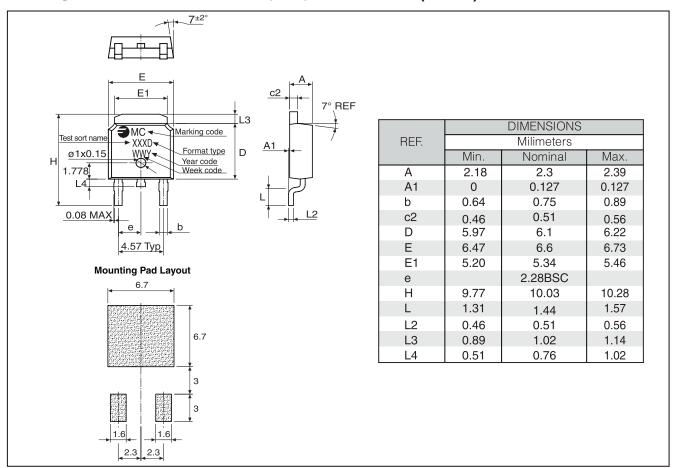
S = Copper surface under tab

Part Number Information

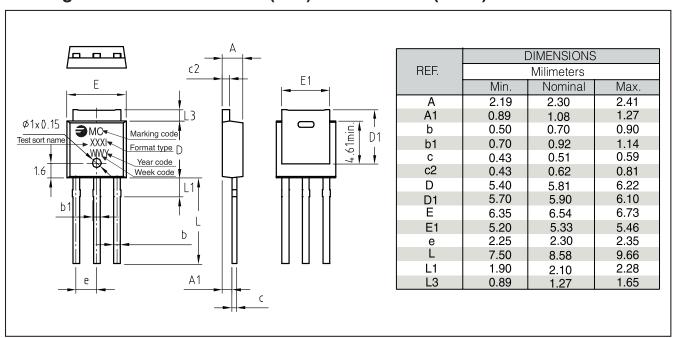
Ordering information

PREFERRED P/N	PACKAGE CODE	DELIVERY MODE	BASE QUANTITY	UNIT WEIGHT (g)
FS1209DD 00TR	TR	13" diameter tape and reel	2500	0.30

PREFERRED P/N	PACKAGE CODE	DELIVERY MODE	BASE QUANTITY	UNIT WEIGHT (g)
FS1209DG 00TR	TR	13" diameter tape and reel	800	1.50

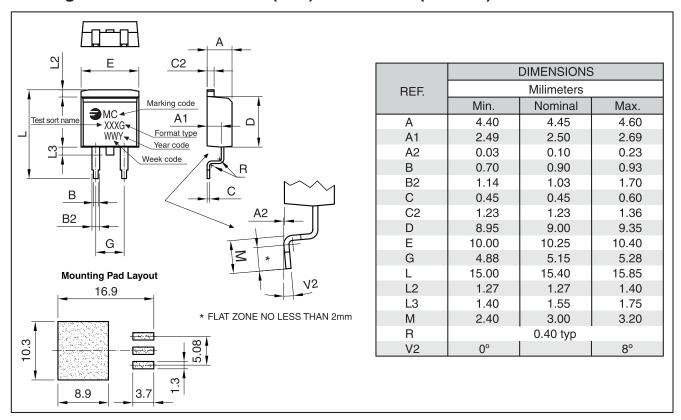

PREFERRED P/N	PACKAGE CODE	DELIVERY MODE	BASE QUANTITY	UNIT WEIGHT (g)
FS1209DW 00TU	TU	TUBE	1000	2.00

PREFERRED P/N	PACKAGE CODE	DELIVERY MODE	BASE QUANTITY	UNIT WEIGHT (g)
FS1209DI 00TU	TU	TUBE	4000	0.40

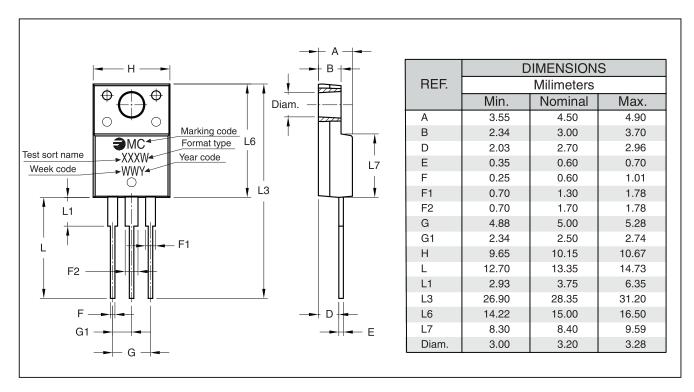

PREFERRED P/N	PACKAGE CODE	DELIVERY MODE	BASE QUANTITY	UNIT WEIGHT (g)
FS1209DH 00TU	TU	TUBE	1000	2.30

Package Outline Dimensions: (mm) TO-252AA (DPAK)

Package Outline Dimensions: (mm) TO-251AA (IPAK)

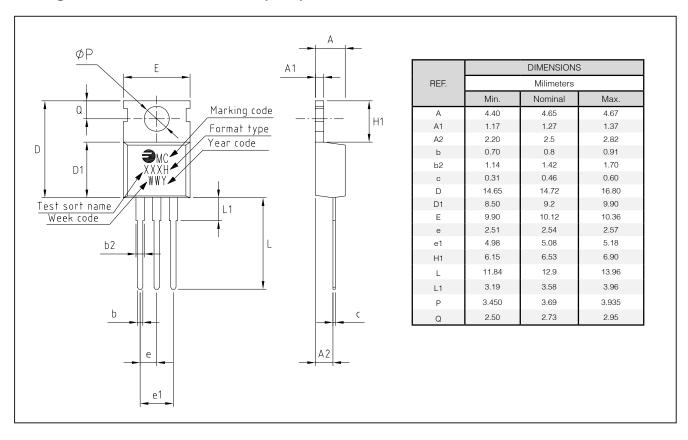


Version: Mar-22 Page Number: 5 / 7



STANDARD & SENSITIVE 12A SCR

Package Outline Dimensions: (mm) TO-263AB (D2PAK)



Package Outline Dimensions: (mm) TO-220F

Package Outline Dimensions: (mm) TO-220AB

Ratings and Characteristics (Ta 25 °C unless otherwise noted)

Fig. 1: Maximum average power dissipation versus average on-state current.

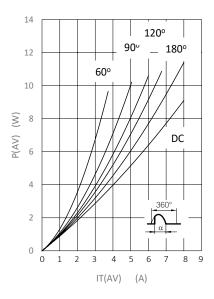


Fig. 3: Relative variation of thermal impedance junction to case versus pulse duration.

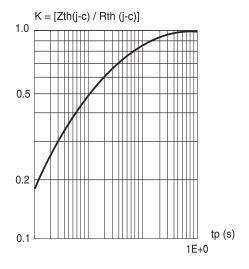


Fig. 2: Average and D.C. on-state current versus case temperature.

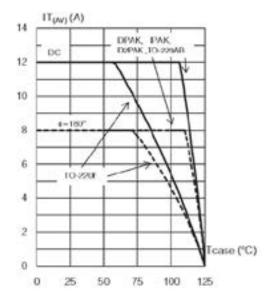
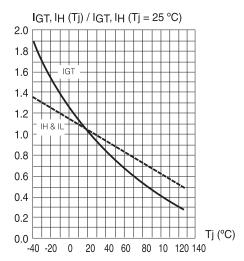



Fig. 4: Relative variation of gate trigger current, holding and latching current versus junction temperature for Sensitive Gate SCR (02).

Ratings and Characteristics (Ta 25 °C unless otherwise noted)

Fig. 5: Relative variation of gate trigger current, holding and latching current versus junction temperature for Standard Gate SCRs (08,09,10).

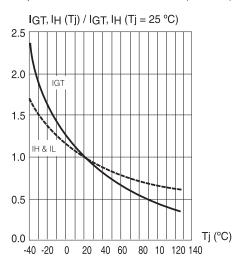


Fig. 6: Non repetitive surge peak on-state current versus number of cycles.

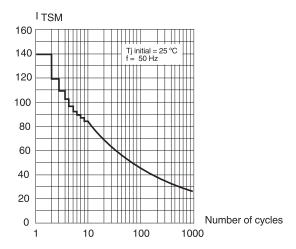


Fig. 7: Non repetitive surge peak on-state current for a sinusoidal pulse with width: tp < 10 ms, and corresponding value of l²t.

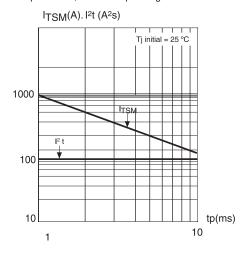
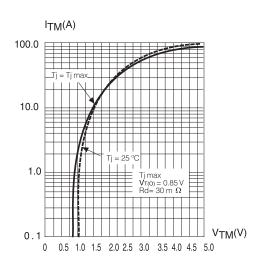



Fig. 8: On-state characteristics (maximum values).

Revision History

DATE	REVISION	DESCRIPTION OF CHANGES
14-Oct-2014	0	Original Data Sheet
16-Dec-2014	1	Modified Typical Applications Description and Title
07-Jun-2019	2	Updated figure 1
28-Mar-2022	3	Revised P.O.D. TO220AB

Disclaimer

All product, product specifications and data are subject to change without notice to improve reliability, function or design or otherwise.

Fagor Electrónica, S. Coop., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Fagor"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Fagor makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Fagor disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Fagor's knowledge of typical requirements that are often placed on Fagor products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the cutomer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Fagor's terms and conditions or purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing. Fagor products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Fagor product could result in personal injury or death. Customers using or selling Fagor products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Fagor and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attomeys fees, even if such claim alleges that Fagor or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Fagor personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Fagor. Products names and markings noted herein may be trademarks of their respective owners.