
STP110N8F6

Datasheet - production data

N-channel 80 V, 0.0056 Ω typ.,110 A, STripFET[™] F6 Power MOSFET in a TO-220 package

Figure 1. Internal schematic diagram

Features

Order code	V_{DS}	R _{DS(on)max}	I _D	P _{TOT}
STP110N8F6	80 V	0.0065 Ω	110 A	200 W

- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using the STripFETTM F6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low $R_{DS(on)}$ in all packages.

Table 1. Device summary

Order code	Marking	Package	Packing
STP110N8F6	110N8F6	TO-220	Tube

This is information on a product in full production.

Contents

1	Electrical ratings
2	Electrical characteristics4
	2.1 Electrical characteristics (curves) 6
3	Test circuits
4	Package information
	4.1 TO-220 package information 10
5	Revision history

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	80	V
V _{GS}	Gate-source voltage	±20	V
۱ _D	Drain current (continuous) at T _C = 25 °C	110	А
Ι _D	Drain current (continuous) at T _C = 100 °C	85	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	440	А
P _{TOT}	Total dissipation at $T_{C} = 25 \text{ °C}$	200	W
$E_{AS}^{(2)}$	Single pulse avalanche energy	180	mJ
Τ _J	Operating junction temperature		°C
T _{stg}	Storage temperature	-55 to 175	°C

1. Pulse width is limited by safe operating area

2. Starting $T_J = 25 \text{ °C}$, $I_D = 55 \text{ A}$, $V_{DD} = 60 \text{ V}$

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max.	0.75	°C/W
R _{thj-amb}	hj-amb Thermal resistance junction-ambient max.		°C/W

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0, I _D = 1 mA	80			V
Zoro goto voltago		$V_{GS} = 0, V_{DS} = 80 V$			1	μA
I _{DSS}	I _{DSS} drain current	V _{GS} = 0, V _{DS} = 80 V, T _C = 125 °C			100	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0, V _{GS} = +20 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2.5		4.5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 55 A		0.0056	0.0065	Ω

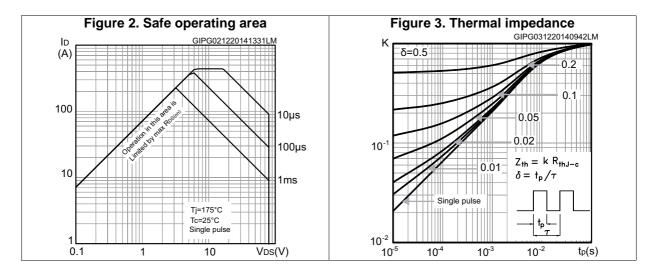
Table 4. On/off-state

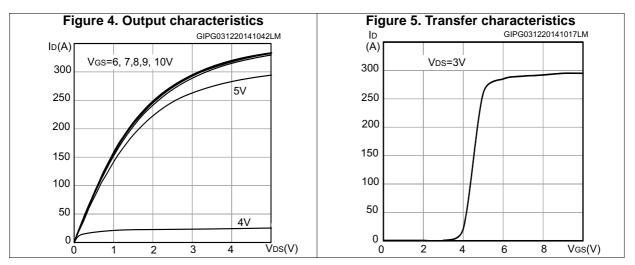
Table 5. Dynamic

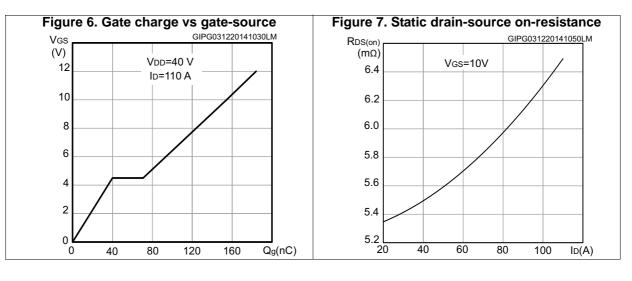
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	9130	-	pF
C _{oss}	Output capacitance	V _{DS} = 40 V, f = 1 MHz,	-	320	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	225	-	pF
Qg	Total gate charge	V _{DD} = 40 V, I _D = 110 A,	-	150	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	40	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14)	-	30	-	nC

Table 6. Switching times

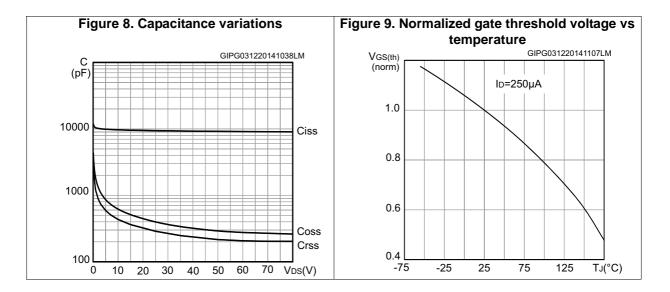
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	24	-	ns
t _r	Rise time	$V_{DD} = 40 \text{ V}, I_D = 55 \text{ A},$ R _G = 4.7 Ω, V _{GS} = 10 V	-	61	-	ns
t _{d(off)}	Turn-off delay time	$K_G = 4.7 \Omega$, $v_{GS} = 10 v$ (see Figure 13)	-	162	-	ns
t _f	Fall time		-	48	-	ns

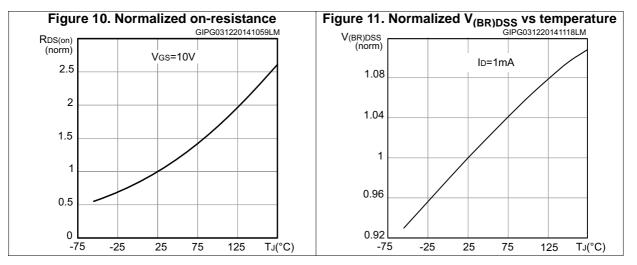

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	I_{SD} = 110 A, V_{GS} = 0	-		1.2	V
t _{rr}	Reverse recovery time		-	30		ns
Q _{rr}	Reverse recovery charge	I _{SD} = 110 A, di/dt = 100 A/μs V _{DD} = 64 V (see <i>Figure 15</i>)	-	34		nC
I _{RRM}	Reverse recovery current		-	2.3		А

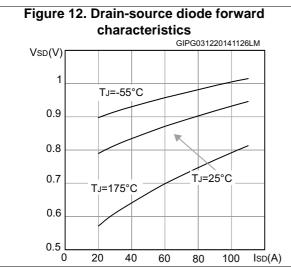

Table 7. Source-drain diode


1. Pulsed: pulse duration = $300 \ \mu$ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)







6/13

DocID026831 Rev 2

Test circuits 3

Figure 13. Switching times test circuit for resistive load

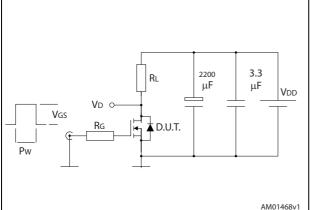


Figure 15. Test circuit for inductive load switching and diode recovery times

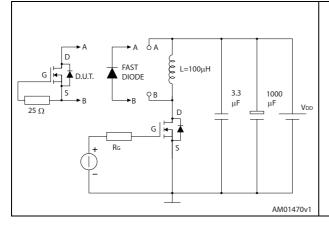
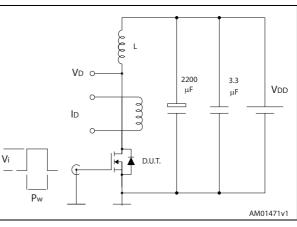


Figure 17. Unclamped inductive waveform

VD

ldм

lр


V(BR)DSS

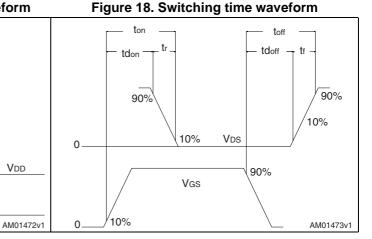
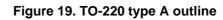


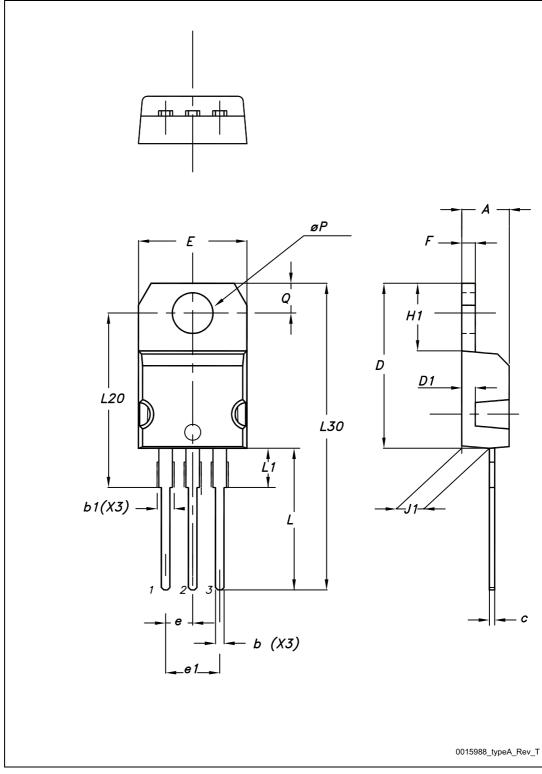
Figure 14. Gate charge test circuit

Vdd

DocID026831 Rev 2

Vdd




4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-220 package information

DocID026831 Rev 2

Table 8. TO-220 type A mechanical data				
Dim. —		mm		
Dini.	Min.	Тур.	Max.	
A	4.40		4.60	
b	0.61		0.88	
b1	1.14		1.70	
с	0.48		0.70	
D	15.25		15.75	
D1		1.27		
E	10		10.40	
е	2.40		2.70	
e1	4.95		5.15	
F	1.23		1.32	
H1	6.20		6.60	
J1	2.40		2.72	
L	13		14	
L1	3.50		3.93	
L20		16.40		
L30		28.90		
øP	3.75		3.85	
Q	2.65		2.95	

Table 8. TO-220 type A mechanical data

5 Revision history

Date	Revision	Changes
26-Sep-2014	1	First release.
05-Dec-2014	2	Updated in cover page the title and features. Product status promoted from preliminary to production data. Updated E_{AS} parameter in <i>Table 2</i> and $R_{DS(on)}$ in <i>Table 4</i> . Updated <i>Table 5</i> , <i>Table 6</i> and <i>Table 7</i> . Inserted <i>Section 2.1</i> .

Table 9. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

DocID026831 Rev 2