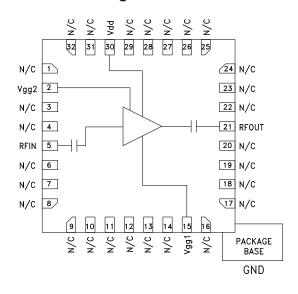


HMC463LP5 / 463LP5E

v09.0717


GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

Typical Applications

The HMC463LP5(E) is ideal for:

- Telecom Infrastructure
- Microwave Radio & VSAT
- Military EW, ECM & C3I
- Test Instrumentation
- Fiber Optics

Functional Diagram

Features

Gain: 13 dB

Noise Figure: 2.8 dB @ 10 GHz

P1dB Output Power: +18 dBm @ 10 GHz

Supply Voltage: +5V @ 60mA 50 Ohm Matched Input/Output

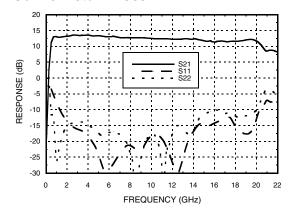
32 Lead 5x5mm SMT Package: 25mm²

General Description

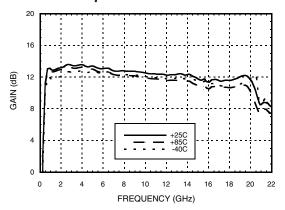
The HMC463LP5(E) is a GaAs MMIC pHEMT Low Noise AGC Distributed Amplifier packaged in a leadless 5x5 mm surface mount package which operates between 2 and 20 GHz. The amplifier provides 13 dB of gain, 2.8 dB noise figure and 18 dBm of output power at 1 dB gain compression while requiring only 60mA from a +5V supply. An optional gate bias (Vgg2) is provided to allow Adjustable Gain Control (AGC) of 8 dB typical. Gain flatness is excellent at ±0.5 dB from 6 - 18 GHz making the HMC463LP5(E) ideal for EW, ECM RADAR and test equipment applications. The HMC463LP5(E) LNA I/Os are internally matched to 50 Ohms and are internally DC blocked.

Electrical Specifications, $T_{\Delta} = +25$ °C, Vdd = 5V, Idd = 60 mA*

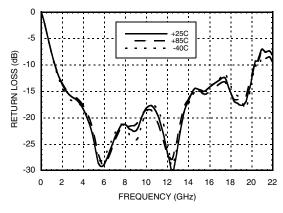
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		2 - 6		6 - 18		18 - 20		GHz		
Gain	10	13		9	12		8	11		dB
Gain Flatness		±0.5			±0.5			±0.5		dB
Gain Variation Over Temperature		0.010	0.015		0.010	0.015		0.010	0.015	dB/ °C
Noise Figure		3	4		3	5		5.5	6.5	dB
Input Return Loss		15			13			12		dB
Output Return Loss		13			10			10		dB
Output Power for 1 dB Compression (P1dB)	16	19		11	16		10	12		dBm
Saturated Output Power (Psat)		21			19			19		dBm
Output Third Order Intercept (IP3)		30			24			22		dBm
Supply Current (Idd) (Vdd = 5V, Vgg1 = -0.9V Typ.)		60	80		60	80		60	80	mA

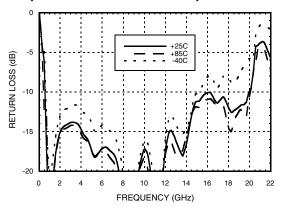

^{*} Adjust Vgg1 between -2 to -0V to achieve Idd = 60 mA typical.

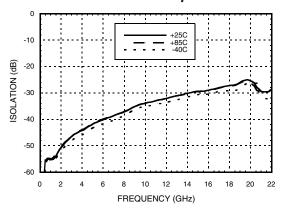
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

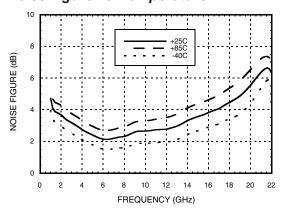


GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

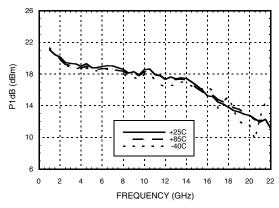

Gain & Return Loss

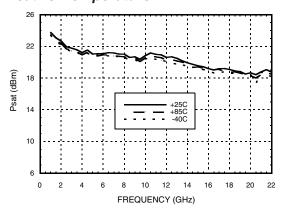

Gain vs. Temperature


Input Return Loss vs. Temperature

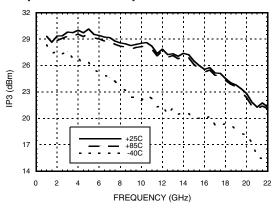

Output Return Loss vs. Temperature

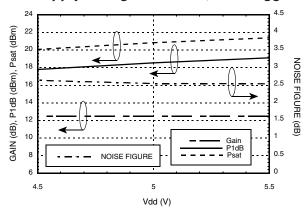
Reverse Isolation vs. Temperature

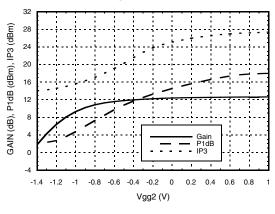

Noise Figure vs. Temperature



GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz


P1dB vs. Temperature

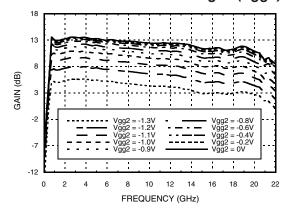

Psat vs. Temperature


Output IP3 vs. Temperature

Gain, Power & Noise Figure vs. Supply Voltage @ 10 GHz, Fixed Vgg1

Gain, P1dB & Output IP3 vs. Control Voltage @ 10 GHz

Noise Figure & Supply Current vs. Control Voltage @ 10 GHz



HMC463LP5 / 463LP5E

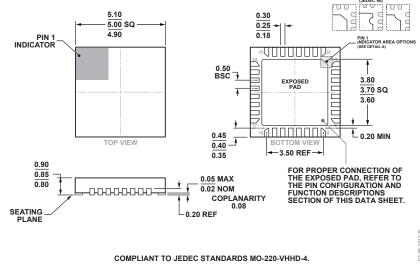
v09.0717

GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

Gain @ Several Control Voltages (Vgg2)

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+9V
Gate Bias Voltage (Vgg1)	-2 to 0V
Gate Bias Current (Igg1)	2.5 mA
Gate Bias Voltage (Vgg2)(AGC)	(Vdd -9) Vdc to +2V
RF Input Power (RFIN)(Vdd = +5V)	+18 dBm
Channel Temperature	150 °C
Continuous Pdiss (T= 85 °C) (derate 19.1 mW/°C above 85 °C)	1.24 W
Thermal Resistance (channel to ground paddle)	52.3 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 0B - Passed 150V


Typical Supply Current vs. Vdd

Vdd (V)	ldd (mA)
+4.5	58
+5.0	60
+5.5	62

GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

Outline Drawing

32-Lead Lead Frame Chip Scale Package [LFCSP] 5 mm × 5 mm Body and 0.90 mm Package Height (HCP-32-1) Dimensions shown in millimeters

Package Information

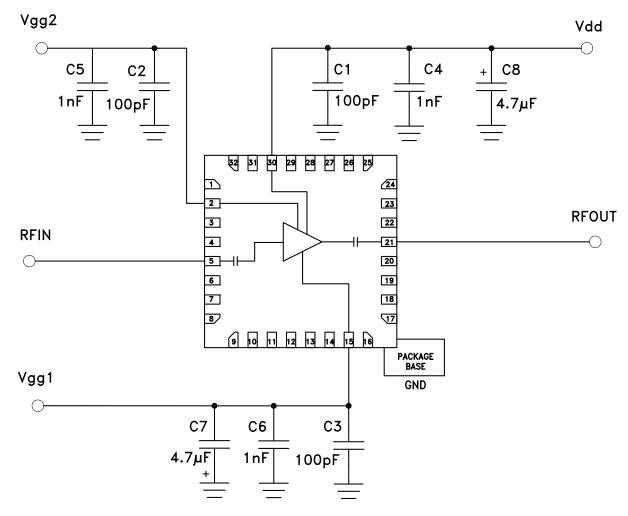
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]	
HMC463LP5	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H463 XXXX	
HMC463LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H463 XXXX	

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

HMC463LP5 / 463LP5E

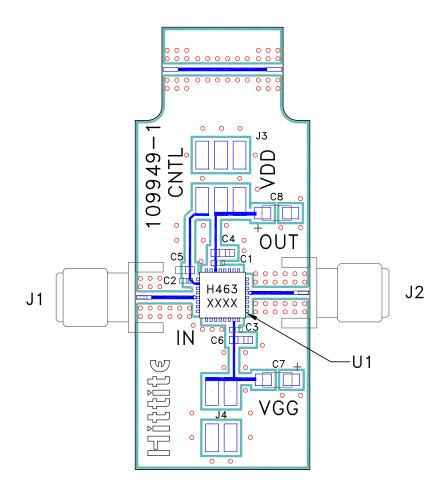
v09.0717

GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz


Pin Descriptions

Pin Number	Function	Description	Interface Schematic		
1, 3, 4, 6-14, 16-20, 22-29, 31, 32	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.			
2	Vgg2	Optional gate control if AGC is required. Leave Vgg2 open circuited if AGC is not required. Typical Vgg2 = -1.5V to 0V	Vgg2		
5	RFIN	This pad is AC coupled and matched to 50 Ohms	RFIN ○──		
15	Vgg1	Gate control for amplifier. Adjust to achieve Idd = 60mA.	Vgg10		
21	RFOUT	This pad is AC coupled and matched to 50 Ohms	— —○ RFOUT		
30	Vdd	Power supply voltage for the amplifier. External bypass capacitors are required	OVdd ———————————————————————————————————		
Ground Paddle	GND	Ground paddle must be connected to RF/DC ground.	GND =		

GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz


Application Circuit

GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

Evaluation PCB

List of Materials for Evaluation PCB 108341 [1]

Item	Description	
J1 - J2	SRI K Connector	
J3 - J4	2 mm Molex Header	
C1 - C3	100 pF Capacitor, 0402 Pkg.	
C4 - C6	1000 pF Capacitor, 0603 Pkg.	
C7 - C8	4.7 μF Capacitor, Tantalum	
U1	HMC463LP5(E) Amplifier	
PCB [2]	109949 Evaluation PCB	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Analog Devices upon request.

^[2] Circuit Board Material: Rogers 4350 or Arlon 25FR