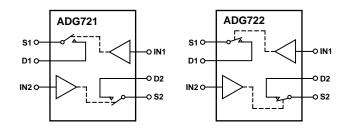
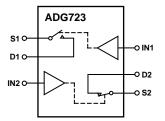


# Low Voltage 4 $\Omega$ Dual SPST Switches

# ADG721/ADG722/ADG723

## **FEATURES**


+1.8 V to +5.5 V Single Supply 4  $\Omega$  (Max) On Resistance Low On-Resistance Flatness -3 dB Bandwidth >200 MHz Rail-to-Rail Operation 8-Lead  $\mu$ SOIC Package Fast Switching Times


 $t_{ON}$  20 ns  $t_{OFF}$  10 ns

Low Power Consumption (<0.1  $\mu$ W) TTL/CMOS Compatible

APPLICATIONS
Battery Powered Systems
Communication Systems
Sample Hold Systems
Audio Signal Routing
Video Switching
Mechanical Reed Relay Replacement

## FUNCTIONAL BLOCK DIAGRAMS





SWITCHES SHOWN FOR A LOGIC "0" INPUT

## GENERAL DESCRIPTION

The ADG721, ADG722 and ADG723 are monolithic CMOS SPST switches. These switches are designed on an advanced submicron process that provides low power dissipation yet gives high switching speed, low On resistance and low leakage currents.

The ADG721, ADG722 and ADG723 are designed to operate from a single +1.8 V to +5.5 V supply, making them ideal for use in battery powered instruments and with the new generation of DACs and ADCs from Analog Devices.

The ADG721, ADG722 and ADG723 contain two independent single-pole/single-throw (SPST) switches. The ADG721 and ADG722 differ only in that both switches are normally open and normally closed respectively. While in the ADG723, Switch 1 is normally open and Switch 2 is normally closed.

Each switch of the ADG721, ADG722 and ADG723 conducts equally well in both directions when on. The ADG723 exhibits break-before-make switching action.

# PRODUCT HIGHLIGHTS

- 1. +1.8 V to +5.5 V Single Supply Operation. The ADG721, ADG722 and ADG723 offers high performance, including low on resistance and fast switching times and is fully specified and guaranteed with +3 V and +5 V supply rails.
- 2. Very Low  $R_{ON}$  (4  $\Omega$  max at 5 V, 10  $\Omega$  max at 3 V). At 1.8 V operation,  $R_{ON}$  is typically 40  $\Omega$  over the temperature range.
- 3. Low On-Resistance Flatness.
- 4. -3 dB Bandwidth >200 MHz.
- Low Power Dissipation. CMOS construction ensures low power dissipation.
- 6. Fast t<sub>ON</sub>/t<sub>OFF</sub>.
- 7. 8-Lead μSOIC.

# 

|                                                 | B Version |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------|-----------|------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                       | +25°C     | -40°C to<br>+85°C      | Units                     | Test Conditions/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ANALOG SWITCH                                   |           |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analog Signal Range                             |           | 0 V to V <sub>DD</sub> | V                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| On Resistance (R <sub>ON</sub> )                | 4         | 5                      | $\Omega$ max              | $V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA},$<br>Test Circuit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| On Resistance Match Between                     |           |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Channels ( $\Delta R_{ON}$ )                    | 0.3       | 1.0                    | $\Omega$ typ $\Omega$ max | $V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| On-Resistance Flatness (R <sub>FLAT(ON)</sub> ) | 0.85      | 1.5                    | $\Omega$ typ $\Omega$ max | $V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LEAKAGE CURRENTS                                |           |                        |                           | $V_{DD} = +5.5 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Source OFF Leakage I <sub>S</sub> (OFF)         | ±0.01     |                        | nA typ                    | $V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2 3 ( )                                         | ±0.25     | ±0.35                  | nA max                    | Test Circuit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Drain OFF Leakage I <sub>D</sub> (OFF)          | ±0.01     |                        | nA typ                    | $V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 | ±0.25     | ±0.35                  | nA max                    | Test Circuit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Channel ON Leakage ID, IS (ON)                  | ±0.01     |                        | nA typ                    | $V_S = V_D = 1 \text{ V}, \text{ or } V_S = V_D = 4.5 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 B, 0 ( )                                      | ±0.25     | ±0.35                  | nA max                    | Test Circuit 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DIGITAL INPUTS                                  |           |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Input High Voltage, V <sub>INH</sub>            |           | 2.4                    | V min                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Input Low Voltage, V <sub>INL</sub>             |           | 0.8                    | V max                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Input Current                                   |           | 0.0                    | VIIIAA                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I <sub>INL</sub> or I <sub>INH</sub>            | 0.005     |                        | μA typ                    | $V_{IN} = V_{INI}$ or $V_{INH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| INL OF TINH                                     | 0.005     | ±0.1                   | μΑ max                    | VIN - VINL OI VINH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DYNAMIC CHARACTERISTICS <sup>2</sup>            |           |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | 14        |                        | no trm                    | $R_{L} = 300 \Omega, C_{L} = 35 pF$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $t_{ON}$                                        | 14        | 20                     | ns typ                    | $V_S = 3 \text{ V}, \text{ Test Circuit 4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| +                                               | 6         | 20                     | ns max                    | $R_L = 300 \Omega$ , $C_L = 35 pF$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $t_{ m OFF}$                                    | 0         | 10                     | ns typ<br>ns max          | $V_S = 3 \text{ V}$ , Test Circuit 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Break-Before-Make Time Delay, t <sub>D</sub>    | 7         | 10                     |                           | $R_L = 300 \Omega$ , $C_L = 35 pF$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (ADG723 Only)                                   | '         | 1                      | ns typ<br>ns min          | $V_{S1} = V_{S2} = 3 \text{ V, Test Circuit 5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Charge Injection                                | 2         | 1                      | pC typ                    | $V_S = V_{S2} = 3 \text{ V}$ , rest circuit $S$<br>$V_S = 2 \text{ V}$ ; $R_S = 0 \Omega$ , $C_L = 1 \text{ nF}$ ,<br>Test Circuit $S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Off Isolation                                   | -60       |                        | dB typ                    | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 10 MHz$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 011 10011111011                                 | -80       |                        | dB typ                    | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$ ,<br>Test Circuit 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Channel-to-Channel Crosstalk                    | -77       |                        | dB typ                    | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 10 MHz$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | -97       |                        | dB typ                    | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$ ,<br>Test Circuit 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Bandwidth -3 dB                                 | 200       |                        | MHz typ                   | $R_L = 50 \Omega$ , $C_L = 5 pF$ , Test Circuit 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C <sub>S</sub> (OFF)                            | 7         |                        | pF typ                    | E - J - E - F J - ST - E- ST - |
| C <sub>D</sub> (OFF)                            | 7         |                        | pF typ                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $C_D, C_S (ON)$                                 | 18        |                        | pF typ                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| POWER REQUIREMENTS                              |           |                        |                           | $V_{\rm DD}$ = +5.5 V<br>Digital Inputs = 0 V or 5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| T                                               | 0.001     |                        | μA typ                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $I_{\mathrm{DD}}$                               | 0.001     | 1.0                    | μΑ typ<br>μΑ max          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |           | 1.0                    | μα IIIax                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

-2-REV. 0

NOTES

<sup>1</sup>Temperature ranges are as follows: B Version, -40°C to +85°C.

<sup>&</sup>lt;sup>2</sup>Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

 $\label{eq:continuous} \textbf{SPECIFICATIONS}^{1}(\textbf{V}_{DD} = +3~\textbf{V} \pm~10\%,~\textbf{GND} = 0~\textbf{V}.~~\textbf{All specifications}~-40^{\circ}\text{C to}~+85^{\circ}\text{C},~\textbf{unless otherwise noted.})$ 

|                                                 | B Version  |                        |              |                                                            |  |
|-------------------------------------------------|------------|------------------------|--------------|------------------------------------------------------------|--|
| _                                               |            | -40°C to               |              |                                                            |  |
| Parameter                                       | +25°C      | +85°C                  | Units        | Test Conditions/Comments                                   |  |
| ANALOG SWITCH                                   |            |                        |              |                                                            |  |
| Analog Signal Range                             |            | 0 V to V <sub>DD</sub> | V            |                                                            |  |
| On Resistance (R <sub>ON</sub> )                | 6.5        |                        | $\Omega$ typ | $V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$       |  |
| V 610                                           |            | 10                     | $\Omega$ max | Test Circuit 1                                             |  |
| On Resistance Match Between                     |            |                        |              |                                                            |  |
| Channels ( $\Delta R_{ON}$ )                    | 0.3        |                        | $\Omega$ typ | $V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$       |  |
| olv                                             |            | 1.0                    | $\Omega$ max |                                                            |  |
| On-Resistance Flatness (R <sub>FLAT(ON)</sub> ) |            | 3.5                    | Ω typ        | $V_{S} = 0 \text{ V to } V_{DD}, I_{S} = -10 \text{ mA}$   |  |
|                                                 |            |                        | J1           |                                                            |  |
| LEAKAGE CURRENTS                                |            |                        |              | $V_{DD} = +3.3 \text{ V}$                                  |  |
| Source OFF Leakage I <sub>S</sub> (OFF)         | ±0.01      |                        | nA typ       | $V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V}$             |  |
|                                                 | ±0.25      | ±0.35                  | nA max       | Test Circuit 2                                             |  |
| Drain OFF Leakage I <sub>D</sub> (OFF)          | $\pm 0.01$ |                        | nA typ       | $V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V}$             |  |
|                                                 | ±0.25      | ±0.35                  | nA max       | Test Circuit 2                                             |  |
| Channel ON Leakage $I_D$ , $I_S$ (ON)           | $\pm 0.01$ |                        | nA typ       | $V_S = V_D = 1 \text{ V, or } 3 \text{ V}$                 |  |
|                                                 | ±0.25      | ±0.35                  | nA max       | Test Circuit 3                                             |  |
| DIGITAL INPUTS                                  |            |                        |              |                                                            |  |
| Input High Voltage, V <sub>INH</sub>            |            | 2.0                    | V min        |                                                            |  |
| Input Low Voltage, V <sub>INI</sub>             |            | 0.4                    | V max        |                                                            |  |
| Input Current                                   |            | 0.4                    | v IIIax      |                                                            |  |
| I <sub>INL</sub> or I <sub>INH</sub>            | 0.005      |                        | u A tre      | $V_{IN} = V_{INI}$ or $V_{INH}$                            |  |
| I <sub>INL</sub> of I <sub>INH</sub>            | 0.003      | ±0.1                   | μA typ       | VIN - VINL OI VINH                                         |  |
|                                                 |            | ±0.1                   | μA max       |                                                            |  |
| DYNAMIC CHARACTERISTICS <sup>2</sup>            |            |                        |              |                                                            |  |
| $t_{ON}$                                        | 16         |                        | ns typ       | $R_L = 300 \Omega, C_L = 35 pF$                            |  |
|                                                 |            | 24                     | ns max       | $V_S = 2 V$ , Test Circuit 4                               |  |
| t <sub>OFF</sub>                                | 7          |                        | ns typ       | $R_L = 300 \Omega, C_L = 35 pF$                            |  |
|                                                 |            | 11                     | ns max       | $V_S = 2 V$ , Test Circuit 4                               |  |
| Break-Before-Make Time Delay, t <sub>D</sub>    | 7          |                        | ns typ       | $R_L = 300 \Omega, C_L = 35 pF,$                           |  |
| (ADG723 Only)                                   |            | 1                      | ns min       | $V_{S1} = V_{S2} = 2 \text{ V}$ , Test Circuit 5           |  |
| Charge Injection                                | 2          |                        | pC typ       | $V_S = 1.5 \text{ V}; R_S = 0 \Omega, C_L = 1 \text{ nF},$ |  |
| ,                                               |            |                        | 1 71         | Test Circuit 6                                             |  |
| Off Isolation                                   | -60        |                        | dB typ       | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 10 MHz$            |  |
|                                                 | -80        |                        | dB typ       | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$ ,           |  |
|                                                 |            |                        | J F          | Test Circuit 7                                             |  |
| Channel-to-Channel Crosstalk                    | -77        |                        | dB typ       | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 10 MHz$            |  |
|                                                 | -97        |                        | dB typ       | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$ ,           |  |
|                                                 | '.         |                        | 'JP          | Test Circuit 8                                             |  |
| Bandwidth –3 dB                                 | 200        |                        | MHz typ      | $R_L = 50 \Omega$ , $C_L = 5 pF$ ,                         |  |
| Danamani Jab                                    | 200        |                        | TTILL LYP    | Test Circuit 9                                             |  |
| C <sub>s</sub> (OFF)                            | 7          |                        | pF typ       | 1 cot Official y                                           |  |
| $C_S(OFF)$ $C_D(OFF)$                           | 7          |                        | pF typ       |                                                            |  |
| $C_D(OPP)$<br>$C_D, C_S(ON)$                    | 18         |                        |              |                                                            |  |
|                                                 | 10         |                        | pF typ       |                                                            |  |
| POWER REQUIREMENTS                              |            |                        |              | $V_{DD} = +3.3 \text{ V}$                                  |  |
|                                                 |            |                        |              | Digital Inputs = 0 V or 3 V                                |  |
| $I_{\mathrm{DD}}$                               | 0.001      |                        | μA typ       |                                                            |  |
|                                                 |            | 1.0                    | μA max       |                                                            |  |

#### NOTES

REV. 0 -3-

 $<sup>^{1}</sup>Temperature$  ranges are as follows: B Version,  $-40^{\circ}C$  to +85°C.

<sup>&</sup>lt;sup>2</sup>Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

## ABSOLUTE MAXIMUM RATINGS1

| $(T_A = +25^{\circ}C \text{ unless otherwise noted})$                               |
|-------------------------------------------------------------------------------------|
| V <sub>DD</sub> to GND                                                              |
| Analog, Digital Inputs <sup>2</sup> $-0.3 \text{ V}$ to $V_{DD} + 0.3 \text{ V}$ or |
| 30 mA, Whichever Occurs First                                                       |
| Continuous Current, S or D                                                          |
| Operating Temperature Range                                                         |
| Industrial (B Version)40°C to +85°C                                                 |
| Storage Temperature Range65°C to +150°C                                             |
| Junction Temperature +150°C                                                         |
| μSOIC Package, Power Dissipation 450 mW                                             |
| $\theta_{JA}$ Thermal Impedance                                                     |
| $\theta_{JC}$ Thermal Impedance                                                     |
| Lead Temperature, Soldering                                                         |
| Vapor Phase (60 sec) +215°C                                                         |
| Infrared (15 sec) +220°C                                                            |
| ESD                                                                                 |

## NOTES

Table I. Truth Table (ADG721/ADG722)

| ADG721 In | ADG722 In | Switch Condition |  |
|-----------|-----------|------------------|--|
| 0         | 1         | OFF              |  |
| 1         | 0         | ON               |  |

Table II. Truth Table (ADG723)

| Logic | Switch 1 | Switch 2 |  |
|-------|----------|----------|--|
| 0     | OFF      | ON       |  |
| 1     | ON       | OFF      |  |

## **TERMINOLOGY**

| Most Positive Power Supply Potential.                                         |  |  |  |
|-------------------------------------------------------------------------------|--|--|--|
| Ground (0 V) Reference.                                                       |  |  |  |
| Source Terminal. May be an input or output.                                   |  |  |  |
| Drain Terminal. May be an input or output.                                    |  |  |  |
| Logic Control Input.                                                          |  |  |  |
| Ohmic resistance between D and S.                                             |  |  |  |
| On resistance match between any two channels                                  |  |  |  |
| i.e., $R_{ON}$ max – $R_{ON}$ min.                                            |  |  |  |
| Flatness is defined as the difference between the                             |  |  |  |
| maximum and minimum value of on resistance as                                 |  |  |  |
| measured over the specified analog signal range.                              |  |  |  |
| Source leakage current with the switch "OFF."                                 |  |  |  |
| Drain leakage current with the switch "OFF."                                  |  |  |  |
| Channel leakage current with the switch "ON."                                 |  |  |  |
| Analog voltage on terminals D, S.                                             |  |  |  |
| "OFF" Switch Source Capacitance.                                              |  |  |  |
| "OFF" Switch Drain Capacitance.                                               |  |  |  |
| "ON" Switch Capacitance.                                                      |  |  |  |
| Delay between applying the digital control input and the output switching on. |  |  |  |
| Delay between applying the digital control input                              |  |  |  |
| and the output switching off. "OFF" time or "ON" time measured between the    |  |  |  |
| 90% points of both switches, When switching                                   |  |  |  |
| from one address state to another. (ADG723 Only)                              |  |  |  |
| A measure of unwanted signal which is coupled                                 |  |  |  |
| through from one channel to another as a result                               |  |  |  |
| of parasitic capacitance.                                                     |  |  |  |
| A measure of unwanted signal coupling through                                 |  |  |  |
| an "OFF" switch.                                                              |  |  |  |
| A measure of the glitch impulse transferred                                   |  |  |  |
| during switching.                                                             |  |  |  |
|                                                                               |  |  |  |

# PIN CONFIGURATION 8-Lead µSOIC (RM-8)

| IN2 3 TOP VIEW 6 I |
|--------------------|
|--------------------|

# **ORDERING GUIDE**

| Model     | Temperature Range | Brand* | Package Description | Package Option |
|-----------|-------------------|--------|---------------------|----------------|
| ADG721BRM | -40°C to +85°C    | S6B    | μSOIC               | RM-8           |
| ADG722BRM | -40°C to +85°C    | S7B    | μSOIC               | RM-8           |
| ADG723BRM | -40°C to +85°C    | S8B    | μSOIC               | RM-8           |

-4-

# CAUTION\_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG721/ADG722/ADG723 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



<sup>&</sup>lt;sup>1</sup>Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

<sup>&</sup>lt;sup>2</sup>Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

 $<sup>\</sup>star$ Brand = Due to package size limitations, these three characters represent the part number.

# Typical Performance Characteristics—ADG721/ADG722/ADG723

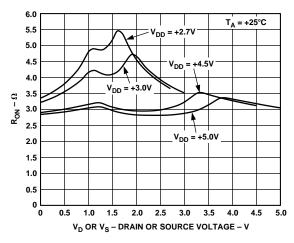



Figure 1. On Resistance as a Function of  $V_D$  ( $V_S$ ) Single Supplies

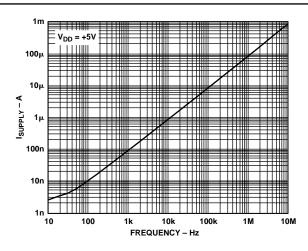



Figure 4. Supply Current vs. Input Switching Frequency

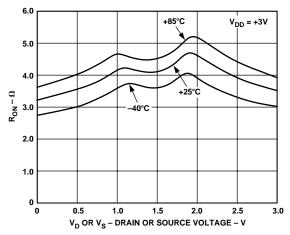



Figure 2. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Different Temperatures  $V_{DD} = +3 \text{ V}$ 




Figure 5. Off Isolation vs. Frequency

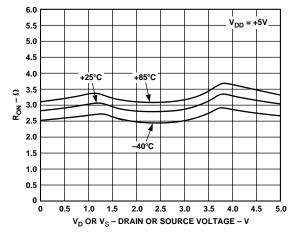



Figure 3. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Different Temperatures  $V_{DD} = +5 \text{ V}$ 

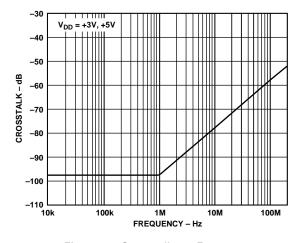



Figure 6. Crosstalk vs. Frequency

REV. 0 –5–

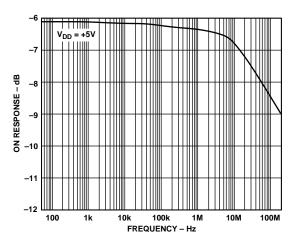
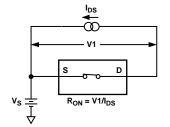
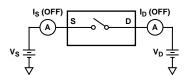
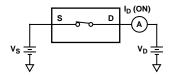
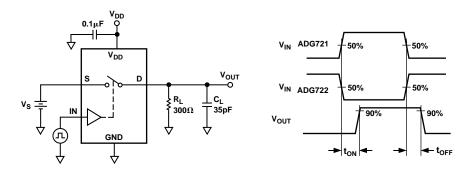




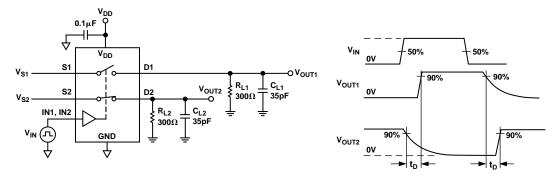

Figure 7. On Response vs. Frequency


# **Test Circuits**



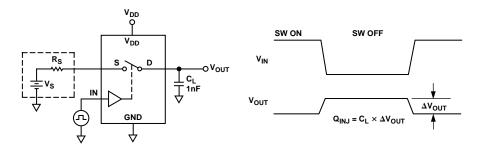

Test Circuit 1. On Resistance



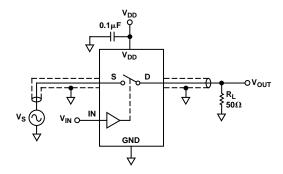

Test Circuit 2. Off Leakage



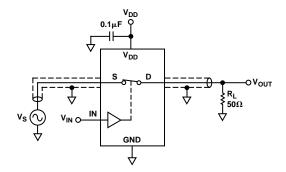
Test Circuit 3. On Leakage



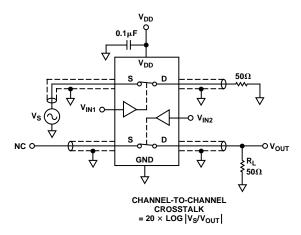

Test Circuit 4. Switching Times




Test Circuit 5. Break-Before-Make Time Delay, t<sub>D</sub> (ADG723 Only)


-6- REV. 0




Test Circuit 6. Charge Injection



Test Circuit 7. Off Isolation



Test Circuit 9. Bandwidth



Test Circuit 8. Channel-to-Channel Crosstalk

REV. 0 -7-

## APPLICATIONS INFORMATION

The ADG721/ADG722/ADG723 belongs to Analog Devices' new family of CMOS switches. This series of general purpose switches have improved switching times, lower on resistance, higher bandwidths, low power consumption and low leakage currents.

## ADG721/ADG722/ADG723 Supply Voltages

Functionality of the ADG721/ADG722/ADG723 extends from +1.8 V to +5.5 V single supply, which makes it ideal for battery powered instruments, where important design parameters are power efficiency and performance.

It is important to note that the supply voltage effects the input signal range, the on resistance and the switching times of the part. By taking a look at the typical performance characteristics and the specifications, the effects of the power supplies can be clearly seen.

For  $V_{DD}$  = +1.8 V, on resistance is typically 40  $\Omega$  over the temperature range.

## On Response vs. Frequency

Figure 8 illustrates the parasitic components that affect the ac performance of CMOS switches (the switch is shown surrounded by a box). Additional external capacitances will further degrade some performance. These capacitances affect feedthrough, crosstalk and system bandwidth.

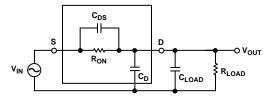



Figure 8. Switch Represented by Equivalent Parasitic Components

The transfer function that describes the equivalent diagram of the switch (Figure 8) is of the form (A)s shown below.

$$A(s) = R_T \left[ \frac{s(R_{ON} \ C_{DS}) + 1}{s(R_{ON} \ C_T \ R_T) + 1} \right]$$

where:

$$C_T = C_{LOAD} + C_D + C_{DS}$$
  

$$R_T = R_{LOAD}/(R_{LOAD} + R_{ON})$$

The signal transfer characteristic is dependent on the switch channel capacitance,  $C_{DS}$ . This capacitance creates a frequency zero in the numerator of the transfer function A(s). Because the switch on resistance is small, this zero usually occurs at high frequencies. The bandwidth is a function of the switch output capacitance combined with  $C_{DS}$  and the load capacitance. The frequency pole corresponding to these capacitances appears in the denominator of A(s).

The dominant effect of the output capacitance, C<sub>D</sub>, causes the pole breakpoint frequency to occur first. Therefore, in order to maximize bandwidth a switch must have a low input and output capacitance and low on resistance. The On Response vs. Frequency plot for the ADG721/ADG722/ADG723 can be seen in Figure 7.

#### Off Isolation

Off isolation is a measure of the input signal coupled through an off switch to the switch output. The capacitance,  $C_{DS}$ , couples the input signal to the output load, when the switch is off as shown in Figure 9.

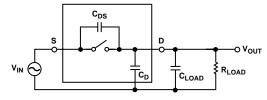
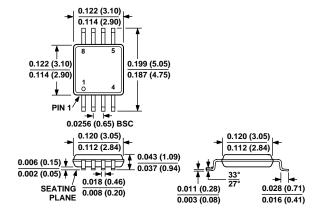



Figure 9. Off Isolation Is Affected by External Load Resistance and Capacitance


The larger the value of  $C_{DS}$ , larger values of feedthrough will be produced. The typical performance characteristic graph of Figure 5 illustrates the drop in off isolation as a function of frequency. From dc to roughly 1 MHz, the switch shows better than -80 dB isolation. Up to frequencies of 10 MHz, the off isolation remains better than -60 dB. As the frequency increases, more and more of the input signal is coupled through to the output. Off isolation can be maximized by choosing a switch with the smallest  $C_{DS}$  as possible. The values of load resistance and capacitance also affect off isolation, as they contribute to the coefficients of the poles and zeros in the transfer function of the switch when open.

$$A(s) = \left[\frac{s(R_{LOAD} C_{DS})}{s(R_{LOAD})(C_{LOAD} + C_D + C_{DS}) + 1}\right]$$

## **OUTLINE DIMENSIONS**

Dimensions shown in inches and (mm).

8-Lead μSOIC (RM-8)

