MMMMMMM

| -

= AT90S COMMAND LINE

Interface
Guide

COPYRIGHT NOTICE
© Copyright 1996 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written
consent of IAR Systems. The software described in this document is
furnished under a license and may only be used or copied in accordance
with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice
and does not represent a commitment on any part of IAR Systems.
While the information contained herein is assumed to be accurate, IAR
Systems assumes no responsibility for any errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the
authors of this document be liable for special, direct, indirect, or
consequential damage, losses, costs, charges, claims, demands, claim for
lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

C-SPY is a trademark of IAR Systems. Windows and MS-DOS are
trademarks of Microsoft Corp.

All other product names are trademarks or registered trademarks of
their respective owners.

First edition: September 1996
Part no: CLA90-1

This documentation was produced by Human-Computer Interface.

PREFACE

WELCOME

Welcome to the IAR Systems development tools for the ATMEL
AT90S Series microprocessors.

Before reading this guide refer to the QuickStart Card, or the chapter
Installation and documentation route map, for information about
installing the tools and an overview of the documentation.

This guide explains how to configure and run the IAR Systems
development tools from the command line. It also includes reference
information about the command line environment variables.

Refer to the AT90S C Compiler Programming Guide and AT90S
Assembler, Linker, and Librarian Programming Guide for detailed
information about working with the individual development tools.

If your product includes the optional AT90S C-SPY debugger refer to
the AT90S C-SPY User Guide for information about debugging with
C-SPY.

ABOUT THIS GUIDE

This guide consists of the following chapters:

Installation and documentation route map explains how to install and
run the IAR Systems tools, and gives an overview of the documentation
supplied with them.

The Introduction provides a brief summary of the IAR Systems tools,
and describes how you would use them to develop a typical project.

Getting started lists the file extensions used by the AT90S tools. It also
gives details of the files installed by the installation procedure, and
explains how to run the tools from the command line.

The Tutorial demonstrates how to use the most important features of
the tools to develop, compile, link, and debug a simple C project.

XLINK environment variables gives reference information about the
XLINK Linker environment variables.

XLIB environment variables gives reference information about the XLIB
Librarian environment variables.

PREFACE

THE OTHER GUIDES

The other guides provided with the IAR Systems tools are as follows:

AT90S C Compiler Programming Guide

This guide provides programming information about the AT90S

C Compiler. It includes reference information about the C library
functions and language extensions, and provides information about
support for the target-specific options such as memory models.

You should refer to this guide for details of the C compiler command
line options, and for information about the C language when writing
and debugging C source programs.

This guide also includes a list of the C compiler diagnostic messages.

ATI0S Assembler, Linker, and Librarian Programming Guide
This guide provides reference information about the AT90S Assembler,
XLINK Linker, and XLIB Librarian.

The assembler programming sections include details of the assembler
source format, and reference information about the assembler
operators, directives, and mnemonics.

The XLINK Linker programming reference sections provide
information about the XLINK Linker commands and output formats.

The XLIB Librarian programming sections provide information about
the XLIB Librarian commands.

Finally, the guide includes a list of diagnostic messages for each of these
tools.

AT90S C-SPY User Guide

This optional guide describes how to use C-SPY for the AT90S Series
microprocessors, and provides reference information about the features
of C-SPY.

PREFACE

ASSUMPTIONS AND
CONVENTIONS

ASSUMPTIONS

This guide assumes that you already have a working knowledge of the
following:

O The C programming language.
O The AT90S Series processor you are using.

O The procedures for running commands from the command line.

CONVENTIONS
This user guide uses the following typographical conventions:
Style Used for

computer Text that you type in, or that appears on the screen.

parameter A label representing the actual value you should type as
part of a command.

[option] An optional part of a command.

bold Names of menus, menu commands, buttons, and dialog

boxes that appear on the screen.

reference A cross-reference to another part of this guide, or to
another guide.

PREFACE

vi

CONTENTS

INSTALLATION AND DOCUMENTATION ROUTEMAP 1
Command line versions 1
Windows Workbench versions 2
UNIX versions 3
Documentation route map 4

INTRODUCTIONo e 5
C compiler 5
Assembler 6
XLINK Linker 7
XLIB Librarian 8
C-SPY debugger 9
Development system structure 9
GETTINGSTARTED i 11
File types 11
Installed files 12
Running the C compiler 14
Running the assembler 17
Running XLINK 18
Running XLIB 19
TUTORIAL .. e 23
Starting a new project 23
Compiling the project 25
Linking the project 26
Debugging the project 28
What next? 31
XLINK ENVIRONMENT VARIABLES 33
XLIB ENVIRONMENT VARIABLES. 37
INDEX . .o 39

vii

CONTENTS

viii

INSTALLATION AND
DOCUMENTATION ROUTE
MAP

This chapter explains how to install and run the command line and
Windows Workbench versions of the IAR products, and gives an
overview of the user guides supplied with them.

Please note that some products only exist in a command line version,
and that the information may differ slightly depending on the product
or platform you are using.

COMMAND LINE
VERSIONS

This section describes how to install and run the command line
versions of the IAR Systems tools.

WHAT YOU NEED

O DOS 4.xor later. This product is also compatible with a DOS
window running under Windows 95, Windows NT 3.51 or later, or
Windows 3.1x.

At least 10 Mbytes of free disk space.
A minimum of 4 Mbytes of RAM available for the IAR applications.

INSTALLATION
1 Insert the first installation disk.
2 At the MS-DOS prompt type:
a:\install
3 Follow the instructions on the screen.
When the installation is complete:
4 Make the following changes to your autoexec.bat file:

Add the paths to the IAR Systems executable and user interface
files to the PATH variable; for example:

PATH=c:\dos;c:\utils;c:\iar\exe;c:\iar\ui;

INSTALLATION AND DOCUMENTATION ROUTE MAP

Define environment variables C_INCLUDE and XLINK_DFLTDIR
specifying the paths to the inc and 11b directories; for example:

set C_INCLUDE=c:\iar\inc\
set XLINK_DFLTDIR=c:\iar\1ib\

Reboot your computer for the changes to take effect.
Read the Read-Me file, named product.doc, for any information
not included in the guides.

RUNNING THE TOOLS

Type the appropriate command at the MS-DOS prompt.

For more information refer to the chapter Getting started in the
Command Line Interface Guide.

WINDOWS This section explains how to install and run the Embedded Workbench.

WORKBENCH VERSIONS
WHAT YOU NEED

O Windows 95, Windows NT 3.51 or later, or Windows 3.1x.

0 Up to 15 Mbytes of free disk space for the Embedded Workbench.
O A minimum of 4 Mbytes of RAM for the IAR applications.

If you are using C-SPY you should install the Workbench before C-SPY.

INSTALLING FROM WINDOWS 95 OR NT 4.0
1 Insert the first installation disk.

2 Click the Start button in the taskbar, then click Settings and
Control Panel.

3 Double-click the Add/Remove Programs icon in the Control
Panel folder.

4 Click Install, then follow the instructions on the screen.

RUNNING FROM WINDOWS 95 OR NT 4.0

1 Click the Start button in the taskbar, then click Programs and
IAR Embedded Workbench.

2 Click IAR Embedded Workbench.

INSTALLATION AND DOCUMENTATION ROUTE MAP

INSTALLING FROM WINDOWS 3.1x OR NT 3.51

1 Insert the first installation disk.

2 Double-click the File Manager icon in the Main program group.

3 Click the a disk icon in the File Manager toolbar.

4 Double-click the setup.exe icon, then follow the instructions on the
screen.

RUNNING FROM WINDOWS 3.1x OR NT 3.51

1 Go to the Program Manager and double-click the IAR Embedded
Workbench icon.

RUNNING C-SPY

Either:

1 Start C-SPY in the same way as you start the Embedded Workbench
(see above).

Or:
1 Choose Debugger from the Embedded Workbench Project menu.

UNIX VERSIONS

This section describes how to install and run the UNIX versions of the
IAR Systems tools.
WHAT YOU NEED

0 HP9000/700 workstation with HP-UX 9.x (minimum), or a
Sun 4/SPARC workstation with SunOS 4.x (minimum) or
Solaris 2.x (minimum).

INSTALLATION

Follow the instructions provided with the media.

RUNNING THE TOOLS

Type the appropriate command at the UNIX prompt. For more
information refer to the chapter Getting started in the Command Line
Interface Guide.

INSTALLATION AND DOCUMENTATION ROUTE MAP

DOCUMENTATION

ROUTE MAP

WINDOWS WORKBENCH
VERSION

QuickStart Card
To install the tools and run the
Embedded Workbench.

Windows Workbench
Interface Guide

To get started with using
the Embedded Workbench,
and for Embedded
Workbench reference.

C-SPY User Guide, Windows
Workbench Version

To learn about debugging Qh

with C-SPY for Windows,

and for C-SPY reference.

QS

\§

COMMAND LINE

QuickStart Card

VERSION

To install the tools and run the DOS

or UNIX versions

= Command Line Interface
%

Guide and Utilities Guide

To get started with using the
command line, and for
information about the environ-
ment variables and utilities.

C Compiler Programming Guide
To learn about writing programs with
the IAR Systems C Compiler, and for
reference information about the
compiler options and C language.

Assembler, Linker, and
Librarian Programming Guide
To learn about using the IAR
Systems assembler, linker, and
librarian, and for reference
information about these tools.

= C-SPY User Guide,
§ Command Line Version
To learn about debugging
with the command line
version of C-SPY, and for
C-SPY reference.

INTRODUCTION

The IAR Systems range of integrated development tools provides C
compilers, assemblers, and debuggers to support a wide choice of target
microprocessors. In addition, the range includes an XLINK Linker and
XLIB Librarian for use across all targets.

C COMPILER

The IAR Systems C Compiler for the AT90S Series microprocessors
offers the standard features of the C language, plus many extensions
designed to take advantage of the AT90S-specific facilities. The
compiler is supplied with the IAR Systems AT90S Assembler, with
which it is integrated and shares linker and librarian manager tools.

It provides the following features:

LANGUAGE FACILITIES
0 Conformance to the ANSI specification.

0 Standard library of functions applicable to embedded systems, with
source optionally available.

IEEE-compatible floating-point arithmetic.

Powerful extensions for AT90S-specific features, including efficient
1/0.

O LINT-like checking of program source.

O Linkage of user code with assembly routines.

O Long identifiers — up to 255 significant characters.
0 Up to 32000 external symbols.
PERFORMANCE

0 Fast compilation.

0 Memory-based design which avoids temporary files or overlays.
O Rigorous type checking at compile time.
]

Rigorous module interface type checking at link time.

INTRODUCTION

CODE GENERATION
O Selectable optimization for code speed or size.

O Comprehensive output options, including relocatable binary, ASM,
ASM+C, XREF, etc.

Easy-to-understand error and warning messages.

Compatibility with the C-SPY high-level debugger.

TARGET SUPPORT

0 Tiny and small memory models.

O Flexible variable allocation.

O Interrupt functions requiring no assembly language.

O A {pragma directive to maintain portability while using processor-
specific extensions.

DOCUMENTATION

The AT90S C Compiler is documented in the AT90S C Compiler
Programming Guide.

ASSEMBLER

The IAR Systems AT90S Assembler is a powerful relocating macro
assembler with a versatile set of directives.

The assembler incorporates a high degree of compatibility with the
microprocessor manufacturer’s own assemblers, to ensure that software
originally developed using them can be transferred to the IAR Systems
Assembler with little or no modification.

It provides the following features:

GENERAL

0 One pass assembly, for faster execution.

O Integration with the XLINK Linker and XLIB Librarian.
O Integration with other IAR Systems software.
O

Self explanatory error messages.

INTRODUCTION

ASSEMBLER FEATURES

Structured control directives.

Support for AT90S processors.

Up to 256 relocatable segments per module.
255 significant characters in symbols.

Powerful recursive macro facilities.

O o o o o og

Number of symbols and program size limited only by available
memory.

Support for complex expressions with external references.
Forward references allowed to any depth.

Support for C language pre-processor directives and sfrb/sfrw
keywords.

O Macros in Intel/Motorola style.

DOCUMENTATION

The AT90S Assembler is documented in the AT90S Assembler, Linker,
and Librarian Programming Guide.

XLINK LINKER

The IAR Systems XLINK Linker converts one or more relocatable
object files produced by the IAR Systems Assembler or C Compiler to
machine code for a specified target processor. It supports a wide range
of industry-standard loader formats, in addition to the IAR Systems
debug format used by the C-SPY high level debugger.

XLINK supports user libraries, and will load only those modules that
are actually needed by the program you are linking.

The final output produced by XLINK is an absolute, target-executable
object file that can be programmed into an EPROM, downloaded to a
hardware emulator, or run directly on the host computer using the IAR
Systems C-SPY debugger.

INTRODUCTION

XLINK provides the following features:

FEATURES OF XLINK

d
d

d

Unlimited number of input files.

Fast memory-based linking, or optional disk-based operation for
programs with large amounts of code, data, or symbols.

Linker commands can be entered on the XLINK command line,
read from an extended command file, or a combination of the two,
making XLINK easy and flexible to use.

Searches user-defined library files and loads only those modules
needed by the application.

Symbols may be up to 255 characters long with all characters being
significant. Both upper and lower case may be used.

Global symbols can be defined at link time.

Flexible segment commands allow full control of the locations of
relocatable code and data in memory.

Support for over 30 emulator formats.

DOCUMENTATION

The XLINK Linker is documented in the AT90S Assembler, Linker, and
Librarian Programming Guide.

XLIB LIBRARIAN

The IAR Systems XLIB Librarian enables you to manipulate the
relocatable object files produced by the IAR Systems Assembler and
C Compiler.

XLIB provides the following features:

FEATURES OF XLIB

d
d

Support for modular programming.

Modules can be listed, added, inserted, replaced, deleted, or
renamed.

Segments can be listed and renamed.

Symbols can be listed and renamed.

INTRODUCTION

O 0o o O

Modules can be changed between program and library type.
Interactive or batch mode operation.
A full set of library listing operations.

A command to display a directory of relevant files on disk.

DOCUMENTATION

The XLIB Librarian is documented in the AT90S Assembler, Linker, and
Librarian Programming Guide.

C-SPY DEBUGGER

An optional C-SPY debugger can be used with the IAR Systems tools, to
run and debug AT90S object code programs.

DEVELOPMENT
SYSTEM STRUCTURE

The following diagram shows how the AR Systems tools are used to
form a complete development system:

Text editor

v
C sourcei i Assembler source
AT90S C Compiler AT90S Assembler
v y
XLIB Librarian Object
module
Linker
command file 4
XLINK Linker

‘ Executable code

with
i L optimization
AT90S C-SPY —
debugger Target application

User-supplied
item

INTRODUCTION

The text editor may be any standard ASCII editor, such as BRIEF,
PMATE, or EMACS. The C compiler accepts C source files and
produces code modules, normally in the IAR Systems proprietary
Universal Binary Relocatable Object Format (UBROF).

The XLINK Linker then combines these code modules with modules
created by the assembler, and library modules supplied as standard or
created previously by the user using the library manager, XLIB.

The output of XLINK is either debuggable code for use in the C-SPY
debugger or an alternative one, or final executable code for use in the
target application. This executable code is in any of the many standard
formats for use in emulators, EPROM, or ROM.

10

GETTING STARTED

This chapter lists the file extensions used by the AT90S tools. It also
gives details of the files installed by the installation procedure, and
explains how to run the tools from the command line.

FILE TYPES

The AT90S versions of the IAR Systems tools use the following default
file extensions to identify different types of file:

Ext. Type of file Output from Inputto

.doc ASCII documentation - Text editor

.exe MS-DOS program - MS-DOS command
.C C program source Text editor C compiler

.h C header source Text editor C compiler #include
.s90 Assembler program Text editor Assembler

source

.xc1 Extended command line Text editor XLINK and C compiler

.r90 Object module C compiler XLINK and XLIB
and assembler

.a90 Target program XLINK EPROM, C-SPY, etc

.d90 Target program with XLINK C-SPY, etc

debug information

.1st Listfile C compiler -
and assembler

.map XLINK map XLINK -

The default extension may be overridden by simply including an
explicit extension when specifying a filename.

Note that, by default, XLINK listings (maps) will have the .1st
extension, and this may overwrite the listing file generated by the
compiler. It is recommended that you explicitly name XLINK map files,
for example demol.map.

11

GETTING STARTED

INSTALLED FILES

12

The installation procedure creates several directories to contain the
different types of files used with the IAR Systems tools. The following
sections give a description of the files contained in each directory.

The paths given in the following sections assume you chose the default
installation directory, c: \iar.

Note that the list of files given here is provisional, and changes or
additions may be made to reflect enhancements to the IAR Systems
tools.

DOCUMENTATION FILES

Your installation may include a number of ASCII-format text files
(*.doc) containing recent additional information. It is recommended
that you read all of these files before proceeding.

ASSEMBLER FILES

The c:\iar\aa90 subdirectory holds the tutorial, test, and document
files for the AT90S Assembler.

DONGLE FILES

The c:\iar\dongle directory, and its subdirectories, contains dongle
drivers for use with Windows NT and read me files for use in case of
problems with the dongle protection system.

MISCELLANEOUS FILES

The c:\iar\etc subdirectory holds the source files for various library
functions.

USER INTERFACE FILES

The c:\iar\ui subdirectory holds the user interface files.

EXECUTABLE FILES
The c:\1iar\exe subdirectory holds the executable program files.

The installation procedure also includes an addition to the
autoexec.bat PATH statement, directing MS-DOS to search the exe
subdirectory for command files. This allows you to issue a command
from any directory.

GETTING STARTED

If you have installed the C-SPY debugger, this subdirectory will also
contain csa90.exe, the AT90S C-SPY debugger; see the AT90S C-SPY
User Guide.

C COMPILER FILES

The c:\iar\icca90 subdirectory holds the AT90S C Compiler
demonstration files used in the tutorial chapters, as well as various
source files for basic 1/0 library routines.

C INCLUDE FILES

The c:\iar\inc subdirectory holds C include files, such as the header
files for the standard C library, as well as specific header files for SFRs.

The C compiler searches for include files in the directory specified by
the C_INCLUDE environment variable. If you set this environment
variable to the path of the C include subdirectory, as suggested in the
installation procedure, you can refer to inc header files simply by their
basenames.

LIBRARY FILES

The c:\iar\1ib subdirectory holds library modules used by the C
compiler.

XLINK searches for library files in the directory specified by the
XLINK_DFLTDIR environment variable. If you set this environment
variable to the path of the 11b subdirectory, you can refer to 1ib library
modules simply by their basenames.

LINKER COMMAND FILES

The c:\iar\icca90 subdirectory holds an example linker command
file for each library module.

13

GETTING STARTED

RUNNING THE C
COMPILER

14

The AT90S C Compiler is run with the following command:
icca90 [options] [sourcefile] [options]

These items must be separated by one or more spaces or tab characters.

PARAMETERS

options A list of options separated by one or more spaces or
tab characters. For a full list of compiler command
line options, see C Compiler Options in the AT90S
C Compiler Programming Guide.

sourcefile The name of the source file.

If all the optional parameters are omitted the compiler will display a list
of available options a screenful at a time; press to display the next
screenful.

SOURCE FILE

Each invocation of the compiler processes the single source file named
on the command line. Its name is of the form:

[path]lfilename.ext

For example, the filename \project\program.c has the path
\project\, the filename program, and the extension .c. If you give no
extension in the name, the compiler assumes . c. If you omit the path
then the current directory is assumed.

INCLUDE FILES

Additional source files may be invoked from the main source file
through the #include directive. The name of the include file may be
specified in one of two ways.

Standard search sequence
To use the standard search sequence enclose the filename in angled
brackets, as in:

#finclude <incfile.h>
The standard search sequence is as follows:

O The include filename with successive prefixes set with the -1
option if any.

GETTING STARTED

0 The include filename with successive prefixes set in the
environment variable named C_INCLUDE if present. Multiple
prefixes may be specified by separating them with semicolons.

For example:
set C_INCLUDE=\usr\proj\;\headers\
O The include filename by itself.

Note that the compiler simply adds each prefix from -1 or C_INCLUDE to
the front of the #include filename without interpretation. Hence it is
necessary to include any final backslash in the prefix.

Source file path
To search for the file prefixed by the source file path first, enclose the
filename in double quotes, as in:

#include "incfile.h"

For example, with a source file named \project\prog.c, the compiler
would first look for the file \project\incfile.h. If this file is not
found, the compiler continues with the standard search sequence as if
angle brackets had been used.

ASSEMBLY SOURCE FILE

The compiler is capable of generating an assembly source file for
assembly using the appropriate IAR Systems Assembler. Its name is
sourcefile.s90.

Assembly source file generation is controlled by the -a and -A options.

OBJECT FILE

The compiler sends the generated code to the object file whose name
defaults to sourcefile.r90.

If any errors occur during compilation, the object file is deleted.
Warnings do not cause the object file to be deleted.

LIST FILE

The compiler can generate a compilation listing, and its name defaults to
sourcefile.lst.

15

GETTING STARTED

16

EXTENDED COMMAND LINE FILE

In addition to accepting options and source filenames from the
command line, the compiler can accept them from an extended
command line file, or from the QCCA90 environment variable.

By default, extended command line files have the extension .xc1, and
can be specified using the - f command line option. For example, to read
the command line options from extend.xc1 and extend?2.xc1 enter:

icca90 -f extend -f extend2

The QCCA90 environment variable can be set up using the MS-DOS set
command. For example, typing:

set QCCA90=-2z9

at the MS-DOS prompt or including this in the autoexec.bat file will
cause the compiler to optimize for size in all compilations.

DONGLE SECURITY DEVICE

The AT90S C Compiler is supplied with a dongle, or hardware security
device, and this needs to be present in order to use the compiler.

Before connecting the dongle you should turn off the PC, or the dongle
may be damaged.

Plug the dongle into the parallel printer port on the PC, either LPT1 or
LPT2, and tighten the locking screws at each end of the dongle to
ensure that it is firmly connected.

If you need to connect a parallel device, such as a printer, to the port,
plug this into the socket at the rear of the dongle.

ERROR RETURN CODES

The AT90S C Compiler returns status information to the operating
system which can be tested in a batch file. The supported error codes
for MS-DOS are listed below.

Code Description
0 Compilation successful.
1 There were warnings.

GETTING STARTED

Code Description
2 There were non-fatal errors.
3 There were fatal errors (compiler aborted).

RUNNING THE
ASSEMBLER

The AT90S Assembler is run with the following command:
aa90 [options] [sourcefile]l [options]

These items must be separated by one or more spaces or tab characters.

PARAMETERS

options Assembler options. For detailed information about the
assembler command line options see Assembler options
reference in the AT90S Assembler, Linker and Librarian
Programming Guide.

sourcefile The source file with the default extension .msa or
.s90.

If all the optional parameters are omitted the assembler will display a
list of available options a screenful at a time; press to display the
next screenful.

EXTENDED COMMAND LINE FILE

In addition to accepting options and source filenames from the
command ling, the assembler can accept them from an extended
command line file, or from the ASMA90 environment variable.

By default, extended command line files have the extension .xc1, and
can be specified using the - f command line option. For example, to read
the command line options from extend.xc1 enter:

aa90 -f extend

The ASMAO90 environment variable can be set up using the MS-DOS
set command. For example, typing:

set ASMA90=-ms

at the MS-DOS prompt or including this in the autoexec.bat file will
cause the assembler to use the small memory model for all assemblies.

17

GETTING STARTED

ERROR RETURN CODES

When using the AT90S Assembler from within a batch file, you may
need to determine whether the assembly was successful in order to
decide what step to take next. For this reason the assembler returns the
following error return codes:

Return codes Meaning

0 Assembly successful.
1 There were warnings.
2 There were errors.

These codes can be used in conjunction with the make facility.

RUNNING XLINK

18

XLINK is run with the command:

xTink [options] objectfiles

If no parameters are specified, a list of all the linker options will be
displayed.

PARAMETERS

options A list of one or more command line options, in any
order. For a full list of linker command line options, see
XLINK options reference in the AT90S Assembler, Linker,
and Librarian Programming Guide.

objectfiles A list of object files. The order in which you specify the
object files determines the order in which they are
linked.

Upper or lower case is important in the following two cases:
O Inlinker command line options; eg - f and -F.

O In symbol and segment names.

EXTENDED COMMAND LINE FILE

As an alternative to supplying options on the command line you can use
the - f option to read commands from a file.

GETTING STARTED

ERROR RETURN CODES

XLINK returns status information to the operating system which can be
tested in a batch file. The supported error codes for MS-DOS are listed
below:

Code Description
0 Linking successful.
1 There were warnings generated during the link unless

the XLINK -w option was specified, in which case
XLINK returns a 0 on warnings.

2 There was a non-fatal error.
3 Fatal error detected (XLINK aborted).

These error codes can be used as follows in a batch file:

xlink -f testlnk

if errorlevel 3 goto errors

if errorlevel 1 goto warnings
echo the Tink was successful!

:warnings
echo the 1ink ended with a warning or non-fatal error

:errors
echo the 1ink ended with a fatal error ..

RUNNING XLIB

You can run XLIB in either interactive mode or batch mode.

INTERACTIVE MODE

To run XLIB in interactive mode type:

x1ib

19

GETTING STARTED

20

The librarian will then prompt:

*

At the XLIB * prompt you can enter any of the XLIB commands,
including all of the necessary parameters to complete the command, all
on one line.

You may also type just the name of the command and XLIB will prompt
you for the necessary parameters one at a time. Using this mode of
operation, you do not need to remember the order of parameters for
each command.

For a list of XLIB commands refer to the AT90S Assembler, Linker, and
Librarian Programming Guide.

Command syntax
Commands and parameters should be separated by commas, [}, or
spaces, and prompts are issued in the absence of a parameter.

BATCH MODE
To run XLIB in batch mode type:
x1ib commandfile [p0,pl..p9]

where commandf1ile specifies a text file containing a sequence of XLIB
commands.

Parameters

Optional parameters may be added after the filename and must be
separated with spaces or commas. You can set a parameter to its default
value by writing , ,. Within the command file, parameters will be
substituted at every occurrence of a \ (backslash) followed by a decimal
number. For example:

LIST-MOD \4 PRN

If COMFIL contains a line like the one above, the command:
x1ib COMFIL,ABC G,,78,CODE SOME

would be interpreted as:

LIST-MOD CODE PRN

GETTING STARTED

A default value, enclosed in single quotes, may be added immediately
after a substitute parameter; for example 'Parm'. If the requested
parameter is missing in the XLIB invocation line or is written as , ,, the
default string will replace the \ n parameter.

An example of a line with a substitute parameter and a default value is:
LIST-MOD \4'0BJ' PRN

Interactive parameters

Interactive parameters, written \?, will make XLIB stop and wait for
input. The interactive parameters may also have a user prompt string
attached immediately after the question mark.

For example:
LIST-MOD \?'YOUR FILE PLEASE: " PRN
The \? parameter is replaced with the input, excluding the return.

Note that when XLIB is used in batch mode with a command file, it
operates completely silently except when errors occur. This batch
operation can be further controlled by the commands ON-ERROR-EXIT,
ECHO-INPUT, and REMARK.

21

GETTING STARTED

22

TUTORIAL

This tutorial illustrates how you might use the IAR Systems tools to
develop a simple project consisting of two C source files and one C
header file. It shows how to develop a simple C program, compile it, and
run it on the C-SPY debugger.

Before reading this chapter you should:

O Have installed the IAR Systems tools, as described in the chapter
Installation and documentation route map.

O Be familiar with the architecture and instruction set of the AT90S
processor.

O Be familiar with the AT90S C Compiler. For more information refer
to the AT90S C Compiler Programming Guide.

Note that the pathnames given in this tutorial assume that you have
installed the IAR Systems tools in the default installation directory,
c:\iar.

USING C-SPY

This tutorial assumes that you are using the C-SPY debugger with the
IAR Systems tools. If your installation does not include C-SPY you may
still follow this tutorial by examining the list files, or by using an
alternative debugger. The .1st and .map files show which areas of
memory to monitor.

STARTING A NEW
PROJECT

It is a good idea to keep all the files for a particular project in one
directory, separate from other projects and the system files.

The tutorial files are installed in the icca90 directory. Select this
directory by entering the command:

cd c:\iar\icca90

During this tutorial, you will work in this directory, so that the files you
create will reside here.

23

TUTORIAL

24

EDITING A FILE
You can edit the files in a project using any standard text editor.

For example, edit the file demo. c, provided in the icca90 directory, by
typing:

edit demo.c

The contents of this file are shown below:

/* DEMO.C - C-SPY Demo Program */

ffinclude "stdio.h"
#include "defns.h"
void demo_two(int i);

int d;

void main(void)
{

int i;

for (i =0, d = 1; i < TWO_POWER; i++)
d *= 2;
printf("2 to the power of %d is %d\n",
TWO_POWER, d);
demo_two(3);
}

The routine demo_two is defined in the file demo_two.c, and the
constant TWO_POWER is defined in the include file defns. h. These files
are also provided in the icca90 directory.

Use the editor to introduce an error into the program so that you can
see the error handling features provided by the C compiler. Change the
i++ at the end of line 11 to j++, and save the file.

TUTORIAL

COMPILING THE
PROJECT

To compile the source file you have edited enter the command:
icca90 demo -v1 -A -r -ms
The following table explains each of the compiler options used here:

Option Description

-vl Generates code for the AT90S C Compiler with maximum
64 Kbytes data memory and 8 Kbytes program memory.

-A Generates assembler source.

-r Allows the code to be debugged using C-SPY.

-ms Selects the small memory model.

The compiler produces the following output:

IAR AT90S C-Compiler Vx.xx
(c) Copyright IAR Systems 1996

"demo.c",13 Error[100]: Undeclared identifier: 'j'
Errors: 1
Warnings: none

This indicates the line causing the error, and the position in the line.

OTHER ERRORS
If you get the error:
Bad command or file name

you probably have not got the exe directory, containing the C compiler
program, in your MS-DOS PATH statement. Type:

PATH

and check that the path c:\iar\exe is included in the path list.
If you get the error:

Failed to open #include file 'stdio.h'

you have not set up the C_INCLUDE environment variable correctly.

25

TUTORIAL

Type:

set

and check that the list of environment variables includes:
C_INCLUDE=c:\iar\inc\

Note that the path must end in *\".

CORRECTING THE ERROR

To correct the error edit the source file and correct j++ to i++. Then re-
compile the program.

It should compile this time without an error to create an object module,
demo.r90, and an assembler source file, demo . s90.

Compile the other source file, demo_two. c, in the same way.

LINKING THE PROJECT

26

Before being able to link the files you have compiled, you need to choose
a linker command file to use with the project. This specifies details of
the system’s memory map and defines the segments to be used for the
target code.

For this tutorial we will use the supplied command file Tnk8414s.xc1,
from the 11b directory. Copy it to your project directory by typing:

copy \iar\1ib\1nk8414s.xcl

This linker command file supports the AT90S processor and the small
memory model.

Link the programs by typing:
x1ink demo demo_two -f Tnk8414s -rt -x -1 demo.map
The following table explains each of the linker options used here:

Option Description

-f 1nk8414s Specifies the linker command file Tnk8414s.

-rt Generates debugging information for C-SPY, and
includes the C-SPY terminal 1/0 routine.

-X Creates a map file.

-1 demo.map Specifies the name for the map file.

TUTORIAL

ERRORS
If you get the error:
Unable to open file 1nk8414s.xcl

you have not copied the supplied linker command file to your project
directory.

If you get the error:
Unable to open file clls.r90

you have not set up the XLINK_DFLTDIR environment variable correctly.
Type:

set

and check that the list of environment variables includes:
XLINK_DFLTDIR=c:\iar\1ib\

Note that the path must end in *\".

EXAMINING THE MAP FILE
The result of linking is a code file aout.d90 and a map file demo.map.

You can examine the map file, using a text editor, to see how the code is
mapped to physical addresses.

27

TUTORIAL

DEBUGGING THE If you have the C-SPY debugger you can run the object code using
PROJECT C-SPY. Run C-SPY on the object file aout.d90 by typing:

csad90 aout -vl

Then type STEP [, or press [F2, to start executing the code. The source
will be displayed on the screen with the first executable statement
highlighted:

— demo #13
void demo_twoCint i):

int d;

void main(void)
{
int i:

for (i =0, d =1; i < TWD_POYER: i++)
d == 2;
printf ("2 to the power of xd is xd\n",
TWO_POWER, d):
demo_two(3);
¥

— Terminal I-0

— C-5PY

Reading C source: 30 lines. Dounloading code: 1027 bytes.
——> step

(c) IAR Systems =

WATCHING VARIABLES
To keep track of a variable you can set a watchpoint on it.

For example, to watch the values of the variables i and d as you step
through the program, type:

WATCH ON i
WATCH ON d

28

TUTORIAL

— demo #13
void demo_twoCint i):

int d;

void main(void)
{
int i:

for (i =0, d =1; i < TWD_POYER: i++)
d == 2;
printf ("2 to the power of xd is xd\n",
TWO_POWER, d):
demo_two(3);

"= Watchpoint

0. demosmainsi @ 1326
1. demosds @ O
— Terminal 1.0

— C-5PY
—> WATCH ON d

(c) IAR Systems =

Now type STEP again to step through the program and see the
variables i and d change in the Watchpoint window.
SETTING A BREAKPOINT

You can execute a program up to a specific statement by setting a
breakpoint at that statement.

Type [CtriN, to select the next statement in the program, until the
statement:

demo_two(3);
is highlighted. Then set a breakpoint at this statement by typing:
BREAK SET

29

TUTORIAL

30

Breakpoint ——j—— demo_two(3);

The statement will be displayed in bold to indicate that it is a
breakpoint:

— demo #13

void demo_twoCint i):
int d;

void main(void)
{
int i:
for (i =0, d=1; i < TWO_POYER; i++)
d == 2;

printf ("2 to the power of xd is xdsn",
TWO_POWER, d):

"= Watchpoint

0. demosmainsi @ 0O
1. demosds @ 1
— Terminal 1.0

— C-5PY

——> BREAK SET

(c) IAR Systems

Then type GO to execute up to the breakpoint.

The output from the program will be displayed in the Terminal I/0
window:

— demo #17?

void demo_twoCint i):
int d;

void main(void)
{

int i;

for (i =0, d=1; i < TWDO_POYER; i++)
d == 2;
printf ("2 to the power of xd is xd\n",
TWO_POWER, d):
demo_two(3):

[— Watchpoint
|E. demosmainsi @ 29

1. demosds @ 8192
— Terminal 1.0

2 to the power of 13 is 8192
— C-5PY

Break at demoNt17? (main)

(c) IAR Systems =

TUTORIAL

Now give the command:
ISTEP
to step into the routine demo_two.

The source window will then automatically display the second Source
file containing the routine demo_two:

demo_two #10
"j* second part of C-SPY DEMO =~
#include “"stdio.h"

char arrayl1®] = “abcd":

void demo_twoCint i)
{
char =cp:

cp = &arraylil:
printf ("xcwn", =cp):
¥

[— Watchpoint
|E. demosmainsi @ 77
1. demosds @ 8192

— Terminal I-0
2 to the power of 13 is 8192

— C-5PY
—> ISTEP

(c) IAR Systems =

If you continue to step you will exit from the program, and the C-SPY
window will display program EXIT.

To exit from C-SPY, and return to MS-DOS, type:

QuIT
and reply Y to confirm.

WHAT NEXT? That completes this brief guided tour of the IAR Systems tools.

For more information about using the IAR Systems tools refer to the
AT90S C Compiler Programming Guide and the AT90S Assembler, Linker,
and Librarian Programming Guide.

31

TUTORIAL

32

XLINK ENVIRONMENT
VARIABLES

XLINK uses a number of environment variables which can be defined
in the PC host environment using the MS-DOS set command. These
variables can be used to create defaults for various XLINK options so
that they do not have to be specified on the command line.

Except for the XLINK_ENVPAR and XLINK_TFILE environment variables,
the default values can be overruled by the corresponding command line
option. For example, the - FMPDS command line argument will supersede
the default format selected with the XLINK_FORMAT environment
variable.

To make these settings automatic, you can place the set commands in
your system’s autoexec.bat file (or in your login script if you are
running on a network).

XLINK_COLUMNS

Sets the number of columns per line.

DESCRIPTION

Use XLINK_COLUMNS to set the number of columns in the listing. The
default is 80 columns.

EXAMPLE
To set the number of columns to 132:
set XLINK_COLUMNS=132

33

XLINK_CPU

XLINK_CPU Sets the target CPU type.

DESCRIPTION

Use XLINK_CPU to set a default for the -c option so that it does not have
to be specified on the command line.

EXAMPLE

To set the target CPU type to AT90S:

set XLINK_CPU=a90

RELATED COMMANDS

This is equivalent to the XLINK -c command; see -c in the AT90S
Assembler, Linker, and Librarian Programming Guide.

XLINK_DFLTDIR Sets a path to a default directory for object files.

DESCRIPTION

Use XLINK_DFLTDIR to specify a path for object files. The specified
path, which should end with \, is prefixed to the object filename.
EXAMPLE

To specify the path for object filesas c:\iar\1ib:

set XLINK_DFLTDIR=c:\iar\Tib\

XLINK_ENVPAR Creates a default XLINK command line.

DESCRIPTION

Use XLINK_ENVPAR to specify XLINK commands that you want to
execute each time you run XLINK.

EXAMPLE
To create a default XLINK command line:
set XLINK_ENVPAR=-FMOTOROLA

34

XLINK_FORMAT

RELATED COMMANDS

See also -f in the AT90S Assembler, Linker, and Librarian Programming
Guide, which reads linker commands from a file.

XLINK_FORMAT

Sets the output format.

DESCRIPTION

Use XLINK_FORMAT to set the format for linker output. For a list of the
available output formats see XLINK output formats in the AT90S
Assembler, Linker, and Librarian Programming Guide.

EXAMPLE

To set the output format to MOTOROLA:

set XLINK_FORMAT=MOTOROLA

RELATED COMMANDS

This is equivalent to the XLINK -F command; see -F in the AT90S
Assembler, Linker, and Librarian Programming Guide.

XLINK_MEMORY

Specifies whether XLINK is file-bound or memory-bound.

DESCRIPTION

If set to O the linker is file-bound; otherwise it is memory-bound.

EXAMPLE
To specify that XLINK is file-bound:
set XLINK_MEMORY=0

RELATED COMMANDS

This is equivalent to the XLINK -m command; see -m in the AT90S
Assembler, Linker, and Librarian Programming Guide.

35

XLINK_PAGE

XLINK_PAGE

Sets the number of lines per page.

DESCRIPTION

Use XLINK_PAGE to set the number of lines per page (20-150). The
default is a listing with no page breaks.

EXAMPLES

To set the number of lines per page to 64:

set XLINK_PAGE=64

RELATED COMMANDS

This is equivalent to the XLINK -p command; see -p in the AT90S
Assembler, Linker, and Librarian Programming Guide.

XLINK_TFILE

36

Specifies the temporary file.

DESCRIPTION

Use XLINK_TFILE to set the name and location of the temporary file
which is used when the XLINK -t command is specified; see -t in the
AT90S Assembler, Linker, and Librarian Programming Guide.
EXAMPLE

To specify a temporary file e: \x1ink. tmp:

set XLINK_TFILE=e:\xTink.tmp

XLIB ENVIRONMENT
VARIABLES

XLIB supports a number of environment variables which can be set
using the MS-DOS set command. These variables can be used to create
defaults for various XLIB options so they do not have to be specified on
the command line.

To make these settings automatic, you can place the set commands in
your system’s autoexec.bat file (or in your login script if you are
running on a network).

XLIB_COLUMNS

Sets the number of columns.

DESCRIPTION

Use XLIB_COLUMNS to set the number of columns for listings (80-132).
The default is 80 columns.

EXAMPLE

To set the number of columns to 132:

set XLIB_COLUMNS=132

XLIB_CPU

Sets the CPU type.

DESCRIPTION

Use XLIB_CPU to set the CPU type so that the DEFINE-CPU command
does not need to be entered at the beginning of an XLIB session.
EXAMPLE

To set the CPU type to AT90S:

set XLIB_CPU=a90

37

XLIB_PAGE

XLIB_PAGE

Sets the number of lines per page.

DESCRIPTION

Use XLIB_PAGE to set the number of lines per page (10-100) for the list
file. The default is a listing with no page breaks.

EXAMPLE

To set the number of lines per page to 66:

set XLIB_PAGE=66

XLIB_SCROLL_BREAK

38

Sets the scroll pause.

DESCRIPTION

Use XLIB_SCROLL_BREAK to make the XLIB output pause and wait for
the key to be pressed after the specified number of lines (16—-100) on
the screen have scrolled by.

EXAMPLE

To pause every 22 lines:

set XLIB_SCROLL_BREAK=22

INDEX

A
aa90 command 17
aa90 subdirectory 12
ASMA90 (environment variable) 17
assembler
features 6
files 12
running 17
Assembler, Linker, and Librarian
Programming Guide iv
assembly source file 15
assumptions Y
C
C compiler
features 5
files 13
running 14
C Compiler Programming Guide iv
C include files 13
C-SPY, running 3
C_INCLUDE (environment
variable) 13
command line file 16
assembler 17
C compiler 16
XLINK 18
conventions \Y
D
debugging 28
development system structure 9
directories
aa90 12
dongle 12
etc 12
exe 12

directories (continued)

iar 12
icca90 13
inc 13
lib 13
ui 12
documentation files 12
documentation route map 4
dongle files 12
dongle security device 16
dongle subdirectory 12
E
Embedded Workbench
installing 2,3
running 2
environment variables
ASMA90 17
C_INCLUDE 13
QCCA90 16
XLIB_COLUMNS 37
XLIB_CPU 37
XLIB_PAGE 38
XLIB_SCROLL_BREAK 38
XLINK_COLUMNS 33
XLINK_CPU 34
XLINK_DFLTDIR 13, 34
XLINK_ENVPAR 34
XLINK_FORMAT 35
XLINK_MEMORY 35
XLINK_PAGE 36
XLINK_TFILE 36
error return codes
assembler 18
C compiler 16
XLINK 19
etc subdirectory 12
exe subdirectory 12
executable files 12

extended command line file 16
assembler 17
C compiler 16
XLINK 18
extensions 11
F
features
assembler 6
C compiler 5
XLIB Librarian 8
XLINK Linker 7
file types 11
H
hardware lock 16
|
iar directory 12
icca90 command 14
icca90 subdirectory 13
inc subdirectory 13
include files 14
installation, requirements 1
installed files 12
assembler 12
C compiler 13
C include 13
documentation 12
dongle 12
executable 12
library 13
linker command 13
miscellaneous 12
introduction 5

39

INDEX

L

lib subdirectory 13

librarian
batch mode 20
environment variables 37
interactive mode 19
running 19

library files 13

linker 10
command files 13, 26
environment variables 33
error return codes 19
running 18

list file 15

M

miscellaneous files 12

MS-DOS error return codes
assembler 18
C compiler 16
XLINK 19

O

object file 15

P

PATH variable 1, 12

QCCA90 (environment variable) 16

40

R
requirements 1
return codes
assembler 18
C compiler 16
XLINK 19
route map 4
running
C-SPY 3
Embedded Workbench 2
S
security device 16
source files 14
path 15
T
text editor 10
tutorial 23
compiling a file 25
creating a project directory 23
debugging the project 28
linking a file 26
W
Workbench
installing 3
running 2

X

XLIB Librarian
batch mode
environment variables
features
interactive mode
running
XLIB_COLUMNS (XLIB
environment variable)
XLIB_CPU (XLIB
environment variable)
XLIB_PAGE (XLIB
environment variable)
XLIB_SCROLL_BREAK (XLIB
environment variable)
XLINK Linker
environment variables
error return codes
features
running
XLINK_COLUMNS (XLINK
environment variable)
XLINK_CPU (XLINK
environment variable)
XLINK_DFLTDIR (XLINK
environment variable)
XLINK_ENVPAR (XLINK
environment variable)
XLINK_FORMAT (XLINK
environment variable)
XLINK_MEMORY (XLINK
environment variable)
XLINK_PAGE (XLINK
environment variable)
XLINK_TFILE (XLINK
environment variable)

13,

20
37

19
19

37

37

38

38

10

33

19

18

33

34

34

34

35

35

36

36

