

Precision Monolithic Quad SPST CMOS Analog Switches

DESCRIPTION

The DG417B, DG418B, DG419B monolithic CMOS analog switches were designed to provide high performance switching of analog signals. Combining low power, low leakages, high speed, low on-resistance and small physical size, the DG417B series is ideally suited for portable and battery powered industrial and military applications requiring high performance and efficient use of board space.

To achieve high-voltage ratings and superior switching performance, the DG417B series is built on Vishay Siliconix's high voltage silicon gate (HVSG) process. Breakbefore-make is guaranteed for the DG419B, which is an SPDT configuration. An epitaxial layer prevents latchup.

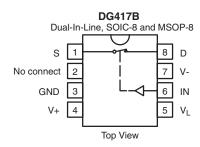
Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

The DG417B and DG418B respond to opposite control logic levels as shown in the Truth Table.

FEATURES

- ± 15 V analog signal range
- On-resistance $R_{DS(on)}$: 15 Ω
- Fast switching action t_{ON}: 110 ns
- TTL and CMOS compatible
- MSOP-8 and SOIC-8 package
- Compliant to RoHS directive 2002/95/EC

Pb-free Augilable


BENEFITS

- · Widest dynamic range
- · Low signal errors and distortion
- · Break-before-make switching action
- · Simple interfacing
- · Reduced board space
- Improved reliability

APPLICATIONS

- · Precision test equipment
- Precision instrumentation
- · Battery powered systems
- · Sample-and-hold circuits
- Military radios
- · Guidance and control systems
- Hard disk drivers

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE						
Logic	DG417B	DG418B				
0	ON	OFF				
1	OFF	ON				

Logic "0" \leq 0.8 V Logic "1" \geq 2.4 V

DG419B
Dual-In-Line, SOIC-8 and MSOP-8
D 1 8 S ₂ S ₁ 2 7 V- GND 3 6 IN V+ 4 5 V _L
Top View

TRUTH TABLE - DG419B					
Logic	SW ₁	SW ₂			
0	ON	OFF			
1	OFF	ON			

Logic "0" \leq 0.8 V Logic "1" \geq 2.4 V

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

DG417B, DG418B, DG419B

Vishay Siliconix

ORDERING INFORMATION				
Temp Range	Package	Part Number		
DG417B, DG418B	•			
- 40 °C to 85 °C	8-Pin Plastic MiniDIP	DG417BDJ DG417BDJ-E3 DG418BDJ DG418BDJ-E3		
	0 Fin Name 2010	DG417BDY DG417BDY-E3 DG417BDY-T1 DG417BDY-T1-E3		
	8-Pin Narrow SOIC	DG418BDY DG418BDY-E3 DG418BDY-T1 DG418BDY-T1-E3		
	8-Pin MSOP	DG417BDQ-T1-E3 DG418BDQ-T1-E3		
DG419B				
	8-Pin Plastic MiniDIP	DG419BDJ DG419BDJ-E3		
- 40 °C to 85 °C	8-Pin Narrow SOIC	DG419BDY DG419BDY-E3 DG419BDY-T1 DG419BDY-T1-E3		
	8-Pin MSOP	DG419BDQ-T1-E3		

ABSOLUTE MAXIMU	M RATINGS		
Parameter		Limit	Unit
V-		- 20	
V+		20	
GND		25	V
V _L		(GND - 0.3) to (V+) + 0.3	•
Digital Inputs ^a , V _S , V _D		(V-) - 2 V to (V+) + 2 or 30 mA, whichever occurs first	
Current, (Any Terminal) Continu	ous	30	mA
Current (S or D) Pulsed at 1 ms	, 10 % Duty Cycle	100	THA THA
Storage Temperature		- 65 to 150	°C
	8-Pin Plastic MiniDIP ^c	400	
Power Dissipation (Package) ^b	8-Pin Narrow SOIC ^c	400	mW
Fower Dissipation (Package)	8-Pin MSOP ^d	400	11144
	8-Pin CerDIP ^e	600	

Notes

- $a. \ Signals \ on \ S_X, \ D_X, \ or \ IN_X \ exceeding \ V+ \ or \ V- \ will \ be \ clamped \ by \ internal \ diodes. \ Limit \ forward \ diode \ current \ to \ maximum \ current \ ratings.$
- b. All leads welded or soldered to PC board.
- c. Derate 5.3 mW/°C above 75 °C.
- d. Derate 4 mW/°C above 70 °C.
- e. Derate 8 mW/°C above 75 °C.

SCHEMATIC DIAGRAM Typical Channel

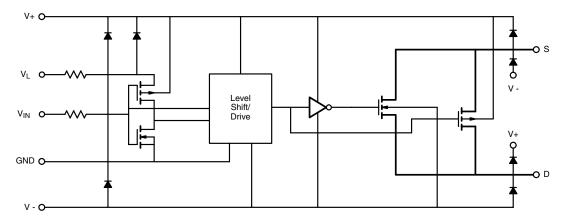


Figure 1.

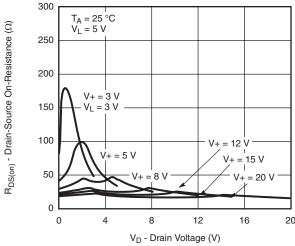
SPECIFICATIONS ^a										
		Test Conditions Unless Otherwise Spec				A Suffix - 55 °C to 125 °C		_	uffix to 85 °C	
Parameter	Symbol	V+ = 15 V, V- = - 15 V _L = 5 V, V _{IN} = 2.4 V, 0	_	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch	Cymbol	V - 0 V, V N - 2.4 V, 0	.0 1	remp.	Typ.		wax.	141111.	IIIux.	Oilit
Analog Signal Range ^e	V _{ANALOG}			Full		- 15	15	- 15	15	V
Drain-Source On-Resistance	R _{DS(on)}	I _S = - 10 mA, V _D = ± 12 V+ = 13.5 V, V- = - 13.		Room Full	15		25 34		25 29	Ω
	I _{S(off)}			Room Full	- 0.1	- 0.25 - 20	0.25 20	- 0.25 - 5	0.25 5	
Switch Off Leakage Current	I _{D(off)}	V+ = 16.5, V- = -16.5 V $V_D = \pm 15.5 V, V_S = \pm 15.5 V$	DG417B DG418B	Room Full	- 0.1	- 0.25 - 20	0.25 20	- 0.25 - 5	0.25 5	
	•D(оп)	DG419E		Room Full	- 0.1	- 0.75 - 60	0.75 60	- 0.75 - 12	0.75 12	nA
Channel On Leakage Current	I _{D(on)}	V+ = 16.5 V. V- = - 16.5 V	DG417B DG418B	Room Full	- 0.4	- 0.4 - 40	0.4 40	- 0.4 - 10	0.4 10	
Ç	-D(on)	$V_S = V_D = \pm 15.5 \text{ V}$	DG419B	Room Full	- 0.4	- 0.75 - 60	0.75 60	- 0.75 - 12	0.75 12	
Digital Control										
Input Current, V _{IN} Low	I _{IL}			Full		- 0.5	0.5	- 0.5	0.5	μΑ
Input Current, V _{IN} High	I _{IH}			Full		- 0.5	0.5	- 0.5	0.5	μπ
Dynamic Characteristics										
Turn-On Time	t _{ON}	$R_L = 300 \Omega$, $C_L = 35 pF$ $V_S = \pm 10 V$, See Switching	DG417B DG418B	Room Full	62		89 106		89 99	
Turn-Off Time	t _{OFF}	Time Test Circuit	DG417B DG418B	Room Full	53		80 88		80 86	ns
Transition Time	t _{TRANS}	$R_L = 300 \Omega, C_L = 35 pF$ $V_{S1} = \pm 10 V, V_{S2} = \pm 10 V$	DG419B	Room Full	60		87 96		87 93	
Break-Before-Make Time Delay	t _D	$R_L = 300 \Omega, C_L = 35 pF$ $V_{S1} = V_{S2} = \pm 10 V$ $C_L = 10 nF$	DG419B	Room	16	3		3		
Charge Injection	Q	$V_{gen} = \overline{0} V, R_{gen} = 0$	Ω	Room	38					рС
Off Isolation ^e	OIRR	$R_L = 50 \Omega, C_L = 5 pl$ f = 1 MHz	F,	Room	- 82					dB
Channel-to-Channel Crosstalk ^e	X _{TALK}		DG419B	Room	- 88					ub.

Document Number: 72107 S09-1261-Rev. D, 13-Jul-09

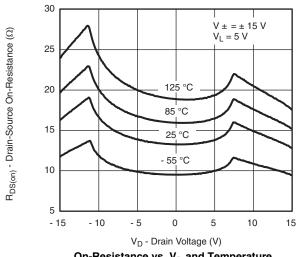
DG417B, DG418B, DG419B

Vishay Siliconix

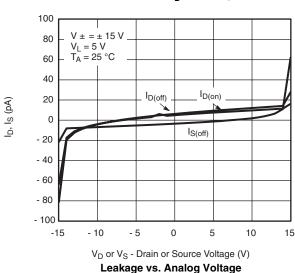
SPECIFICATIONS ^a										
		Test Conditions Unless Otherwise Spe					uffix o 125°C	_	uffix to 85 °C	
Parameter	Symbol	V+ = 15 V, V- = - 15 V _L = 5 V, V _{IN} = 2.4 V, 0		Temp.b	Typ. ^c	Min.d	Max. ^d	Min. ^d	Max ^{d.}	Unit
Dynamic Characteristics										
Source Off Capacitance ^e	C _{S(off)}			Room	12					
Drain Off Capacitance ^e	C _{D(off)}	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$	DG417B DG418B	Room	12					<u> </u>
Channel On Capacitance ^e		f = 1 MHz, V _S = 0 V	DG417B DG418B	Room	50					pF
·	C _{D(on)}		DG419B	Room	57					
Power Supplies										
Positive Supply Current	l+			Room Full	0.001		1 5		1 5	
Negative Supply Current	I-	V+ = 16.5 V, V- = - 16.	.5 V	Room Full	- 0.001	- 1 - 5		- 1 - 5		
Logic Supply Current	ΙL	$V_{IN} = 0 \text{ or } 5 \text{ V}$		Room Full	0.001		1 5		1 5	μΑ
Ground Current	I _{GND}			Room Full	- 0.001	- 1 - 5		- 1 - 5		


SPECIFICATIONS ^a										
		Test Conditions Unless Otherwise Spec	ified			_	uffix o 125°C		uffix to 85 °C	
Parameter	Symbol	V+ = 12 V, V- = 0 V $V_L = 5 \text{ V}, V_{IN} = 2.4 \text{ V}, 0.8$	3 V ^f	Temp.b	Typ. ^c	Min.d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch										
Analog Signal Range ^e	V _{ANALOG}			Full		0	12	0	12	V
Drain-Source On-Resistance	R _{DS(on)}	$I_S = -10 \text{ mA}, V_D = 3.8$ $V_{+} = 10.8 \text{ V}$	V	Room Full	26		35 52		35 45	Ω
Dynamic Characteristics										
Turn-On Time	t _{ON}	$R_L = 300 \Omega$, $C_L = 35 pF$ $V_S = 8 V$, See Switching		Room Full	100		125 155		125 143	
Turn-Off Time	t _{OFF}	Time Test Circuit		Room Full	38		66 73		66 69	ns
Break-Before-Make Time Delay	t _D	$R_L = 300 \Omega, C_L = 35 pF$	DG419B	Room	62	25		25		115
Transition Time	t _{TRANS}	$R_L = 300 \Omega, C_L = 35 p$ $V_{S1} = 0 V, 8 V, V_{S2} = 8 V,$		Room Full	95		119 153		119 141	
Charge Injection	Q	$C_L = 10 \text{ nF}, V_{gen} = 0 \text{ V}, R_{ger}$	$_{0} = 0 \Omega$	Room	18					рС
Power Supplies										
Positive Supply Current	l+			Room Full	0.001		1 5		1 5	
Negative Supply Current	I-	V+ = 13.2 V, V _L = 5.25	V	Room	- 0.001	- 1 - 5		- 1 - 5		μΑ
Logic Supply Current	Ι _L	$V_{IN} = 0 \text{ or } 5 \text{ V}$		Room	0.001		1 5		1 5	μΑ
Ground Current	I _{GND}			Room	- 0.001	- 1 - 5		-1 - 5		

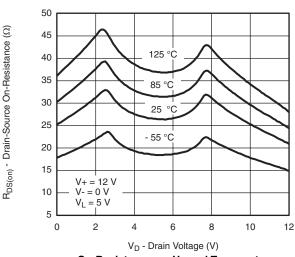
Notes:


- a. Refer to PROCESS OPTION FLOWCHART.
- b. Room = 25 °C, full = as determined by the operating temperature suffix.
 c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- e. Guaranteed by design, not subject to production test. f. V_{IN} = input voltage to perform proper function.

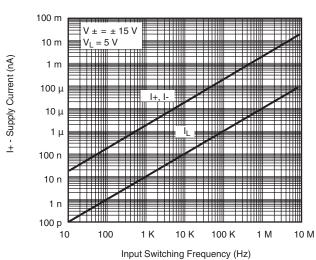
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

On-Resistance vs. V_D and Unipolar Power Supply Voltage



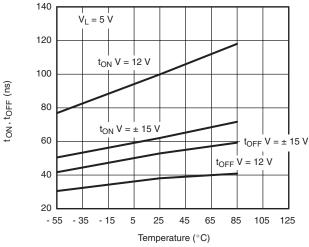
On-Resistance vs. V_D and Temperature



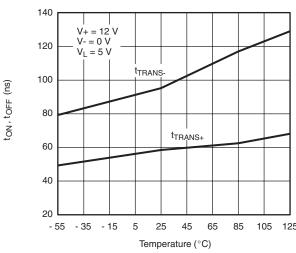
T_A = 25 °C $\mathsf{R}_{\mathsf{DS}(\mathsf{on})}$ - Drain-Source On-Resistance (Ω) 35 30 25 ± 8 V 20 ± 10 V ± 12 V 15 ± 15 V 10 ± 20 V 5 0 - 20 - 15 - 10 - 5 10 15 20 5 V_D - Drain Voltage (V)

On-Resistance vs. V_D and Dual Supply Voltage

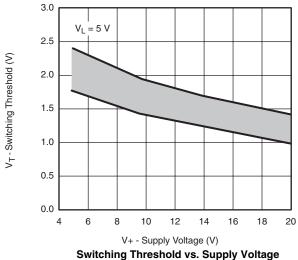
On-Resistance vs. V_D and Temperature

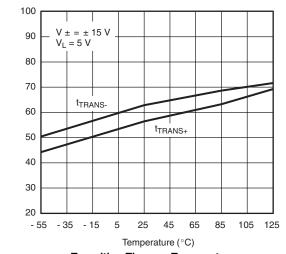


Supply Current vs. Input Switching Frequency

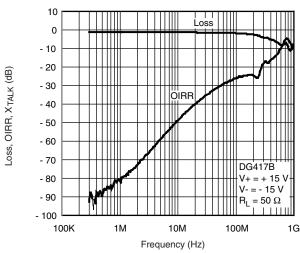

DG417B, DG418B, DG419B

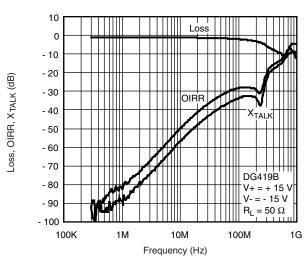
Vishay Siliconix


TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted



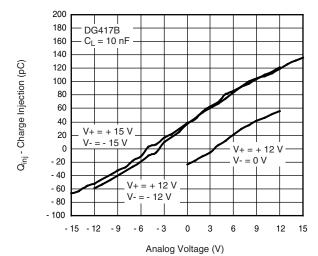
Switching Time vs. Temperature

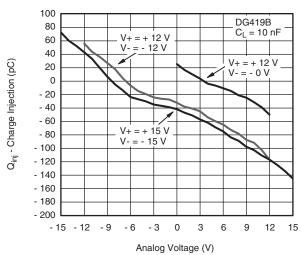

Transition Time vs. Temperature



ton, toff (ns)

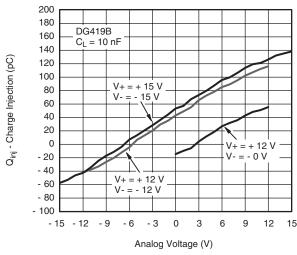
Transition Time vs. Temperature


Insertion Loss, Off -Isolation Crosstalk vs. Frequency


Insertion Loss, Off -Isolation Crosstalk vs. Frequency

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

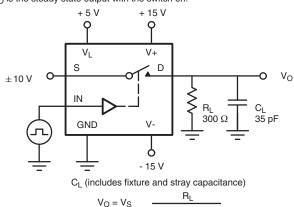
Charge Injection vs. Analog Voltage (Measured at drain pin)



Charge Injection vs. Analog Voltage (Measured at drain pin)

180 DG417B 160 $C_L = 10 \text{ nF}$ 140 Q_{inj} - Charge Injection (pC) 120 100 80 V+ = + 15 V 60 V- = - 15 V 40 20 0 + 12 V- 20 - V- = 0 V V + = + 12 V- 40 V = -12 V- 60 - 80 - 100 - 15 - 12 - 9 - 6 0 3 6 12 15 - 3 Analog Voltage (V)

200


Charge Injection vs. Analog Voltage (Measured at source pin)

Charge Injection vs. Analog Voltage (Measured at source pin)

TEST CIRCUITS

 $\ensuremath{\text{V}}_{\ensuremath{\text{O}}}$ is the steady state output with the switch on.

Logic Input 0 V 0

Note: Logic input waveform is inverted for switches that have the opposite logic sense.

Figure 2. Switching Time (DG417B/418B)

Document Number: 72107 S09-1261-Rev. D, 13-Jul-09

VISHAY.

TEST CIRCUITS

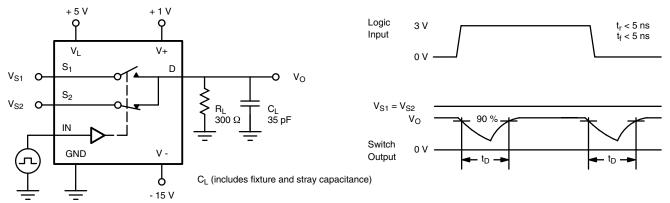
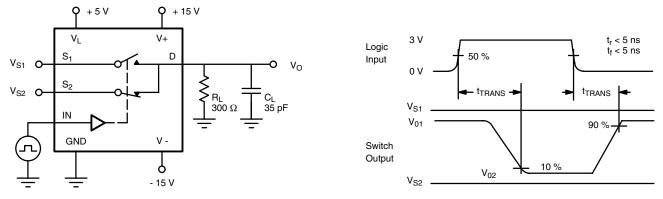



Figure 3. Break-Before-Make (DG419B)

C_L (includes fixture and stray capacitance)

$$V_O = V_S$$
 $R_L + r_{DS(on)}$

Figure 4. Transition Time (DG419B)

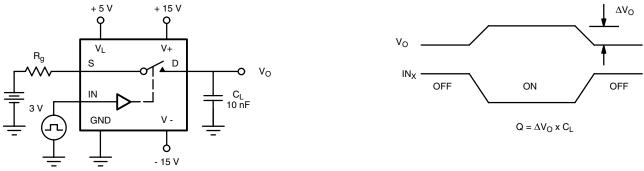


Figure 5. Charge Injection

TEST CIRCUITS

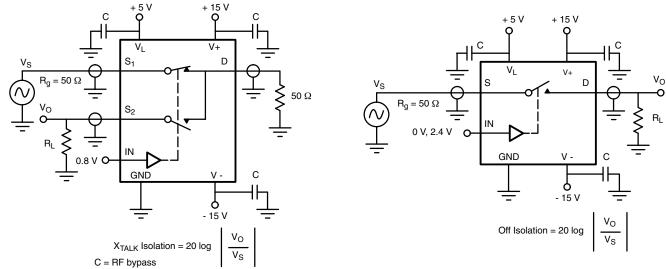


Figure 6. Crosstalk

Figure 7. Off isolation

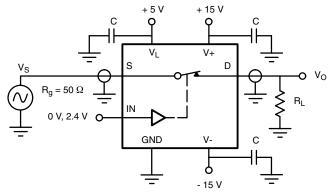
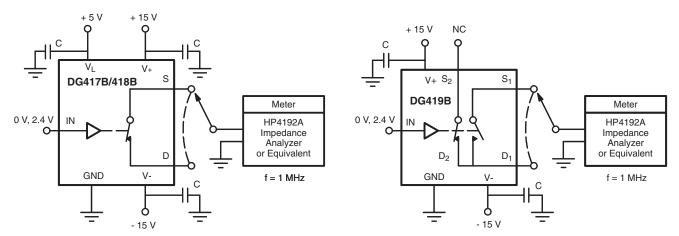
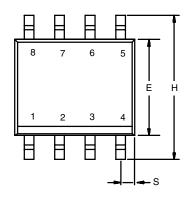
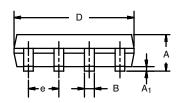
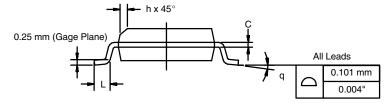


Figure 8. Insertion Loss


Figure 9. Source/Drain Capacitances


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg272107.

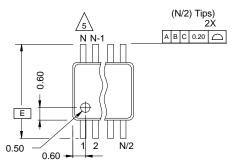
Document Number: 72107 S09-1261-Rev. D, 13-Jul-09

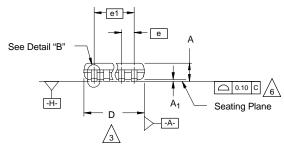
SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012

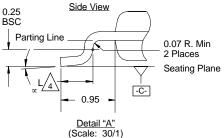
	MILLIM	IETERS	INC	HES
DIM	Min	Max	Min	Max
Α	1.35	1.75	0.053	0.069
A ₁	0.10	0.20	0.004	0.008
В	0.35	0.51	0.014	0.020
С	0.19	0.25	0.0075	0.010
D	4.80	5.00	0.189	0.196
Е	3.80	4.00	0.150	0.157
е	1.27 BSC		0.050) BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.020
L	0.50	0.93	0.020	0.037
q	0°	8°	0°	8°
S	0.44	0.64	0.018	0.026
ECN: C-0652	27-Rev. I. 11-Sep-0	6		

DWG: 5498

Document Number: 71192 www.vishay.com 11-Sep-06






MSOP: 8-LEADS

JEDEC Part Number: MO-187, (Variation AA and BA)

Top View

NOTES:

I. Die thickness allowable is 0.203 ± 0.0127 .

2. Dimensioning and tolerances per ANSI.Y14.5M-1994.

3.

Dimensions "D" and "E $_1$ " do not include mold flash or protrusions, and are measured at Datum plane $\boxed{-H_2}$, mold flash or protrusions shall not exceed 0.15 mm per side.

Dimension is the length of terminal for soldering to a substrate.

Terminal positions are shown for reference only.

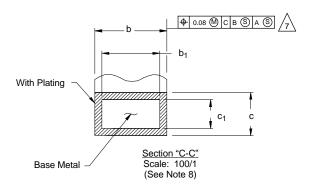
Formed leads shall be planar with respect to one another within 0.10 mm at seating plane.

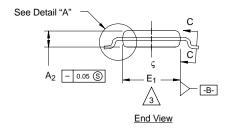
The lead width dimension does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the lead foot. Minimum space between protrusions and an adjacent lead to be 0.14 mm. See detail "B" and Section "C-C".

Section "C-C" to be determined at 0.10 mm to 0.25 mm from the lead tip.

9. Controlling dimension: millimeters.

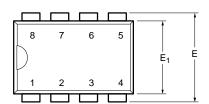
10. This part is compliant with JEDEC registration MO-187, variation AA and BA.

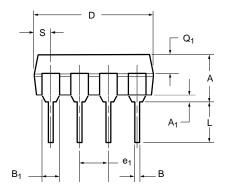

Downloaded from Arrow.com.

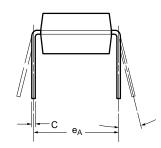

Document Number: 71244

Datums -A- and -B- to be determined Datum plane -H-.

2 Exposed pad area in bottom side is the same as teh leadframe pad size.


N = 8L

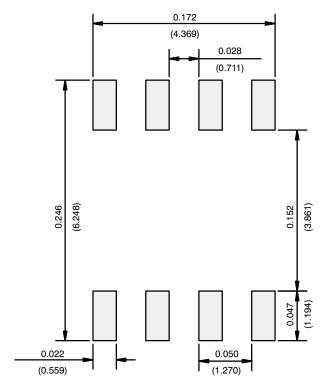

	MI			
Dim	Min	Nom	Max	Note
Α	-	-	1.10	
A ₁	0.05	0.10	0.15	
A ₂	0.75	0.85	0.95	
b	0.25	-	0.38	8
b ₁	0.25	0.30	0.33	8
С	0.13	-	0.23	
c ₁	0.13	0.15	0.18	
D		3.00 BSC		3
Е		4.90 BSC		
E ₁	2.90	3.00	3.10	3
е		0.65 BSC		
e ₁		1.95 BSC		
L	0.40	0.55	0.70	4
N		5		
œ	0°	4°	6°	


12-Jul-02

PDIP: 8-LEAD

	MILLIN	IETERS	INC	HES
Dim	Min	Max	Min	Max
Α	3.81	5.08	0.150	0.200
A ₁	0.38	1.27	0.015	0.050
В	0.38	0.51	0.015	0.020
B ₁	0.89	1.65	0.035	0.065
С	0.20	0.30	0.008	0.012
D	9.02	10.92	0.355	0.430
E	7.62	8.26	0.300	0.325
E ₁	5.59	7.11	0.220	0.280
e ₁	2.29	2.79	0.090	0.110
e _A	7.37	7.87	0.290	0.310
L	2.79	3.81	0.110	0.150
Q_1	1.27	2.03	0.050	0.080
S	0.76	1.65	0.030	0.065
ECN: S-0	3946—Rev. E	. 09-Jul-01		

DWG: 5478


15° MAX

NOTE: End leads may be half leads.

Document Number: 71259 www.vishay.com 05-Jul-01

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOT

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED