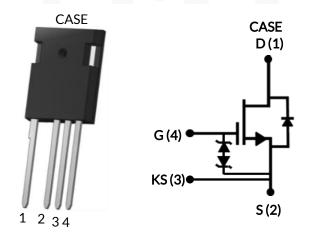
United **SiC**



750V-11m Ω SiC FET

Rev. B, July 2021

DATASHEET

UJ4SC075011K4S

Part Number	Package	Marking		
UJ4SC075011K4S	TO-247-4L	UJ4SC075011K4S		

Description

The UJ4SC075011K4S is a 750V, $11m\Omega$ G4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the TO-247-4L package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features

- On-resistance R_{DS(on)}: 11mΩ (typ)
- Operating temperature: 175°C (max)
- Excellent reverse recovery: Q_{rr} = 288nC
- Low body diode V_{FSD}: 1.1V
- Low gate charge: $Q_G = 75nC$
- Threshold voltage V_{G(th)}: 4.5V (typ) allowing 0 to 15V drive
- Low intrinsic capacitance
- ESD protected, HBM class 2
- TO-247-4L package for faster switching, clean gate waveforms

Typical applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V _{DS}		750	V
Cata aquiraq valtaga	V	DC	-20 to +20	V
Gate-source voltage	V _{GS}	AC (f > 1Hz)	-25 to +25	V
Continuous drain current ¹	1	T _C = 25°C	104	А
Continuous drain current	I _D	T _C = 100°C	75	А
Pulsed drain current ²	I _{DM}	T _C = 25°C	300	А
Single pulsed avalanche energy ³	E _{AS}	L=15mH, I _{AS} = 4.5A	151	mJ
SiC FET dv/dt ruggedness	dv/dt	$V_{DS} \le 500V$	100	V/ns
Power dissipation	P _{tot}	T _C = 25°C	357	W
Maximum junction temperature	T _{J,max}		175	°C
Operating and storage temperature	TJ, T _{STG}		-55 to 175	°C
Max. lead temperature for soldering, 1/8" from case for 5 seconds	TL		250	°C

1. Limited by $T_{J,max}$

2. Pulse width t_p limited by $T_{J,max}$

3. Starting $T_J = 25^{\circ}C$

4. Short circuit current is independent of the gate voltage $V_{\text{GS}}{>}12V$

Thermal Characteristics

Parameter	Symbol Test Conditions		Units			
		Min	Тур	Max	Units	
Thermal resistance, junction-to-case	$R_{\theta JC}$			0.33	0.42	°C/W

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Parameter	Cump al	Test Canditions		Linte			
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units	
Drain-source breakdown voltage	eakdown voltage BV _{DS} V _{GS} =0V		750			V	
		V _{DS} =750V, V _{GS} =0V, T _J =25°C		3.5	60		
Total drain leakage current	I _{DSS}	V _{DS} =750V, V _{GS} =0V, T _J =175°C	45			μA	
Total gate leakage current	I _{GSS}	V _{DS} =0V, T _J =25°C, V _{GS} =-20V / +20V	1 - 2 + 20		μΑ		
	$R_{DS(on)}$	V _{GS} =12V, I _D =60A, T _J =25°C		11	14.2		
Drain-source on-resistance		V _{GS} =12V, I _D =60A, T _J =125°C		18.4		mΩ	
		V _{GS} =12V, I _D =60A, T _J =175°C		24.2			
Gate threshold voltage	V _{G(th)}	V_{DS} =5V, I_{D} =10mA	3.5	4.5	5.5	V	
Gate resistance	R _G	f=1MHz, open drain		2.3		Ω	

Typical Performance - Reverse Diode

Parameter	Symbol	Test Conditions		- Units		
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Diode continuous forward current ¹	ls	T _C =25°C			104	А
Diode pulse current ²	I _{S,pulse}	T _C =25°C			300	А
Forward voltage	V _{FSD}	V _{GS} =0V, I _F =30A, T _J =25°C		1.1	1.24	V
	* FSD	V _{GS} =0V, I _F =30A, T _J =175°C		1.2		•
Reverse recovery charge	Q _{rr}	V_{R} =400V, I _F =60A, V_{GS} =0V, R _{G_EXT} =5Ω		288		nC
Reverse recovery time	t _{rr}	di/dt=2500A/µs, T_=25°C		26		ns
Reverse recovery charge	Q _{rr}	V_{R} =400V, I _F =60A, V_{GS} =0V, R _{G_EXT} =5Ω		292		nC
Reverse recovery time	t _{rr}	di/dt=2500A/μs, Τ _J =150°C		26		ns

Typical Performance - Dynamic

Description	Currence of	Test Conditions		L la te		
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Input capacitance	C _{iss}	- V _{DS} =400V, V _{GS} =0V -		3245		
Output capacitance	C _{oss}	$ v_{DS}$ =4000, v_{GS} =00 $-$ f=100kHz $-$		178		pF
Reverse transfer capacitance	C _{rss}			1.2		
Effective output capacitance, energy related	C _{oss(er)}	V _{DS} =0V to 400V, V _{GS} =0V		225		pF
Effective output capacitance, time related	C _{oss(tr)}	V _{DS} =0V to 400V, V _{GS} =0V		470		pF
C _{OSS} stored energy	E _{oss}	V _{DS} =400V, V _{GS} =0V		18		μJ
Total gate charge	Q _G	– V _{DS} =400V, I _D =60A, –		75		
Gate-drain charge	Q_{GD}	$V_{DS} = -0V \text{ to } 15V$		13		nC
Gate-source charge	Q _{GS}	VGS - 0V to 15V		22		
Turn-on delay time	t _{d(on)}			19		
Rise time	t _r	Notes 5 and 6, V_{DS} =400V, I_D =60A, Gate		26		20
Turn-off delay time	t _{d(off)}	Driver =0V to +15V,		65		ns
Fall time	t _f	Turn-on $R_{G,EXT}=1\Omega$,		9		
Turn-on energy including R_s energy	E _{ON}	Turn-off $R_{G,EXT}=5\Omega$, inductive Load, FWD:		257		
Turn-off energy including R_s energy	E _{OFF}	same device with V_{GS} = 0V		107		
Total switching energy	E _{TOTAL}	and $R_G = 5\Omega$, RC snubber:		364		μJ
Snubber R_s energy during turn-on	E _{RS_ON}	$-$ R _s =10 Ω and C _s =400pF, $-$ T ₁ =25°C		8		
Snubber R_s energy during turn-off	E_{RS_OFF}			21		
Turn-on delay time	t _{d(on)}			19		
Rise time	t _r	Notes 5 and 6, V _{DS} =400V, I _D =60A, Gate		28		
Turn-off delay time	t _{d(off)}	Driver = $0V$ to +15V,		73		ns
Fall time	t _f	Turn-on $R_{G,EXT} = 1\Omega$,		9		
Turn-on energy including R_s energy	E _{ON}	Turn-off R _{G,EXT} =5Ω, _ inductive Load, FWD: same _		320		
Turn-off energy including R_s energy	E _{OFF}	device with V_{GS} = 0V and		125		
Total switching energy	E _{TOTAL}	$R_{G} = 5\Omega$, RC snubber:		445		μJ
Snubber R_s energy during turn-on	E _{RS_ON}	$R_{s}=10\Omega \text{ and } C_{s}=400 \text{pF},$ $T_{j}=150^{\circ}\text{C}$		8		
Snubber R _s energy during turn-off	E_{RS_OFF}			19		

5. Measured with the switching test circuit in Figure 29.

6. In this datasheet, all the switching energies (turn-on energy, turn-off energy and total energy) presented in the tables and Figures include the device RC snubber energy losses.

Typical Performance Diagrams

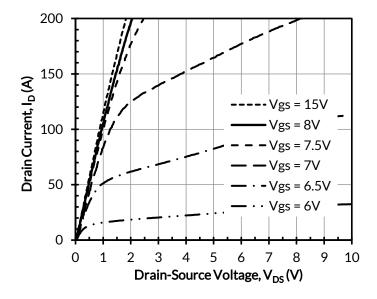


Figure 1. Typical output characteristics at $T_{\rm J}$ = - 55°C, tp < 250 μs

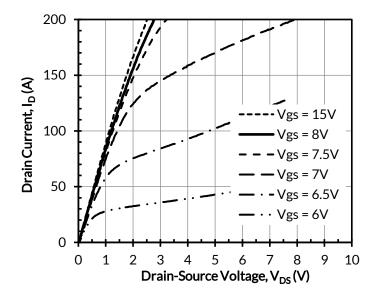


Figure 2. Typical output characteristics at T $_{\rm J}$ = 25°C, tp < 250 μs

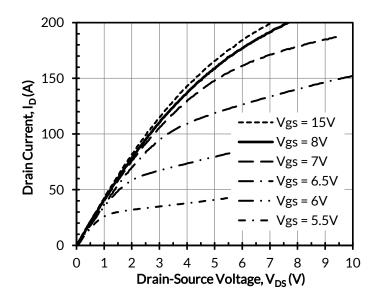


Figure 3. Typical output characteristics at T $_{\rm J}$ = 175°C, tp < 250 μs

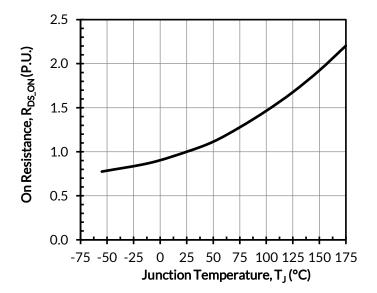
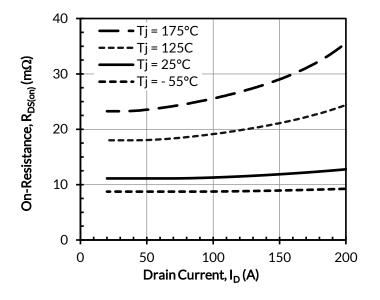
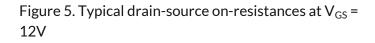




Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V and I_{D} = 60A

	FET-Jet Calculator	P	Buy Online	و و	Spice Models	\bigcirc	Contact Sales		Learn More
--	-----------------------	---	---------------	-------------------	-----------------	------------	------------------	--	---------------

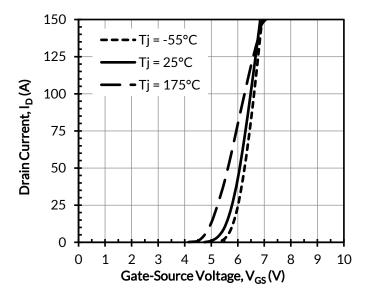


Figure 6. Typical transfer characteristics at V_{DS} = 5V

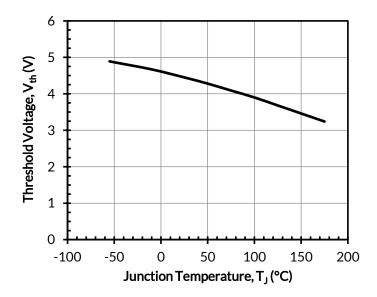


Figure 7. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 10mA

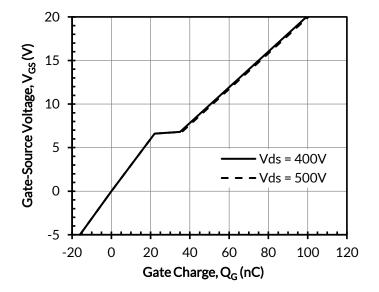
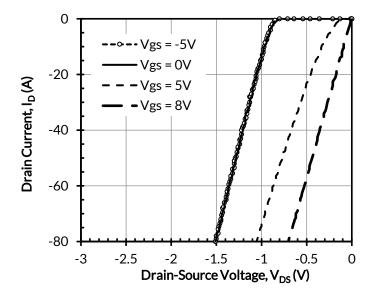
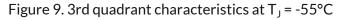




Figure 8. Typical gate charge at I_D = 60A

United **SiC**

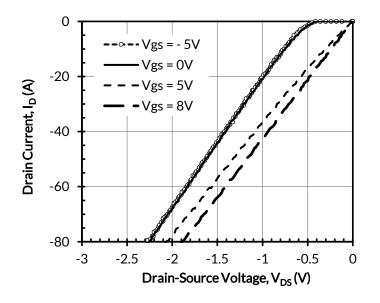


Figure 11. 3rd quadrant characteristics at T_J = 175°C

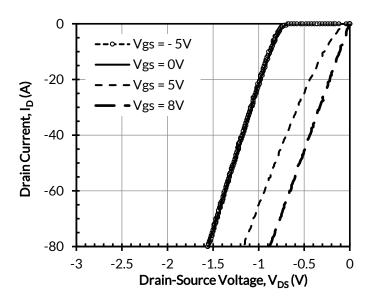


Figure 10. 3rd quadrant characteristics at $T_J = 25^{\circ}C$

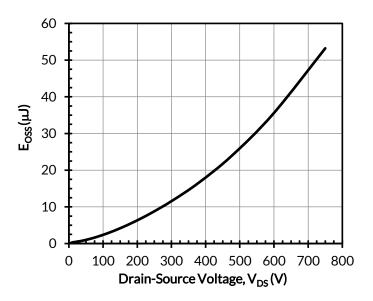


Figure 12. Typical stored energy in C_{OSS} at V_{GS} = 0V

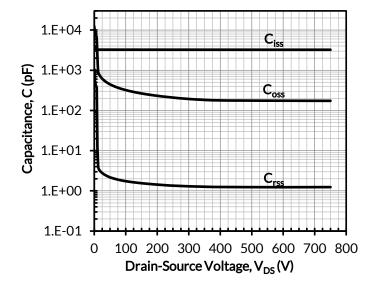


Figure 13. Typical capacitances at f = 100kHz and V_{GS} = 0V

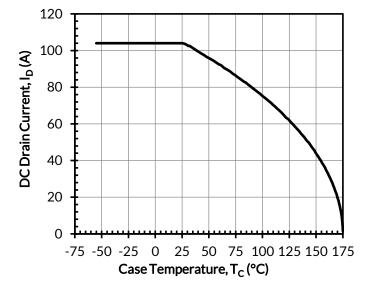


Figure 14. DC drain current derating

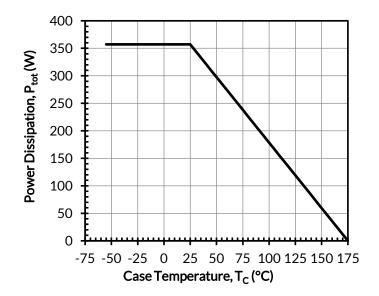


Figure 15. Total power dissipation

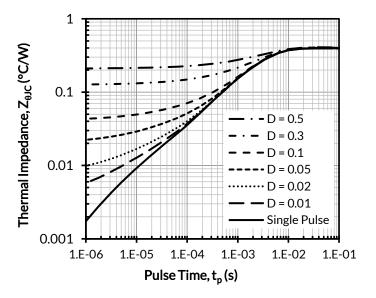


Figure 16. Maximum transient thermal impedance

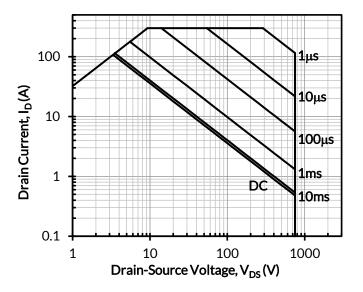


Figure 17. Safe operation area at T_C = 25°C, D = 0, Parameter t_p

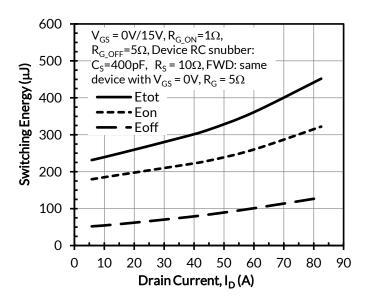
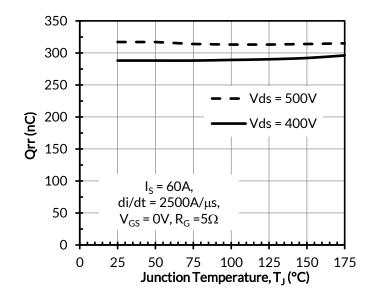



Figure 19. Clamped inductive switching energy vs. drain current at V_{DS} = 400V and T_J = 25°C

Spice

Models

Contact

Sales

Learn

More

0

FET-Jet

Calculator

III

Buy

Online

Figure 18. Reverse recovery charge Qrr vs. junction temperature

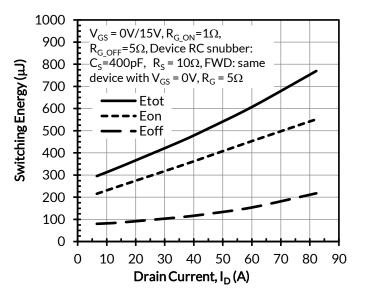


Figure 20. Clamped inductive switching energy vs. drain current at V_{DS} = 500V and T_J = 25°C

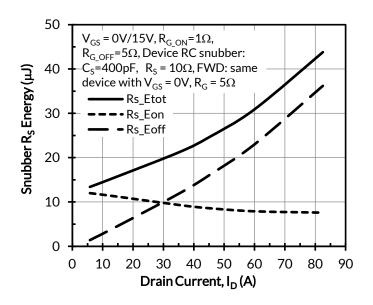


Figure 21. RC snubber energy loss vs. drain current at V_{DS} = 400V and T_J = 25°C

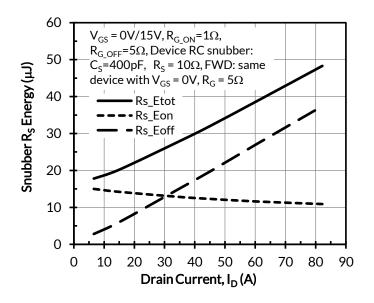


Figure 22. RC snubber energy losses vs. drain current at V_{DS} = 500V and T_J = 25°C

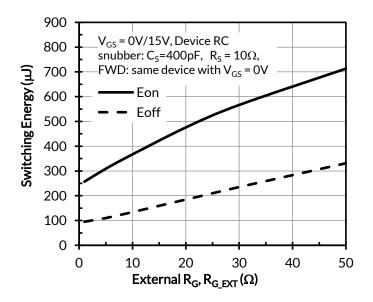


Figure 23. Clamped inductive switching energies vs. $R_{G,EXT}$ at V_{DS} = 400V, I_D = 60A, and T_J = 25°C

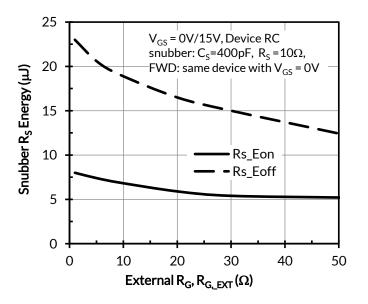
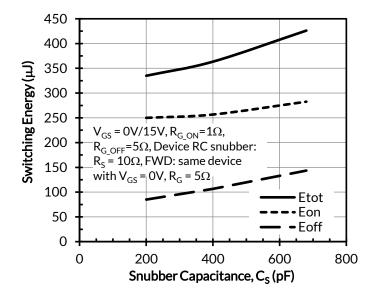
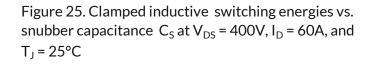




Figure 24. RC snubber energy losses vs. $R_{G,EXT}$ at V_{DS} = 400V, I_D = 60A, and T_1 = 25°C

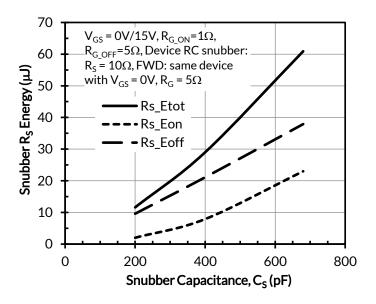


Figure 26. RC snubber energy losses vs. snubber capacitance C_s at V_{DS} = 400V, I_D = 60A, and T_J = 25°C

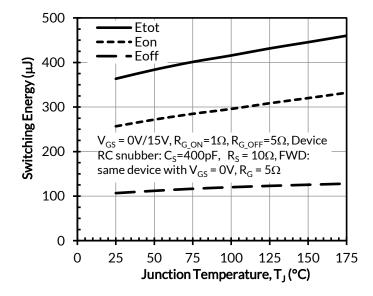


Figure 27. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_D = 60A

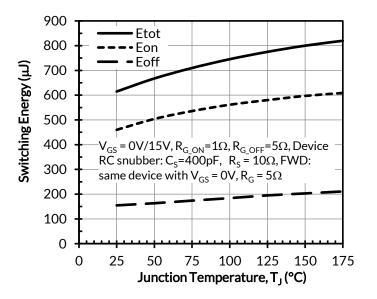


Figure 28. Clamped inductive switching energy vs. junction temperature at V_{DS} =500V and I_D = 60A

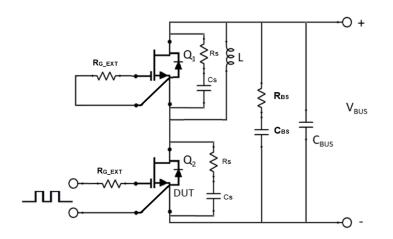


Figure 29. Schematic of the half-bridge mode switching test circuit. Note, a bus RC snubber ($R_{BS} = 1\Omega$, $C_{BS} = 100$ nF) is used to reduce the power loop high frequency oscillations.

Applications Information

SiC FETs are enhancement-mode power switches formed by a highvoltage SiC depletion-mode JFET and a low-voltage silicon MOSFET connected in series. The silicon MOSFET serves as the control unit while the SiC JFET provides high voltage blocking in the off state. This combination of devices in a single package provides compatibility with standard gate drivers and offers superior performance in terms of low on-resistance ($R_{DS(on)}$), output capacitance (C_{oss}), gate charge (Q_G), and reverse recovery charge (Qrr) leading to low conduction and switching losses. The SiC FETs also provide excellent reverse conduction capability eliminating the need for an external anti-parallel diode.

Like other high performance power switches, proper PCB layout design to minimize circuit parasitics is strongly recommended due to the high dv/dt and di/dt rates. An external gate resistor is recommended when the FET is working in the diode mode in order to achieve the optimum reverse recovery performance. For more information on SiC FET operation, see www.unitedsic.com.

Disclaimer

UnitedSiC reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. UnitedSiC assumes no responsibility or liability for any errors or inaccuracies within. Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

UnitedSiC assumes no liability whatsoever relating to the choice, selection or use of the UnitedSiC products and services described herein.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo: UJ4SC075011K4S