

DATA SHEET

ARRAY CHIP RESISTORS

YC/TC

5%, 1%

size

YC:102/104/122/124/162/164/248/324/158T/358L/358T

TC: 122/124/164

RoHS compliant

SCOPE

This specification describes YC (convex, flat) and TC (concave) series chip resistor arrays with lead-free terminations made by thick film process.

APPLICATIONS

- Terminal for SDRAM and DDRAM
- Computer applications: laptop computer, desktop computer
- Consume electronic equipments: PDAs, PNDs
- Mobile phone, telecom...

FEATURES

- · AEC-Q200 qualified
- More efficient in pick & place application
- Low assembly costs
- RoHS compliant
- Products with lead free terminations meet RoHS requirements
- Pb-glass contained in electrodes
- Resistor element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production
- Halogen Free Epoxy

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERSRED)

YC XXXX X X X X XX XXXX L/T

TC (1) (2) (3) (4) (5) (6) (7) (8)

(I) SIZE

YC:102/104/122/124/162/164/248/324/158T/358L/358T

TC: 122/124/164

(2) ARRAYS OR NETWORKS

Array YC102/104/122/124/162/164/248/324: -

Network YCI58T/YC358L/YC358T: NA

(3) TOLERANCE

(4) PACKAGING TYPE

R = Paper taping reel K = Embossed plastic tape reel

(5) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(6) TAPING REEL

07 = 7 inch dia. Reel

13 = 13 inch dia. Reel

(7) RESISTANCE VALUE

There are $2\sim4$ digits indicated the resistor value. Letter R/K/M is decimal point. Detailed resistance rules show in table of "Resistance rule of global part number".

(8) DEFAULT CODE

Letter L is the system default code for ordering only. (Note)

Letter T is the only default code for YCI02.

ORDERING EXAMPLE

The ordering code of a YC122 convex chip resistor array, value 1,000 Ω with ±5% tolerance, supplied in 7-inch tape reel is: YC122-JR-071KL.

YCI58T network, value $100,000\Omega$ with 5% tolerance, supplied in 7-inch tape reel is: YCI58TJR-07100KL

NOTE

- All our RSMD products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

number Resistance code rule Example 0R = Jumper 0R $IR = I \Omega$ **XRXX** $IR5 = 1.5 \Omega$ (1 to 9.76 Ω) $9R76 = 9.76 \Omega$ **XXRX** $IOR = IO \Omega$ (10 to 97.6 Ω) $97R6 = 97.6 \Omega$ XXXR $100R = 100 \Omega$ (100 to 976 Ω) XKXX $IK = 1,000 \Omega$ $9K76 = 9760 \Omega$ (1 to 9.76 K Ω) ΧM $IM = 1,000,000 \Omega$

 $(I M\Omega)$

Resistance rule of global part

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

102 to 358

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2. TC122 series is supplied and ordered by global part number only.

12NC CODE 2350

2350 <u>XXX XXXXX</u> L (1) (2) (3) (4)			*****			Last di Resistance	git of 12N e decade ⁽³		Last digit
TYPE/ 2×0402	START IN ⁽¹⁾	TOL. (%)	RESISTANCE RANGE	PAPER / PE TAPE 0	ON REEL (units) (2) 50,000	0.01 to 0.0			0
ARV321	2350	±5%	Ι to Ι ΜΩ	013 1 xxx	013 12xxx	I to 9.76	Ω		8
ARV322	2350	±1%	Ι0 to Ι ΜΩ	013 2xxx	013 3xxxx	10 to 97.6	Ω		9
Jumper	2350	_	0 Ω	013 91001	-	100 to 97	6 Ω		1
(1) The	rosisto	va 12-digit ord	with 2350	I to 9.76 I	I to 9.76 KΩ				
` ,			_	ering code starting cate the resistor to		10 to 97.6	ΚΩ		3
` '	kaging.	Jent 4	Of 3 digits indi-	cate the resistor to	her arice arid	100 to 97	6 ΚΩ		4
		ing 4 o	r 3 digits repre	sent the resistance	value with the	I to 9.76 I	ΜΩ		5
last		the multiplier		10 to 97.6 Example:			6		
(4) "L"	(4) "L" is optional symbol (Note).						0.02 Ω	=	0200 or 200
00000	Opposing Example						0.3 Ω	=	3007 or 307

ORDERING EXAMPLE

The ordering code of a ARV321 resistor, value 1,000 Ω with ±5% tolerance, supplied in tape of 10,000 units per reel is: 235001311102(L) or YC122-JR-071KL.

Example:	0.02 Ω	=	0200 or 200
	0.3 Ω	=	3007 or 307
	ΙΩ	=	1008 or 108
	33 KΩ	=	3303 or 333
	10 ΜΩ	=	1006 or 106

NOTE

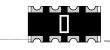
- 1. All our RSMD products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

YAGEO

<u>MARKING</u> YC102 No marking Fig. I YC122 No marking Fig. 2 **YC104** No marking Fig. 3 YC124 / 162 / 164 / 324 П I-Digit marking Fig. 4 Jumper= 0Ω E-24 series: 3 digits, 5% First two digits for significant figure and 3rd digit for number of zeros Fig. 4-1 Value=240KΩ YC248 I-Digit marking Fig. 5 Jumper= $\mathbf{0}\Omega$ E-24 series: 3 digits, 5% First two digits for significant figure and 3rd digit for number of zeros Fig. 5-1 Value=240K Ω YC158T/358L/358T E-24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros Fig. 6 Value=24 Ω Fig. 6-1 Value=240KΩ TCI22 No marking Fig. 7 TCI24

Fig. 8

No marking


YC/TC

SERIES

102 to 358

TC164

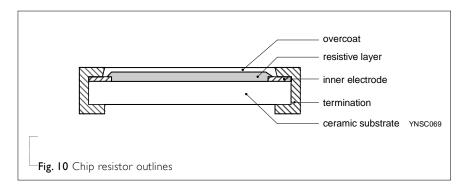
YAGEO

I-Digit marking

Fig. 9 Jumper= 0Ω

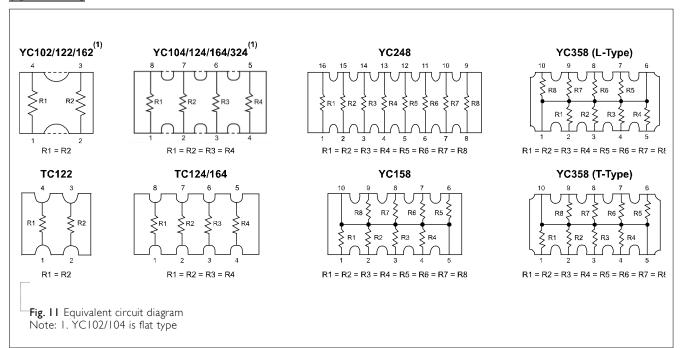
E-24 series: 3 digits, 5%

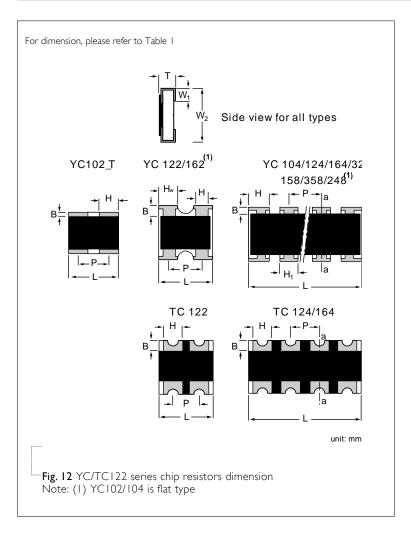
First two digits for significant figure and 3rd digit for number of zeros


Fig. 9-1 Value=240KΩ

For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION


The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Nibarrier) are added as shown in Fig.9.


OUTLINES

SCHEMATIC

YAGEO

DIMENSIONS

Table I

TYPE	H / H _I / H _W	В	Р	L	Т	WI	W2
YC102	H: 0.25 ± 0.10	0.15 ±0.10	0.55 ±0.10	0.80 ±0.10	0.35 ±0.10	0.15 ±0.10	0.60 ±0.10
YC104	H: 0.20 ± 0.10	0.15 ± 0.05	0.40 ±0.10	1.40 ±0.10	0.35 ± 0.10	0.15 ± 0.10	0.60 ±0.10
YCI22	H: 0.21+0.10 / -0.05 H _w : 0.35 ±0.10	0.20 ± 0.10	0.67 ± 0.05	1.00 ±0.10	0.30 ± 0.10	0.25 ± 0.10	1.00 ±0.10
YCI24	H: 0.40 ± 0.15 H ₁ : 0.30 ± 0.05	0.20 ± 0.15	0.50 ± 0.05	2.00 ±0.10	0.45 ± 0.10	0.30 ± 0.15	1.00 ± 0.10
YC162	H: 0.30 ±0.10 H _w : 0.65 ±0.15	0.30 ± 0.10	0.80 ± 0.05	1.60 ±0.10	0.40 ± 0.10	0.30 ± 0.10	1.60 ± 0.10
YC164	H: 0.65 ±0.05 H _I : 0.50 ±0.15	0.30 ± 0.15	0.80 ±0.05	3.20 ± 0.15	0.60 ± 0.10	0.30 ± 0.15	1.60 ± 0.15
YC248	H: 0.45 ±0.05 H _I : 0.30 ±0.05	0.30 ± 0.15	0.50 ±0.05	4.00 ±0.20	0.45 ± 0.10	0.40 ± 0.15	1.60 ± 0.15
YC324	H: 1.10 ±0.15 H _I : 0.90 ±0.15	0.50 ± 0.20	1.27 ± 0.05	5.08 ± 0.20	0.60 ±0.10	0.50 ± 0.15	3.20 ± 0.20
TC122	H: 0.30 ±0.05	0.25 ± 0.15	0.50 ± 0.05	1.00 ±0.10	0.30 ±0.10	0.25 ± 0.15	1.00 ±0.10
TCI24	H: 0.30 ±0.10	0.20 ±0.10	0.50 ± 0.05	2.00 ±0.10	0.40 ±0.10	0.25 ± 0.10	1.00 ±0.10
TC164	H: 0.50 ±0.15	0.30 ±0.15	0.80 ±0.05	3.20 ± 0.15	0.60 ±0.10	0.30 ± 0.15	1.60 ±0.15
YCI58T	H : 0.45 ± 0.05 H _I : 0.32± 0.05	0.30 ± 0.15	0.64 ± 0.05	3.20 ± 0.20	0.60 ± 0.10	0.35 ± 0.15	1.60 ±0.15
YC358L YC358T	H: 1.10±0.15 H ₁ : 0.90±0.15	0.50 ± 0.15	1.27 ± 0.05	6.40 ± 0.20	0.60 ±0.10	0.50 ± 0.15	3.20 ± 0.20

8

ELECTRICAL CHARACTERISTICS

Table 2

TYPE	POWER P ₇₀	OPERATING TEMP. RANGE	MWV	RCOV	DWV	RESISTANCE RANGE & TOLERANCE	T. C. R.	Jumper crit (uni	
YC102	1/32W	-55°C to +125°C	15V	30V	30V	E24 \pm 5% $10\Omega \le R \le 1M\Omega$ E24/E96 \pm 1% $10\Omega \le R \le 1M\Omega$ Jumper $< 0.05\Omega$		Rated current Max. current	
YC104	1/32W	-55°C to +125°C	12.5V	25V	25V	$E24 \pm 5\%$ $I0\Omega \le R \le IM9$ $E24/E96 \pm I\%$ $I0\Omega \le R \le IM9$ $Jumper < 0.05\Omega$	2	Rated current Max. current	
YC122	1/16W	-55°C to +155°C	50V	100V	100V	E24 \pm 5% $ \Omega \le R \le M\Omega $ E24/E96 \pm 1% $ \Omega \le R \le M\Omega $ Jumper $<$ 0.05 Ω		Rated current Max. current	
YCI24	1/16W	-55°C to +155°C	25V	50V	100V	E24 \pm 5% $ \Omega \le R \le M\Omega $ E24/E96 \pm 1% $ \Omega \le R \le M\Omega $ Jumper $< 0.05\Omega$	+ /5() nnm/°(Rated current Max. current	
YC162	1/16W	-55°C to +155°C	50V	100V	100V	E24 \pm 5% $ \Omega \le R \le M\Omega $ E/24/E96 \pm 1% $ \Omega \le R \le M\Omega $ Jumper $< 0.05\Omega$		Rated current Max. current	
YC164	1/16W	-55°C to +155°C	50V	100V	100V	E24 \pm 5% $ \Omega \le R \le M\Omega $ E24/E96 \pm 1% $ \Omega \le R \le M\Omega $ Jumper $< 0.05\Omega$		Rated current Max. current	
YC248	1/16W	-55°C to +155°C	50V	100V	100V	$E24 \pm 5\%$ $I0\Omega \le R \le IM9$ $E24/E96 \pm I\%$ $I0\Omega \le R \le IM9$ $Jumper < 0.05\Omega$		Rated current Max. current	
YC324	1/8W	-55°C to +155°C	200V	500V	500V	E24 \pm 5% $10\Omega \le R \le 1M9$ E24/E96 \pm 1% $10\Omega \le R \le 1M9$			
TC122	1/16W	-55°C to +125°C	50V	100V	100V	E24 \pm 5% $ 0\Omega \le R \le M $ E24/E96 \pm 1% $ 0\Omega \le R \le M $ Jumper $< 0.05\Omega$		Rated current Max. current	
TCI24	1/16W	-55°C to +125°C	50V	100V	100V	$E24 \pm 5\%$ $I0\Omega \le R \le IM9$ $E24/E96 \pm I\%$ $I0\Omega \le R \le IM9$ $Jumper < 0.05\Omega$	2	Rated current Max. current	
TC164	1/16W	-55°C to +155°C	50V	100V	100V	$E24 \pm 5\% \ 10\Omega \le R \le 1M9$ $E24/E96 \pm \% \ 10\Omega \le R \le 1M9$ $Jumper < 0.05\Omega$		Rated current Max. current	
YCI58T	1/16W	-55°C to +155°C	25V	50V	50V	E24 ±5% 10Ω ≤ R ≤ 100KΩ			
YC358L YC358T	1/16W	-55°C to +155°C	50V	100V	100V	E24 ±5% 10Ω≤ R ≤ 330KΩ			

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	PACKING STYLE	YC102/ 104	YC/TC 122	YC/TC 124	YC162	YC/TC 164	YC248	YC324	YC158T	YC358L YC358T
Paper taping reel (R)	7" (178mm)	10,000	10,000	10,000	5,000	5,000	5,000		5,000	
	13" (254mm)	50,000	50,000	40,000		20,000			20,000	
Embossed taping reel (K)	7" (178mm)						4,000	4,000		4,000

NOTE

1. For tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

YC102/104, TC122/124 Range:

-55°C to +125°C (Fig. 13)

YC122/124/162/164/248/324/158T/358L/358T, TC164 Range:

-55°C to +155°C(Fig.14)

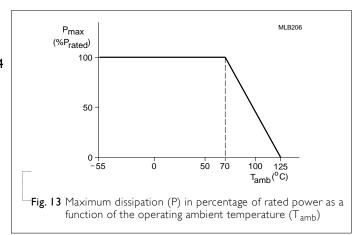
POWER RATING

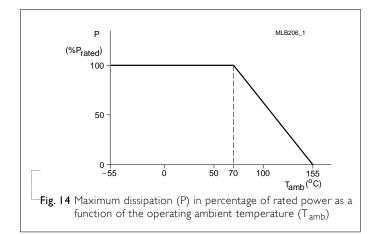
YAGEO

Each type rated power at 70°C YC102/104 = 1/32 W YC122/124/162/164/248/158T/358L/358T = 1/16 W YC324 = 1/8 W TC122/124/164 = 1/16 W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$


or max. working voltage whichever is less $\ensuremath{\mathsf{Where}}$

V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value (Ω)

Chip Resistor Surface Mount YC/TC SERIES 102 to 358

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Life/ Operational Life/ Endurance	MIL-STD-202-method 108 IEC 60115-1 4.25.1 JIS C 5202-7.10	I,000 hours at 70±5 °C applied RCWV I.5 hours on, 0.5 hour off, still air required	$\pm (2\% + 0.05~\Omega)$ <100 m Ω for Jumper
High Temperature Exposure/ Endurance at Upper Category Temperature	MIL-STD-202-method 108 IEC 60115-1 4.25.3 JIS C 5202-7.11	I,000 hours at maximum operating temperature depending on specification, unpowered No direct impingement of forced air to the parts Tolerances: I25±3 °C	\pm (1%+0.05 Ω) <50 mΩ for Jumper
Moisture Resistance	MIL-STD-202-method 106 IEC 60115-1 4.24.2	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d with 25 °C / 65 °C 95% R.H., without steps 7a & 7b, unpowered Parts mounted on test-boards, without condensation on parts Measurement at 24±2 hours after test conclusion	
Thermal Shock	MIL-STD-202-method 107	-55/+125 °C Note: Number of cycles required is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	\pm (1%+0.05 Ω) <50 mΩ for Jumper
Short Time Overload	MIL-R-55342-para 4.7.5 IEC60115-1 4.13	2.5 times RCWV or maximum overload voltage whichever is less for 5 sec at room temperature	$\pm (2\% \pm 0.05~\Omega)$ <50 m Ω for Jumper No visible damage
Board Flex/ Bending	IEC60115-1 4.33	Device mounted on PCB test board as described, only I board bending required 3 mm bending Bending time: 60±5 seconds Ohmic value checked during bending	\pm (1%+0.05 Ω) <50 mΩ for Jumper No visible damage

YAGEO

TEST TEST METHOD PROCEDURE REQUIREMENTS Solderability J-STD-002 test Electrical Test not required Well tinned (≥95% covered) - Wetting No visible damage Magnification 50X SMD conditions: I^{st} step: method B, aging 4 hours at 155 $^{\circ}\text{C}$ dry heat 2nd step: leadfree solder bath at 245±3 °C Dipping time: 3±0.5 seconds - Leaching J-STD-002 test Leadfree solder, 260 °C, 30 seconds No visible damage immersion time - Resistance to MIL-STD-202-method 210 Condition B, no pre-heat of samples $\pm (1\% + 0.05 \Omega)$ Soldering Heat Leadfree solder, 260 °C, 10 seconds <50 m Ω for Jumper immersion time No visible damage Procedure 2 for SMD: devices fluxed and cleaned with isopropanol **Biased Humidity** AEC-Q200 Test 7 1,000 hours; 85 °C / 85% RH $\pm (5.0\% + 0.05 \Omega)$ MIL-STD-202-Method 103 10% of operating power Measurement at 24± 4 hours after test conclusion.

Downloaded from Arrow.com.

Chip Resistor Surface Mount YC/TC SERIES 102 to 358

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 9	Feb.19, 2019	-	- Update H dimension for YC124
Version 8	Dec. 24. 2018	-	- Update AEC-Q200 qualified
Version 7	Aug. 22, 2017	-	- Correct the typo for YC158T/358L/358T, Marking, "240" is 240hm
Version 6	Jun. 1, 2017	-	- Update ordering information for networks YC158T/YC358L/YC358T
Version 5	Feb. 14, 2017	-	- Update YC158 and 358 part number to YC158T , YC358L and YC358T
Version 4	Dec. 22, 2016	-	- Delete YC102 default code L type
Version 3	Apr. 29, 2016	-	- Update YC series and TC164 dimension
Version 2	Dec. 11, 2015	-	- Update Operating Temperature
Version I	Feb. 04, 2015	-	- Update YC I 02 to flat type
Version 0	Nov. 14, 2014	-	- First issue of this specification

[&]quot;YAGEO reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."