〕

Through Hole Lamp Product Data Sheet LTL-4266N

Spec No.: DS-20-92-0351
Effective Date: 08/04/2000
Revision: -

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

LITEONI

 LITE-ON ELECTRONICS, INC.
Property of Lite-On Only

Features

* Ultra brightness..
* Versatile mounting on p.c. board or panel.
* I.C. compatible/low current requirement..
* Reliable and rugged.

Package Dimensions

Part No.	Lens	Source Color
LTL-4266N	Water Clear	AlGaAs Red

NOTES:

1. All dimensions are in millimeters (inches).
2. Tolerance is $\pm 0.25 \mathrm{~mm}\left(.010^{\prime \prime}\right)$ unless otherwise noted.
3. Protruded resin under flange is $1.0 \mathrm{~mm}\left(.04{ }^{\prime \prime}\right)$ max.
4. Lead spacing is measured where the leads emerge from the package.
5. Specifications are subject to change without notice.

LITEONI

 LITE-ON ELECTRONICS, INC. Property of Lite-On OnlyAbsolute Maximum Ratings at $\mathbf{T A}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Maximum Rating	Unit
Power Dissipation	100	mW
Peak Forward Current $(1 / 10$ Duty Cycle, 0.1 ms Pulse Width $)$	200	mA
Continuous Forward Current	40	mA
Derating Linear From $50^{\circ} \mathrm{C}$	0.5	$\mathrm{~mA} /{ }^{\circ} \mathrm{C}$
Reverse Voltage	4	V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	
Lead Soldering Temperature $[1.6 \mathrm{~mm}(.063 ")$ From Body]	$260^{\circ} \mathrm{C}$ for 5 Seconds	

LITEONI LITE-ON ELECTRONICS, INC.

Property of Lite-On Only

Electrical Optical Characteristics at $\mathbf{T A}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Luminous Intensity	Iv	60	170		mcd	IF $=20 \mathrm{~mA}$ Note 1,4
Viewing Angle	$2 \theta_{1 / 2}$		45		deg	Note 2 (Fig.5)
Peak Emission Wavelength	λ_{P}		660		nm	Measurement $@$ Peak (Fig.1)
Dominant Wavelength	λ_{d}		638		nm	Note 3
Spectral Line Half-Width	$\Delta \lambda$		20		nm	
Forward Voltage	V_{F}		1.8	2.4	V	$\mathrm{IF}=20 \mathrm{~mA}$
Reverse Current	IR			100	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}$
Capacitance	C		30		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$

Note: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (Commission International De L'Eclairage) eye-response curve.
2. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. The dominant wavelength, λ_{d} is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
4. The Iv guarantee should be added $\pm 15 \%$.

LITEDNI

 LITE-ON ELECTRONICS, INC.
Property of Lite-On Only

Typical Electrical / Optical Characteristics Curves

$\left(25^{\circ} \mathrm{C}\right.$ Ambient Temperature Unless Otherwise Noted)

Fig. 1 Relative Intensity vs. Wavelength

Fig. 4 Relative Luminous Intensity vs. Forward Current

