FEATURES

－Meets EIA Standard RS485 for Multipoint Bus Transmission and is Compatible with RS－422．
－Small Outline（SOIC）Package Option Available for Minimum Board Space．
－ 22 ns Driver Propagation Delays．
－Single +5 V Supply．
－-7 V to +12 V Bus Common Mode Range Permits $\pm 7 \mathrm{~V}$ Ground Difference Between Devices on the Bus．
－Thermal Shutdown Protection．
－High Impedance to Bus with Driver in TRI－ STATE or with Power Off，Over the Entire Common Mode Range Allows the Unused Devices on the Bus to be Powered Down．
－Combined Impedance of a Driver Output and Receiver Input is Less Than One RS485 Unit Load，Allowing up to 32 Transceivers on the Bus．
－ 70 mV Typical Receiver Hysteresis．

Connection and Logic Diagram

DESCRIPTION

The SN75176B／SN65176B is a high speed differential TRI－STATE ${ }^{\text {® }}$ bus／line transceiver designed to meet the requirements of EIA standard RS485 with extended common mode range（ +12 V to -7 V ），for multipoint data transmission．In addition，it is compatible with RS－422．
The driver and receiver outputs feature TRI－STATE capability，for the driver outputs over the entire common mode range of +12 V to -7 V ．Bus contention or fault situations that cause excessive power dissipation within the device are handled by a thermal shutdown circuit，which forces the driver outputs into the high impedance state．
DC specifications are guaranteed over the 0 to $70^{\circ} \mathrm{C}$ temperature and 4.75 V to 5.25 V supply voltage range．

Figure 1．Top View

These devices have limited built－in ESD protection．The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates．

Absolute Maximum Ratings ${ }^{(1)(2)}$

| Supply Voltage，Vcc | |
| :--- | :--- | :--- |
| Control Input Voltages | 7 V |
| Driver Input Voltage | 7 V |
| Driver Output Voltages | 7 V |
| Receiver Input Voltages | |
| Receiver Output Voltage | |
| for SOIC Package | |
| for PDIP Package | $+15 \mathrm{~V} /-10 \mathrm{~V}$ |

（1）＂Absolute Maximum Ratings＂are those beyond which the safety of the device cannot be verified．They are not meant to imply that the device should be operated at these limits．The tables of＂Electrical Characteristics＂provide conditions for actual device operation．
（2）If Military／Aerospace specified devices are required，please contact the HG Sales Office／Distributors for availability and specifications．
（3）Derate linearly＠ $6.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to 400 mW at $70^{\circ} \mathrm{C}$ ．
（4）Derate linearly at $5.56 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to 650 mW at $70^{\circ} \mathrm{C}$ ．

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage，VCc	4.75	5.25	
Voltage at Any Bus Terminal （Separate or Common Mode）	-7	V	
Operating Free Air Temperature TA_{A}	V		
SN75176B			
SN65176B	0	+70	
Differential Input Voltage，VID ${ }^{(1)}$	-40	+105	${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$			

（1）Differential－Input／Output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B．
Electrical Characteristics ${ }^{(1)(2)}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$V_{\text {OD1 }}$	Differential Driver Output Voltage（Unloaded）	$\mathrm{lo}=0$				5	V
$\mathrm{V}_{\text {OD2 }}$	Differential Driver Output	See（Figure 2）	R＝50 ${ }^{\text {；}}$（RS－422）${ }^{(3)}$	2			V
			R＝27 2 ；（RS－485）	1.5			V
$\Delta \mathrm{V}_{\text {OD }}$	Change in Magnitude of Driver Differential Output Voltage For Complementary Output States	See（Figure 2）	$R=27 \Omega$			0.2	V
$\mathrm{V}_{\text {OC }}$	Driver Common Mode Output Voltage						
$\Delta\|\mathrm{Voc}\|$	Change in Magnitude of Driver Common Mode Output Voltage For Complementary Output States					3.0 0.2	V

（1）All currents into device pins are positive；all currents out of device pins are negative．All voltages are referenced to device ground unless otherwise specified．
（2）All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．
（3）All worst case parameters for which this note is applied，must be increased by 10\％for SN75176BT．The other parameters remain valid for $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$ ．

Electrical Characteristics ${ }^{(1)(2)}$（continued）

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{Cc}}<5.25 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter		Conditions		Min	Typ	Max	Units	
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage	$\frac{\mathrm{DI}, \mathrm{DE}}{\mathrm{RE}, \mathrm{E}}$			2			V	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage						0.8		
V_{CL}	Input Clamp Voltage			$\mathrm{lin}_{\mathrm{N}}=-18 \mathrm{~mA}$			－1．5		
ILI	Input Low Current			$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$			－200	$\mu \mathrm{A}$	
I_{H}	Input High Current			$\mathrm{V}_{1 \mathrm{H}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$	
I_{N}	Input Current	DO／RI，$\overline{\mathrm{DO}} / \overline{\mathrm{RI}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.25 \mathrm{~V} \\ & \mathrm{DE}=0 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$			＋1．0	mA	
				$\mathrm{V}_{\text {IN }}=-7 \mathrm{~V}$			－0．8	mA	
$\mathrm{V}_{\text {TH }}$	Differential Input Threshold Voltage for Receiver		$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq+12 \mathrm{~V}$		$\begin{gathered} -0 . \\ 2 \end{gathered}$		＋0．2	V	
$\Delta \mathrm{V}_{\text {TH }}$	Receiver Input Hysteresis		$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$			70		mV	
V_{OH}	Receiver Output High Voltage		$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$		2.7			V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	RO	$\mathrm{loL}=16 \mathrm{~mA}^{(3)}$				0.5	V	
$\mathrm{I}_{\text {OzR }}$	OFF－State（High Impedance） Output Current at Receiver		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} \\ & 0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.4 \mathrm{~V} \end{aligned}$				± 20	$\mu \mathrm{A}$	
$\mathrm{R}_{\text {IN }}$	Receiver Input Resistance		$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq+12 \mathrm{~V}$		12			k Ω	
I_{CC}	Supply Current		No Load ${ }^{(3)}$	Driver Outputs Enabled			55	mA	
			Driver Outputs Disabled			35	mA		
Iosd	Driver Short－Circuit Output Current			$\mathrm{V}_{0}=-7 \mathrm{~V}^{(3)}$				－250	mA
			$\mathrm{V}_{\mathrm{O}}=+12 \mathrm{~V}{ }^{(3)}$				＋250	mA	
IosR	Receiver Short－Circuit Output Current		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		－15		－85	mA	

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {PLH }}$	Driver Input to Output	$\begin{aligned} & R_{\text {LDIFF }}=60 \Omega \\ & C_{L 1}=C_{L 2}=100 \mathrm{pF} \end{aligned}$		12	22	ns
$\mathrm{t}_{\text {PHL }}$	Driver Input to Output			17	22	ns
t_{r}	Driver Rise Time	$\begin{aligned} & \mathrm{RLDIFF}=60 \Omega \\ & C_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF} \end{aligned}$ （Figure 4 and Figure 6）			18	ns
t_{f}	Driver Fall Time				18	ns
t_{zH}	Driver Enable to Output High	$C_{L}=100 \mathrm{pF}$（Figure 5 and Figure 7）S1 Open		29	100	ns
$t_{z L}$	Driver Enable to Output Low	$C_{L}=100 \mathrm{pF}$（Figure 5 and Figure 7）S2 Open		31	60	ns
$\mathrm{t}_{\text {LZ }}$	Driver Disable Time from Low	$C_{L}=15 \mathrm{pF}$（Figure 5 and Figure 7）S2 Open		13	30	ns
t_{HZ}	Driver Disable Time from High	$C_{L}=15 \mathrm{pF}$（Figure 5 and Figure 7）S1 Open		19	200	ns
$\mathrm{t}_{\text {PLH }}$	Receiver Input to Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$（Figure 3 and Figure 8） S1 and S2 Closed		30	37	ns
$\mathrm{t}_{\text {PHL }}$	Receiver Input to Output			32	37	ns
t_{zL}	Receiver Enable to Output Low	$C_{L}=15 \mathrm{pF}$（Figure 3 and Figure 9）S2 Open		15	20	ns
t_{zH}	Receiver Enable to Output High	$C_{L}=15 \mathrm{pF}$（Figure 3 and Figure 9）S1 Open		11	20	ns
tLz	Receiver Disable from Low	$C_{L}=15 \mathrm{pF}$（Figure 3 and Figure 9）S2 Open		28	32	ns
t_{HZ}	Receiver Disable from High	$C_{L}=15 \mathrm{pF}$（Figure 3 and Figure 9）S1 Open		13	35	ns

AC TEST CIRCUITS

Figure 2.

Figure 4.

Note：S1 and S2 of load circuit are closed except as otherwise mentioned．

Figure 3.

Note：Unless otherwise specified the switches are closed．
Figure 5.

Switching Time Waveforms

Figure 6．Driver Propagation Delays and Transition Times

Figure 7．Driver Enable and Disable Times

Note：Differential input voltage may may be realized by grounding $\overline{\mathrm{RI}}$ and pulsing RI between +2.5 V and -2.5 V
Figure 8．Receiver Propagation Delays

Figure 9．Receiver Enable and Disable Times

Function Tables

Table 1．SN75176B Transmitting ${ }^{(1)}$

Inputs			Line Condition	Outputs	
	$\overline{\mathbf{R E}}$	DE			$\overline{\mathbf{D O}}$
X	1	1	No Fault	0	1
X	1	0	No Fault	1	0
X	0	X	X	Z	Z
X	1	X	Fault	Z	Z

（1）X — Don＇t care condition
Z－High impedance state
Fault－Improper line conditons causing excessive power dissipation
in the driver，such as shorts or bus contention situations
＊＊This is a fail safe condition
Table 2．SN75176B Receiving ${ }^{(1)}$

Inputs			
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	$\mathbf{R I} \overline{\mathbf{R I}}$	Outputs
0	0	$\geq+0.2 \mathrm{~V}$	RO
0	0	$\leq-0.2 \mathrm{~V}$	1
0	0	Inputs Open＊＊	0
1	0	X	1

（1） X －Don＇t care condition
Z－High impedance state
Fault－Improper line conditons causing excessive power dissipation
in the driver，such as shorts or bus contention situations
${ }^{* *}$ This is a fail safe condition

SOP 8

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
C	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
e	$1.270(\mathrm{BSC})$		$0.050(\mathrm{BSC})$	
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

