

Press-Fit Aluminum Electrolytic Capacitors ALF20 & ALF40

Why Choose KEMET

KEMET Electronics Corporation is a leading global supplier of electronic components. We offer our customers the broadest selection of capacitor technologies in the industry, along with an expanding range of electromechanical devices, electromagnetic compatibility solutions and supercapacitors. Our vision is to be the preferred supplier of electronic component solutions for customers demanding the highest standards of quality, delivery and service.

Features & Benefits

- · Eliminates soldering process problems
- Meets BS EN 60352-5:2012
- · Compact size
- · Reliable electrical contacts
- · High ripple current
- · Excellent surge voltage capability
- · Customized spacing of press-fit connections
- Quick exchange of components

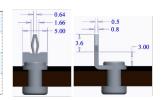
Product Checklist

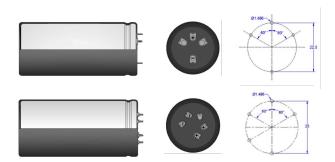
- What is the pin configuration required?
- What are the operational conditions of your application? Do you have a specification available?
 - What is the applied voltage VDC?
 - What is the operational temperature?
 - What is the applied ripple current spectrum?
 - What life expectancy is required?
 - What are the end of life criteria?
- Does the application have size constraints? If so, what are they?
- Does the application require UL recognized sleeving?

For more information, samples and engineering kits, please visit us at www.kemet.com or call 1.877.myKEMET.

Applications

- Uninterruptible power supply (UPS)
- · Switch mode power supplies (SMPS)
- Smoothing
- Energy storage
- · Demanding power supplies
- · Frequency inverters

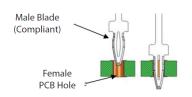

Electrical/Physical Characteristics

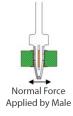

Series	Case Sizes	Tolerances	Dielectric	Temperature Range	Voltage Options	Capacitance Values
ALF20	35, 40, 45, and 50 mm diameter,	±20% at	Hz +20°C Electrolytic	-40°C to +85°C	35 - 550 VDC	180 - 100,000 μf
ALF40	30 to 105 mm length	100 Hz +20°C		-40°C to +105°C	25 - 500 VDC	120 - 120,000 μf

Printed Circuit Board (PCB) Requirements

PCB Thickness: 1.57 mm Minimum			
Drill	Ø 1.613 ±0.025	(Final Plated Through-Hole)	
Copper Thickness	0.025 minimum	Ø 1.486	
Final Plated Through-Hole Diameter	Ø 1.486 ±0.076		
Pin Insertion Force	125 N (28 lbf) maximum		
Pin Retention Force	62 N (14 lbf) minimum	(Drill Hole)	

Material Specification (mm)					
Pin Length	6.6				
Pin Width	1.66				
Base Material	Copper Alloy C7025				
Plating Material	Ni and Sn				


SA1017 Copyright © 2017 KEMET



Press-Fit Aluminum Electrolytic Capacitors ALF20 & ALF40

Press-Fit Male/Female Interconnects

Normal Force Applied by Male

Insertion/Retention Forces

Tests performed on 4 and 5 pin press-fit decks show a consistent insertion force of 100 N per pin.

- 4 pin press-fit deck requires 400 N insertion force
- 5 pin press-fit deck requires 500 N insertion force

A force > 500 N has been repeatedly applied to the finished product (4 pin version).

SA1017 Copyright © 2017 KEMET