

High Voltage Rectifiers

 $V_{RRM} = 24000 V$ $I_{F(AV)M} =$

V _{RRM}	Standard	Power Designation
V	Types	
24000	UGE 3126 AY4	Si-E 9000 / 4000-0.7

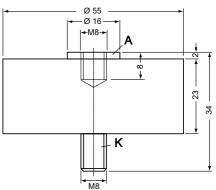
Symbol	Conditions		Maximum Rat	ings
F(RMS)	air self cooling,	$T_{amb} = 45^{\circ}C$	5	Α
F(AV)M	an con coomig,	- without cooling plate	0.8	Α
		- with colling plate	1.0	Α
	forced air cooling; v = 3 m/s;	T - 25°C		
	v = 3 111/5,	T _{amb} = 35°C - without cooling plate	1.4	Α
		- with colling plate	1.7	Α
	oil cooling;			
		$T_{amb} = 35^{\circ}C$		
		- without cooling plate	2.0	Α
		- with colling plate	2.0	A
\mathbf{P}_{RSM}	$T_{VJ} = 150^{\circ}C;$	$t_{p} = 10 \ \mu s$	1.6	kW
I _{FSM}	non repetitive, 50 c/s (for 60 c/s add 10%)			
10111	$T_{VJ} = 45^{\circ}C;$	$t_{p} = 10 \text{ ms}$	70	Α
	T _{VJ} = 150°C;	t _p = 10 ms	60	Α
T _{VJ}			-40+150	°C
T _{stg}			-40+150	°C
T _{VJM}			150	°C
Weight			127	g

Symbol	Conditions		Characteristic Val	ues
I _R	$V_{_{\mathrm{R}}} = V_{_{\mathrm{RRM}}}$	$T_{VJ} = 150^{\circ}C$	≤1	mA
V _F	I _F = 3 A	$T_{VJ} = 25^{\circ}C$	18	V
V _{T0}		$T_{VJ} = 150^{\circ}C$ $T_{VJ} = 150^{\circ}C$	12	V
r _T		$T_{VJ} = 150^{\circ}C$	1.8	$m\Omega$
а	f = 50Hz		5 x 9.81	m/s²
M _d			8	Nm
			Data according to IEC 607	7/7 2

Data according to IEC 60747-2

Features

- Hermetically sealed Epoxy
- Use in oil
- Avalanche characteristics


Applications

- X-Ray equipment
- Electrostatic dust precipitators
- Electronic beam welding
- Lasers
- Cable test equipment

Advantages

- Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits
- Series and parallel operation

Dimensions in mm (1 mm = 0.0394")

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS reserve the right to change limits, test conditions and dimensions.

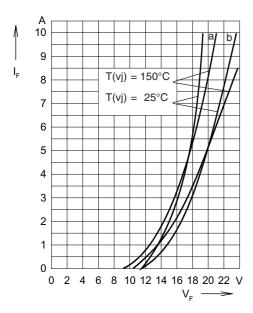


Fig. 1: Forward characteristics

Instantaneous forward current I_F as a function of instantaneous forward voltage drop $V_{_F}$ for junction temperature $T_{_{(vj)}} = 25^{\circ}C$ and $T_{_{(vj)}}$

- a = Mean value characteristic
- b = Limit value characteristic

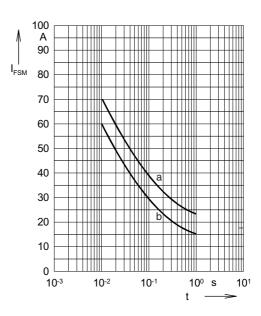


Fig. 2: Characteristics of maximum permissible current

The curves show the non repetitive peak one cycle surge forward current I_{ESM} as a function of time t and serve for rating protective devices.

- a = Initial state
- $T_{(vj)} = 45^{\circ}C$ $T_{(vj)} = 150^{\circ}C$ b = Initial state

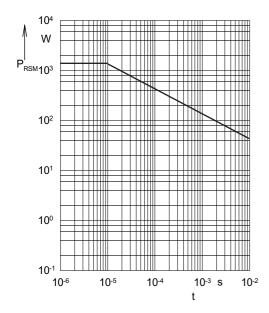


Fig. 3: Power loss Non repetitive peak reverse power loss P_{RSM} as a function of time t, $T_{(vj)} = 150^{\circ}C$

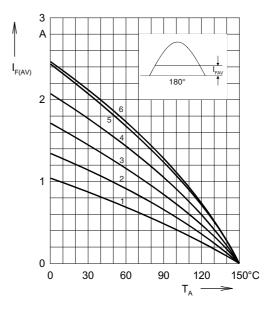


Fig. 4: Load diagramm

Mean forward current $I_{F(AV)}$ of one module for a sine half wave for various cooling modes as a function of the cooling medium temperature T_{amb} for a resistive load (horizontal mounting).

Cooling modes

1 =	air self cooling	without	cooling plate
2 =	air self cooling	with	cooling plate
3 =	forced air cooling	without	cooling plate
4 =	forced air cooling	with	cooling plate
5	= oil cooling	without	cooling plate
6 =	oil cooling	with	cooling plate _{200123a}

IXYS reserve the right to change limits, test conditions and dimensions.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

UGE3126AY4