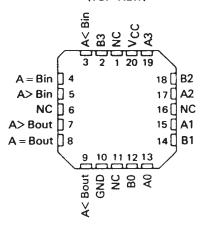

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988

TYPE	TYPICAL POWER DISSIPATION	TYPICAL DELAY (4-BIT WORDS)
'85	275 mW	23 ns
LS85	52 mW	24 ns
' S85	365 mW	11 ns

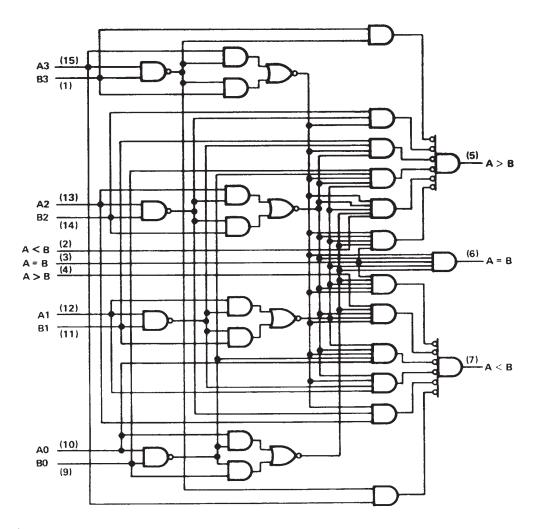

description

These four-bit magnitude comparators perform comparison of straight binary and straight BCD (8-4-2-1) codes. Three fully decoded decisions about two 4-bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A > B, A < B, and A = B outputs of a stage handling less-significant bits are connected to the corresponding A > B, A < B, and A = B inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have a high-level voltage applied to the A = B input. The cascading paths of the '85, 'LS85, and 'S85 are implemented with only a two-gate-level delay to reduce overall comparison times for long words. An alternate method of cascading which further reduces the comparison time is shown in the typical application data.

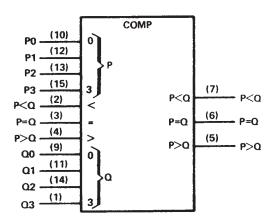
SN5485, SN54LS85, SN54S85.... J OR W PACKAGE SN7485 ... N PACKAGE SN74LS85, SN74S85... D OR N PACKAGE

SN54LS85, SN54S85 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

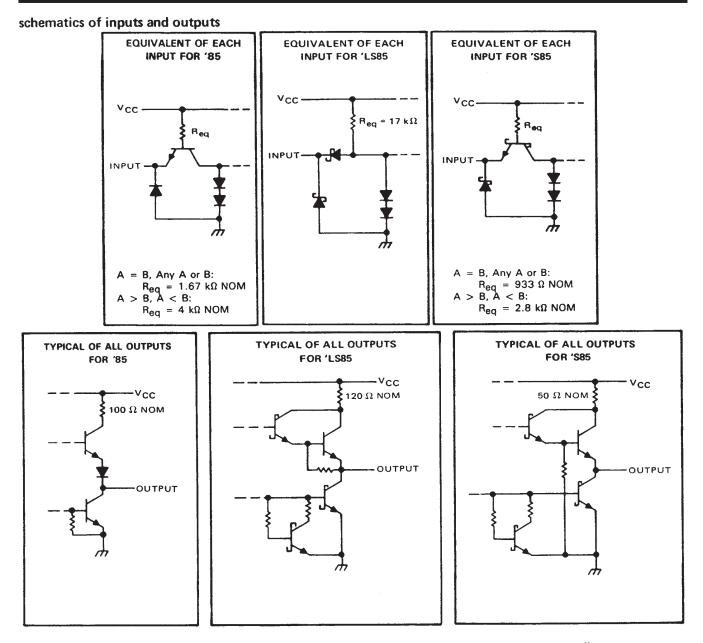

	COMP				CASCADING INPUTS			OUTPUTS	
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	$\mathbf{A} = \mathbf{B}$	A > 8	A < B	A = 8
A3 > B3	x	х	X	Х	х	Х	н	L	L
A3 < B3	x	×	x	х	×	x	L	н	L
A3 = B3	A2 > B2	×	×	x	×	x	н	L	L
A3 = B3	A2 < B2	x	x	х	x	x	L	н	L
A3 = B2	A2 = B2	A1 > B1	x	х	x	×	н	L	L
A3 = B3	A2 = B2	A1 < B1	×	x	x	×	L	н	L
A2 = B3	A2 = B2	A1 = B1	A0 > B0	×	×	×	н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < 80	x	x	x	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 = 80	н	L	L	н	L	L
A3 = B3	A2 = B2	A1 = B1	AO = BO	L	н	L	L	н	L
A3 = B3	A2 = B2	A1 = B1	AO = BO	x	×	н	L L	L	н
A3 = B3	A2 = B2	A1 = B1	AO = BO	н	н	L	L	L	L
A3 = 83	A2 = B2	A1 = B1	AO = BO	L	L	L	н	н	L

FUNCTION TABLE


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 **4-BIT MAGNITUDE COMPARATORS** SDLS123 – MARCH 1974 – REVISED MARCH 1988

logic diagrams (positive logic)



logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN54' SN54S'	SN54LS'	SN74' SN74S'	SN74LS'	UNIT
Supply voltage, V _{CC} (see Note 1)	7	7	7	7	V
Input voltage	5.5	7	5.5	7	V
Interemitter voltage (see Note 2)	5.5		5.5		V
Operating free-air temperature range	- 55	to 125	- 0	to 70	°C
Storage temperature range	- 65	to 150	- 65	to 150	°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter input transistor. This rating applies to each A input in conjunction with its respective B input of the '85 and 'S85.

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 **4-BIT MAGNITUDE COMPARATORS**

SDLS123 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

		SN5485	5		SN7485	5	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μA
Low-level output current, IOL			16			16	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TE	ST CONDIT	IONS [†]		MIN	түр‡	MAX	UNIT
VIH	High-level input voltage						2			V
VIL	Low-level input voltage		1						0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,		l ₁ = −1	2 mA			-1.5	V
Vou	High-level output voltage	······································	V _{CC} = MIN,		V _{IH} = 2	2 V,	2.4	3.4		v
Vон	nigh-level ou put voltage		V _{IL} = 0.8 V,		i _{OH} = -400 μA		2.4	5.4		ľ
VOL	Low-level output voltage		V _{CC} = MIN,		VIH = 2	2V,		0.2	0,4	v
VOL	Low-level output voltage		V _{IL} = 0.8 V,		IOL = 1	6 mA		0.2	0.4	ľ.
4	Input current at maximum in	put voltage	V _{CC} = MAX,		V _I = 5.	5 V			1	mA
Чн	High-level input current	A < B, A > B inputs	V _{CC} = MAX,		Vi = 2.4	4.V			40	μА
'IH	righ-level input current	all other inputs			vi - 2	+ V			120	<u> </u>
1	Low-level input current	A < B, A > B inputs	Vcc = MAX,		VI = 0.4	1.1/			-1.6	mA
μL	Cowlevel input current	all other inputs			vi - 0	+ V			-4.8	
100	Short-circuit output current	5	V MAAY			SN5485	-20		-55	
los	Shore-chean output currents		V _{CC} = MAX,	v0-0		SN7485	-18		-55	mA
1CC	Supply current		V _{CC} = MAX,	See Note 4				55	88	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

§Not more than one output should be shorted at a time.

NOTE 4: I_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER [¶]	FROM INPUT	TO OUTPUT	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN TYP	MAX	UNIT
			1		7		
		A < B, $A > B$	2]	12]
^t PLH	Any A or B data input		3		17	26	ns
		A = B	4		23	35	
			1]	11		
		A < B, $A > B$	2	0 155	15		
^t PHL	Any A or B data input		3	C _L = 15 pF,	20	30	ns
		A = B	4	$R_{L} = 400 \ \Omega,$ See Note 5	20	30]
^t PLH	A < B or A = B	A > B	1	Jee Note J	7	11	ns
^t PHL	A < B or A = B	A > B	1		11	17	ns
^t PLH	A = 8	A = B	2		13	20	ns
^t PHL	A = B	A = B	2		11	17	ns
tPLH	A > B or A = B	A < B	1		7	11	ns
^t PHL	A > B or A = B	A < B	1	1	11	17	пѕ

\$ tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 5: Load circuits and voltage waveforms are shown in Section 1.

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 **4-BIT MAGNITUDE COMPARATORS**

SDLS123 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

	S	N54LS	35	S	N74LS	35	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μA
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					S	N54LS8	15	S	N74LS8	5	
	PARAM	NETER	TEST CON	DITIONST	MIN	TYP [‡]	MAX	MIN	түр‡	MAX	UNIT
VIH	High-level input	voltage			2			2			V
VIL	Low-level input						0.7			0.7	V
VIK	Input clamp volt	tage	V _{CC} = MIN,	lj = -18 mA			-1.5			-1.5	V
VOH	High-level outpu	it voltage		V _{1H} = 2 V, I _{OH} = -400 μA	2.5	3.4		2.7	3.4		v
			V _{CC} = MIN,	IOL = 4 mA		0.25	0.4		0.25	0.4	v
VOL	Low-level outpu	t voltage	V _{IH} = 2 V, V _{IL} = V _{IL} max	10L = 8 mA					0.35	0.5	Ľ
	Input current	A < B, A > B inputs					0.1			0.1	mA
4	at maximum input voltage	all other inputs	V _{CC} ≖ MAX,	V ₁ = 7 V			0.3			0.3	
	High-level	A < B, A > B inputs		N - 2 7 M			20			20	μΑ
ЧΗ	input current	all other inputs	V _{CC} = MAX,	V _I = 2.7 V			60			60	
	Low-level	A < B, A > B inputs		V - 0 4 V			-0.4			-0.4	mA
ЧL	input current	all other inputs	V _{CC} = MAX,	V ₁ = 0.4 V			-1.2			-1.2	
los	Short-circuit ou	tput current §	V _{CC} = MAX		-20		-100	-20		-100	mA
1cc	Supply current		V _{CC} = MAX,	See Note 4		10.4	20		10.4	20	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. §Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 4: I_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

DADAMETED!	FROM	то	NUMBER OF	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
PARAMETER¶	INPUT	OUTPUT	GATE LEVELS	TEST CONDITIONS				
			1			14		1
		A < B, A > B	2			19		ns
^t PLH	Any A or B data input		3			24	36	
		A = B	4			27	45	
			1			11]
		A < B, A > B	2			15		ns
^t PHL	Any A or B data input		3	$C_L = 15 \text{pF},$		20	30	
		A = B	4	$R_L = 2 k \Omega,$		23	45	
tPLH	A < B or A = B	A > B	1	See Note 5		14	22	ns
^t PHL	A < B or A = B	A > B	1	1		11	17	ns
TPLH	A = B	A = B	2			13	20	ns
^t PHL	A = B	A = B	2			13	26	ns
tPLH	A > B or A = B	A < B	1	1		14	22	ns
^t PHL	A > B or A = B	A < B	1	1		11	17	ns

 \P_{tPLH} = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 5: Load circuits and voltage waveforms are shown in Section 1.

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS

SDLS123 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

		SN54S8	5		SN74S8	5	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNII
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-1	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETE	R	TES	TCONDITIONS	t .	MIN	түр‡	MAX	UNIT
VIH	High-level input voltage					2			V
VIL	Low-level input voltage							0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,	l1 = -18 mA				-1.2	V
			V _{CC} = MIN,	V _{IH} = 2 V,	SN54S85	2.5	3.4		V
VOH	High-level output voltage		V _{IL} = 0.8 V,	¹ OH = -1 mA	SN74S85	2.7	3.4		V
			V _{CC} = MIN,	VIH = 2 V,				0.5	V
VOL	Low-level output voltage		$V_{1L} = 0.8 V,$	1 _{OL} = 20 mA				0.5	
1	Input current at maximum inp	ut voltage	VCC = MAX,	V ₁ = 5.5 V				1	mA
		A < B, A > B inputs	V MAX	V 27.V				50	μА
ΗH	High-level input current	all other inputs	$V_{\rm CC} = MAX,$	vi = 2.7 v				150	<u><u> </u></u>
		A < B, A > B inputs	V MAX					-2	mA
41	Low-level input current	all other inputs	V _{CC} = MAX,	VI - 0.5 V				6	
los	Short-circuit output current §		V _{CC} = MAX			-40		-100	mA
			V _{CC} = MAX,	See Note 4			73	115	
ICC	Supply current		V _{CC} = MAX, See Note 4	T _A = 125°C,	SN54S85W			110	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

\$Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 4: I_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER¶	FROM INPUT	TO OUTPUT	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN TYP	MAX	UNIT
			1		5		
		A < B, A > B	2		7.5		ns
^t PLH	Any A or B data input		3		10.5	16] "5
		A = B	4		12	18	
			1		5.5		
		A < B, A > B	2	0 15 5	7		ns
^t PHL	Any A or B data input	-	3	С _L = 15 рF,	11	16.5	115
		A = B	4	RL = 280 Ω, See Note 5	11	16.5	
tPLH	A < B or A = B	A > B	1	See Note 5	5	7.5	ns
^t PHL	A < B or A = B	A > B	1		5.5	8.5	ns
^t PLH	A = B	A = B	2		7	10.5	ns
^t PHL	A = 8	A = 8	2		5	7.5	ns
tPLH	A > B or A = B	A < 8	1	1	5	7.5	ns
tPHL	A > B or A = B	A < B	1		5.5	8.5	ns

¶tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 5: Load circuits and voltage waveforms are shown in Section 1.

TYPICAL APPLICATION DATA

INPUTS

A23

B22

A22

B21

A21

(MSB) B23

B3

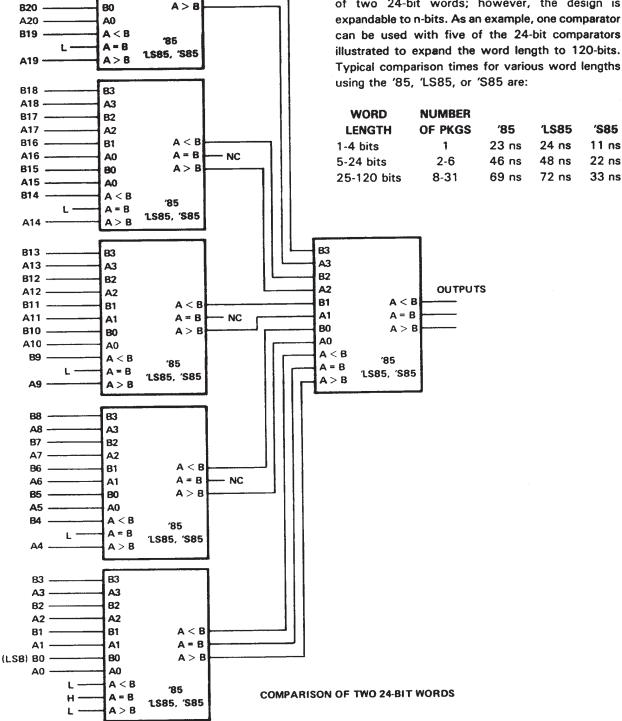
A3

82

A2

81

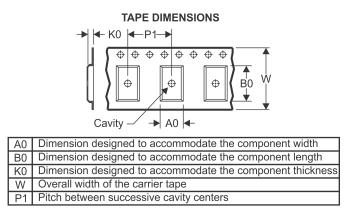
A1


A < 8

A = 8

NC

This application demonstrates how these magnitude comparators can be cascaded to compare longer words. The example illustrated shows the comparison of two 24-bit words; however, the design is expandable to n-bits. As an example, one comparator can be used with five of the 24-bit comparators illustrated to expand the word length to 120-bits. Typical comparison times for various word lengths using the '85, 'LS85, or 'S85 are:


PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*A	l dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	SN74LS85DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
	SN74LS85NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

30-Dec-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS85DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS85NSR	SO	NS	16	2000	853.0	449.0	35.0

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated