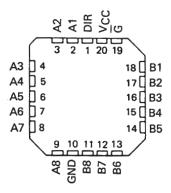
- SN74LS64X-1 Versions Rated at I_{OL} of 48 mA
- Bi-directional Bus Transceivers in High-Density 20-Pin Packages
- Hysteresis at Bus Inputs Improves Noise Margins
- Choice of True or Inverting Logic
- Choice of 3-State or Open-Collector Outputs

DEVICE	OUTPUT	LOGIC
'LS640	3-State	Inverting
'LS641	Open-Collector	True
'LS642	Open-Collector	Inverting
'LS644	Open-Collector	True and inverting
'LS645	3-State	True

description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The devices transmit data from the A bus to the B bus or from the B bus to the A bus depending upon the level at the direction control (DIR) input. The enable input $\overline{(G)}$ can be used to disable the device so the buses are effectively isolated.


The -1 versions of the SN74LS640 thru SN74LS642, SN74LS644, and SN74LS645 are identical to the standard versions except that the recommended maximum I_{QL} is increased to 48 milliamperes. There are no -1 versions of the SN54LS640 thru SN54LS642, SN54LS644, and SN54LS645.

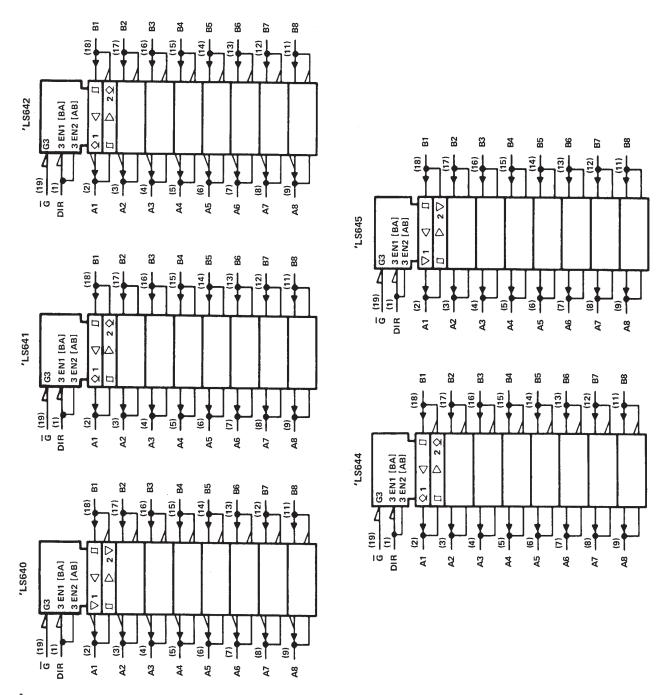
The SN54LS640 thru SN54LS642, SN54LS644, and SN54LS645 are characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to $125\,^{\circ}\text{C}$. The SN74LS640 thru SN74LS642, SN74LS644, and SN74LS645 are characterized for operation from $0\,^{\circ}\text{C}$ to $70\,^{\circ}\text{C}$.

SN54LS' . . . J PACKAGE SN74LS' . . . DW OR N PACKAGE (TOP VIEW)

DIR[1	20	Dvcc
A1[2	19	□G
A2[3	18	□ B1
A3[4	17	□ B2
A4[5	16	B3
A5[6	15	□ B4
A6[7	14	□ B5
A7[8	13	□ в6
A8[9	12	B7
GND	10	11	□ B8

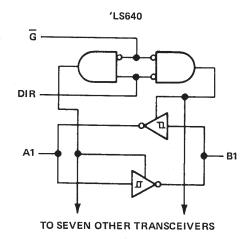
SN54LS' . . . FK PACKAGE (TOP VIEW)

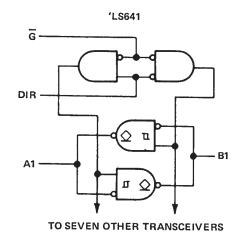
FUNCTION TABLE

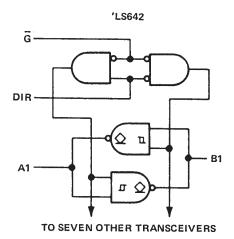

CO	NTROL	OPERATION									
INPUTS		'LS640	'LS641	0.0044							
G	DIR	'LS642	'LS645	'LS644							
L	L	B data to A bus	B data to A bus	B data to A bus							
L	Н	A data to B bus	A data to B bus	Ā data to B bus							
Н	X	Isolation	Isolation	Isolation							

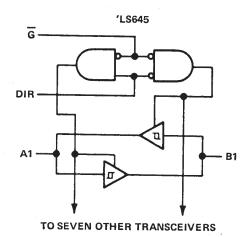
H = high level, L= low level, X = irrelevant

SDLS189 - APRIL 1979 - REVISED MARCH 1988


logic symbols†




 $^{^\}dagger$ These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, and N packages.


logic diagrams (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	٧
Input voltage: All inputs	٧
I/O ports	
Operating free-air temperature range: SN54LS640, SN54LS64555 °C to 125 °C	ъС
SN74LS640, SN74LS645 0 °C to 70 °C	,C
Storage temperature range65°C to 150°C	oC.

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	PARAMETER		SN54LS640 SN54LS645					UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-Ivel input voltage	2			2			V
VIL	Low-level input voltage			0.5			0.6	V
ЮН	High-level output current			12			– 15	mA
loL	Low-level output current			12			24	
-01							48†	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

[†]The 48-mA limit applies for the SN74LS640-1 and SN74LS645-1 only.

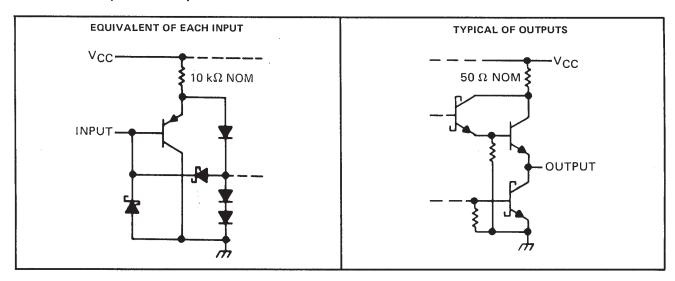
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

P	PARAMETER	ТЕ		N54LS6 N54LS6		S	UNIT				
					MIN	TYP§	MAX	MIN	TYP§	MAX	
VIK		V _{CC} = MIN,	$I_1 = -18 \text{ mA}$				- 1.5			- 1.5	V
Hyste (V _{T+} –		V _{CC} = MIN,		A or B input	0.1	0.4		0.2	0.4		٧
Voн		V _{CC} = MIN,	V _{IH} = 2 V,	I _{OH} = -3 mA	2.4	3.4		2.4	3.4		
VOH		VIL = MAX		IOH = MAX	2			2			1
		V _{CC} = MIN,	V = 2 V	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	
VOL		V _{IL} = MAX	VIH 2 V,	IOL = 24 mA					0.35	0.5	1 v
				IOL = 48 mA#					0.4	0.5	1
lozh		V _{CC} = MAX,		V _O = 2.7 V			20			20	μΑ
lozL		V _{CC} = MAX,	$\overline{\mathbb{G}}$ at 2 V,	V _O = 0.4 V			- 0.4			- 0.4	mA
l _l	A or B	V _{CC} = MAX		V ₁ = 5.5 V			0.1			0.1	
'1	DIR or G	VCC WAX		V ₁ = 7 V			0.1			0.1	mA
IH		V _{CC} = MAX,	V _{IH} = 2.7 V				20			20	μΑ
L		V _{CC} = MAX,	V _{IL} = 0.4 V				- 0.4			- 0.4	mA
los¶		V _{CC} = MAX			- 40		- 225	- 40		- 225	mA
	Outputs high					48	70		48	70	
Icc	Outputs low	$V_{CC} = MAX$,	Outputs open			62	90		62	90	mA
	Outputs at Hi-Z					64	95		64	95	1

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

^{*}The 48-mA condition applies for the SN74LS640-1 and SN74LS645-1 only.

 $^{^{\}S}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C.


Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$

	PARAMETER	FROM	TO	TEST	′LS64	10, 'LS6	640-1	'LS64	5, 'LS6	45-1	UNIT	
	PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
10	Propagation delay time,	Α	В			6	10		8	15		
tPLH	low-to-high-level output	В	Α	1		6	10		8	15	ns	
tou	Propagation delay time,	Α	В	$C_1 = 45 pF$		8	15		11	15		
tPHL	high-to-low-level output	В	А	-		8	15		11	15	ns	
tp7i	Output enable time to	G	Α	$R_L = 667 \Omega$, See Note 2		31	40		31	40	ns	
	low level	G	В	See Note 2		31	40		31	40		
+	Output enable time to	G	А			23	40		26	40		
tPZH	high level	G	В			23	40		26	40	ns	
+	Output disable time	Ğ	Α	C F - F		15	25		15	25		
^t PLZ	from low level	G	В	$C_L = 5 pF$,	· ·	15	25		15	25	ns	
tm	Output disable time	G	Α	$R_L = 667 \Omega$,		15	25		15	25		
tPHZ	from high level	G	В	See Note 2		15	25		15	25	ns	

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

schematics of inputs and outputs

SDLS189 - APRIL 1979 - REVISED MARCH 1988

TYPICAL CHARACTERISTICS

\$N54LS' INVERTING OUTPUT VOLTAGE

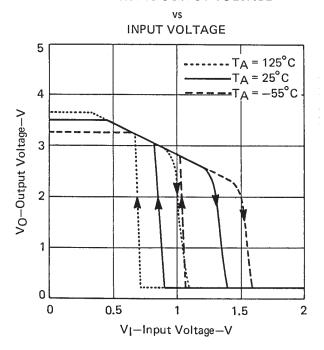


FIGURE 1

SN54LS' NONINVERTING OUTPUT VOLTAGE

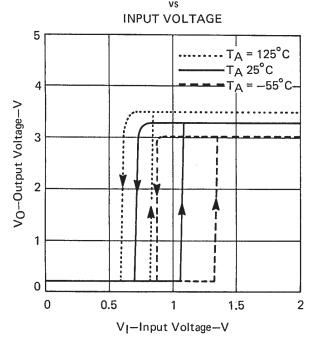


FIGURE 3

SN74LS' INVERTING OUTPUT VOLTAGE

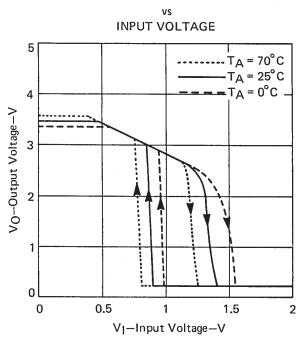


FIGURE 2

SN74LS' NONINVERTING OUTPUT VOLTAGE

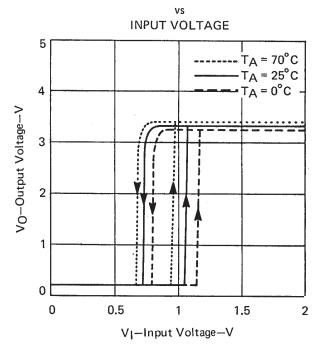


FIGURE 4

SN54LS641, SN54LS642, SN54LS644 SN74LS641, SN74LS642, SN74LS644 OCTAL BUS TRANSCEIVRS WITH OPEN-COLLECTOR OUTPUTS

SDLS189 - APRIL 1979 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
nput voltage: All inputs and I/O ports
Operating free-air temperature range: SN54LS641, SN54LS642, SN54LS644
SN74LS641, SN74LS642, SN74LS644
Storage temperature range

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

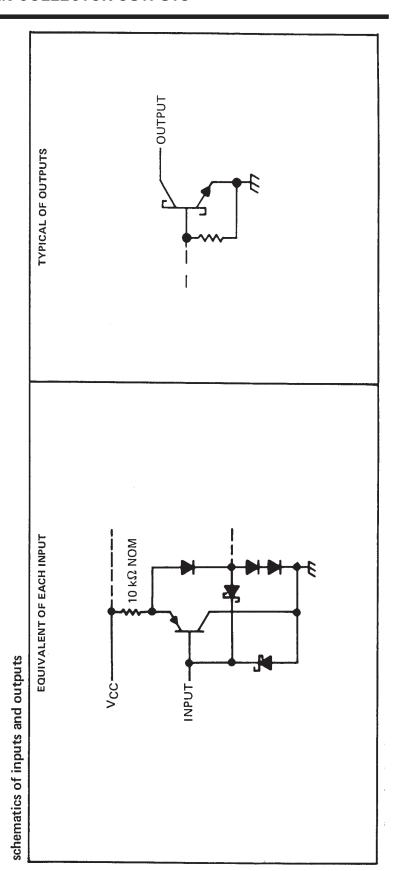
	PARAMETER	1	SN54LS641 SN54LS642 SN54LS644					UNIT
		5						
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High-level input voltage	2	*****		2			V
VIL	Low-level input voltage			0.5			0.6	V
Vон	High-level output voltage			5.5			5.5	V
loL	Low-level output current			12			24	
-01	Low love output outlett						48 §	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

The 48 mA limit applies for the SN74LS641-1, SN74LS642-1, and SN74LS644-1 only.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST COM	s	N54LS6 N54LS6 N54LS6	642	S S	UNIT			
				MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIK		V _{CC} = MIN,	I _I = - 18 mA			- 1.5			- 1.5	V
Hysteres (V _{T+} – V-		V _{CC} = MIN,	A or B input	0.1	0.4		0.2	0.4		٧
ЮН		V _{CC} = MIN, V _{IL} = MAX,	V _{IH} = 2 V, V _{OH} = 5.5 V			0.1			0.1	mA
		V _{CC} = MIN,	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	
VOL		V _{1H} = 2 V,	IOL = 24 mA					0.35	0.5	V
		VIL = MAX	IOL = 48 mA §					0.4	0.5	
11	A or B	V _{CC} = MAX	V _I = 5.5 V			0.1			0.1	_
'1	DIR or G	ACC - IMAY	V _I = 7 V			0.1			0.1	mA
lн		V _{CC} = MAX,	V _I = 2.7 V			20			20	μА
ηL		V _{CC} = MAX,	V ₁ = 0.4 V			- 0.4			- 0.4	mΑ
	Outputs high				48	70		48	70	
Icc	Outputs low	V _{CC} = MAX,	Outputs open		62	90		62	90	mA
	Outputs at Hi-Z				64	95		64	95	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.



[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$.

[§]The 48 mA condition applies for the SN74LS641-1, SN74LS642-1, and SN74LS644-1 only.

ŀ			e E		ž.		se S		sc C
644-1	S644-1 MAX		25	25	25	4	40	09	22
44, 'LS	TYP	17	19	14	16	56	25	43	37
J.TS6	LS641, 'LS641-1 'LS642, 'LS642-1 'LS644, 'LS6 MIN TYP MAX MIN TYP MAX MIN TYP								
642-1	MAX	25	25	25	25	40	40	9	09
42, 'LSI		19	19	14	14	26	28	43	39
9S7,	Z								
541-1	MAX	25	25	25	25	40	40	20	20
41, 'LS	TYP	17	17	16	16	23	25	34	37
TECT CONDITIONS				, de 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0 1 99 1	" '25' '20' '27'	200	Z aloni asc	
10	(OUTPUT)	В	۷.	8	٧	٧	В	∢	В
FROM	(INPUT)	٧	В	A	В	G, DIR	Ğ, DIR	G, DIR	G, DIR
PARAMETER		Propagation delay time,	PLH low-to-high-level output	Propagation delay time,	PHL high-to-low-level output	Output disable time	FLH from low level	Output enable time	the from high level

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

switching characteristics at VCC = 5 V, TA = 25 $^{\circ}$ C

9-Mar-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
84161012A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	84161012A SNJ54LS 640FK	Sample
8416101RA	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8416101RA SNJ54LS640J	Sample
SN54LS640J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS640J	Sample
SN54LS645J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS645J	Sample
SN74LS640-1DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS640-1	Sample
SN74LS640-1N	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS640-1N	Sample
SN74LS640-1NSR	ACTIVE	so	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS640-1	Sample
SN74LS640DBR	ACTIVE	SSOP	DB	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM		LS640	Sample
SN74LS640DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS640	Sample
SN74LS640DWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS640	Sample
SN74LS640N	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS640N	Sample
SN74LS640NSR	ACTIVE	so	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS640	Sample
SN74LS641-1DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS641-1	Sample
SN74LS641-1DWE4	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS641-1	Sample
SN74LS641-1DWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS641-1	Sample
SN74LS641-1N	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS641-1N	Sample
SN74LS641DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS641	Sample
SN74LS641N	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS641N	Samples

www.ti.com 9-Mar-2021

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
SN74LS641NSR	ACTIVE	SO	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS641	Sample
SN74LS642-1DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS642-1	Sample
SN74LS642-1N	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS642-1N	Sample
SN74LS642DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS642	Sample
SN74LS642N	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS642N	Sample
SN74LS642NSR	ACTIVE	SO	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS642	Sampl
SN74LS645-1DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS645-1	Sampl
SN74LS645-1DWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS645-1	Sampl
SN74LS645-1N	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS645-1N	Sampl
SN74LS645-1NSR	ACTIVE	SO	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS645-1	Sampl
SN74LS645DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS645	Sampl
SN74LS645N	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS645N	Sampl
SN74LS645NE4	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS645N	Sampl
SN74LS645NSR	ACTIVE	SO	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS645	Sampl
SNJ54LS640FK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	84161012A SNJ54LS 640FK	Sampl
SNJ54LS640J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8416101RA SNJ54LS640J	Sampl
SNJ54LS645J	ACTIVE	CDIP	J	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS645J	Sampl

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

i.com 9-Mar-2021

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LS640, SN54LS645, SN74LS640, SN74LS645:

Catalog: SN74LS640, SN74LS645

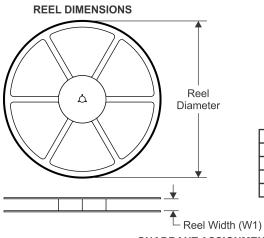
Military: SN54LS640, SN54LS645

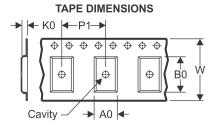
NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

www.ti.com

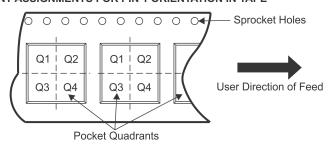
PACKAGE OPTION ADDENDUM


9-Mar-2021

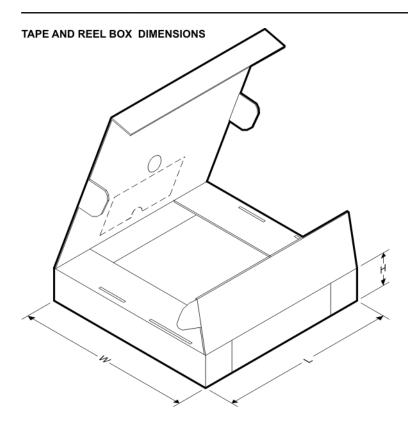

• Military - QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 30-Dec-2020

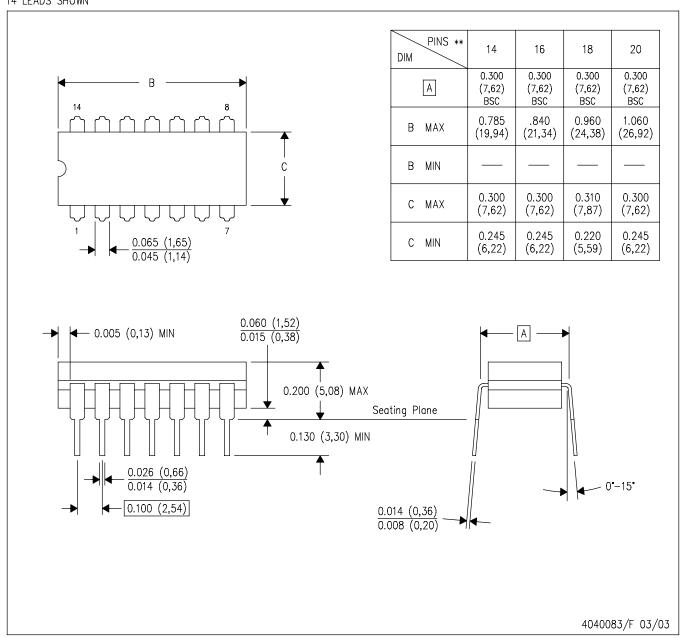

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS640-1NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74LS640DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74LS640DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74LS640NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74LS641-1DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74LS641NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74LS642NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74LS645-1DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74LS645-1NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74LS645NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1


www.ti.com 30-Dec-2020

*All dimensions are nominal

Device Package Type		Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74LS640-1NSR	SO	NS	20	2000	367.0	367.0	45.0	
SN74LS640DBR	SSOP	DB	20	2000	853.0	449.0	35.0	
SN74LS640DWR	SOIC	DW	20	2000	367.0	367.0	45.0	
SN74LS640NSR	SO	NS	20	2000	367.0	367.0	45.0	
SN74LS641-1DWR	SOIC	DW	20	2000	367.0	367.0	45.0	
SN74LS641NSR	SO	NS	20	2000	367.0	367.0	45.0	
SN74LS642NSR	SO	NS	20	2000	367.0	367.0	45.0	
SN74LS645-1DWR	SOIC	DW	20	2000	367.0	367.0	45.0	
SN74LS645-1NSR	SO	NS	20	2000	367.0	367.0	45.0	
SN74LS645NSR	SO	NS	20	2000	367.0	367.0	45.0	

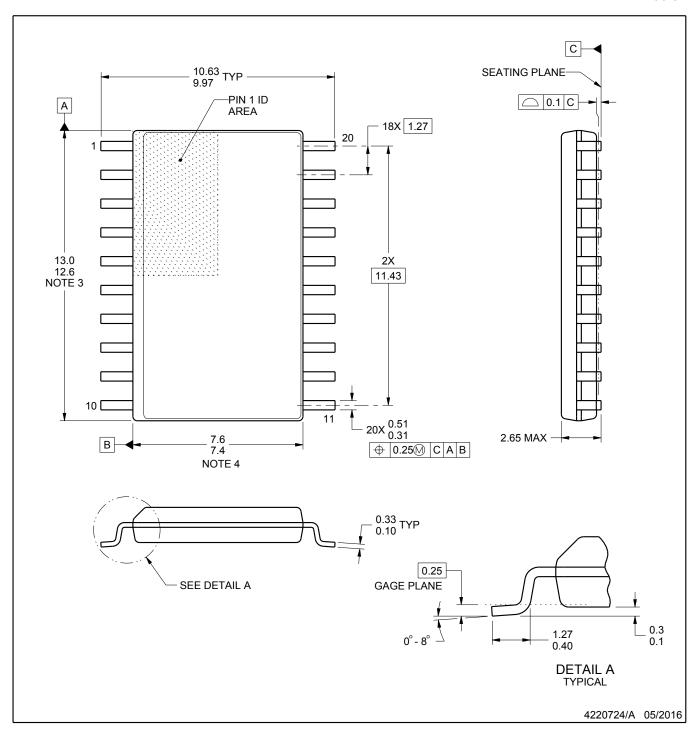
14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

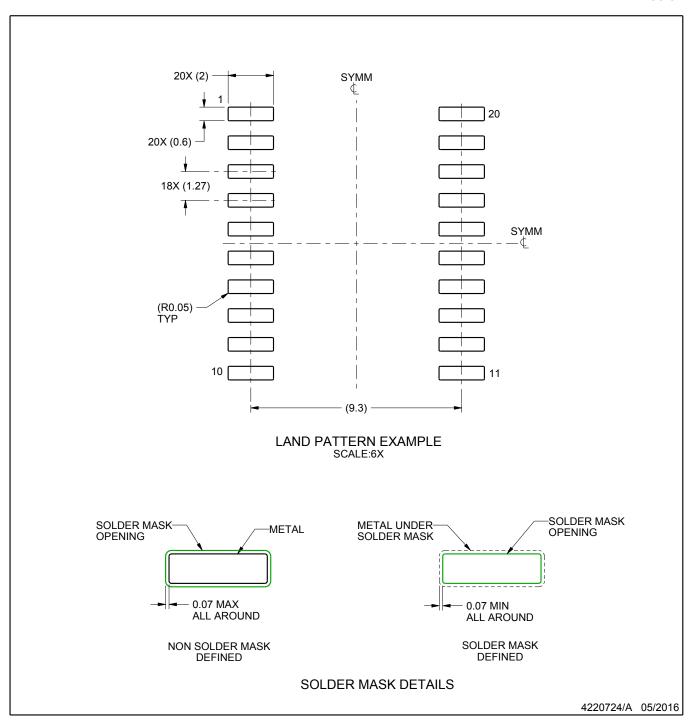
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

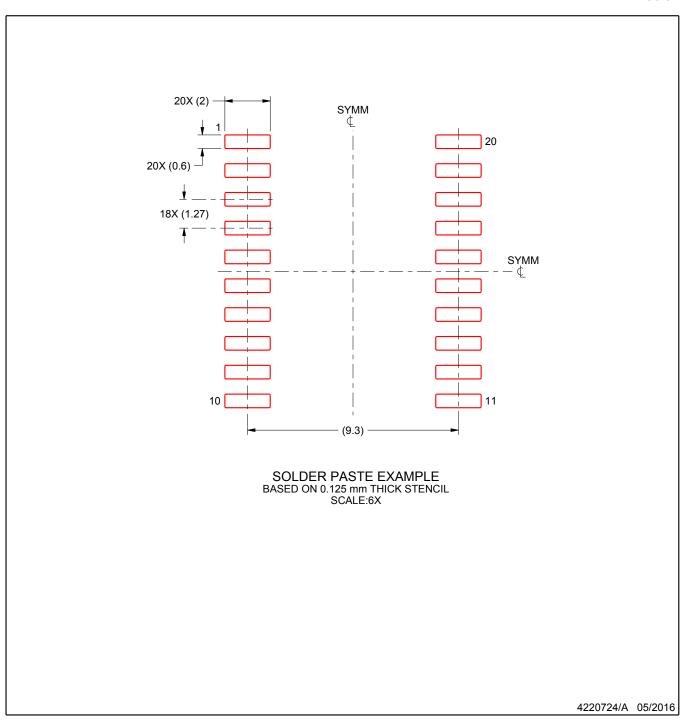
SOIC


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

SOIC

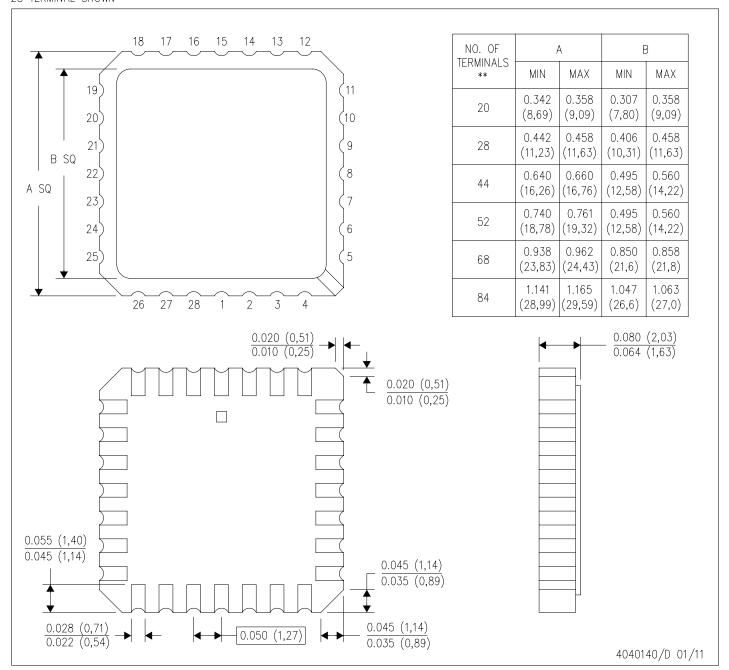

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

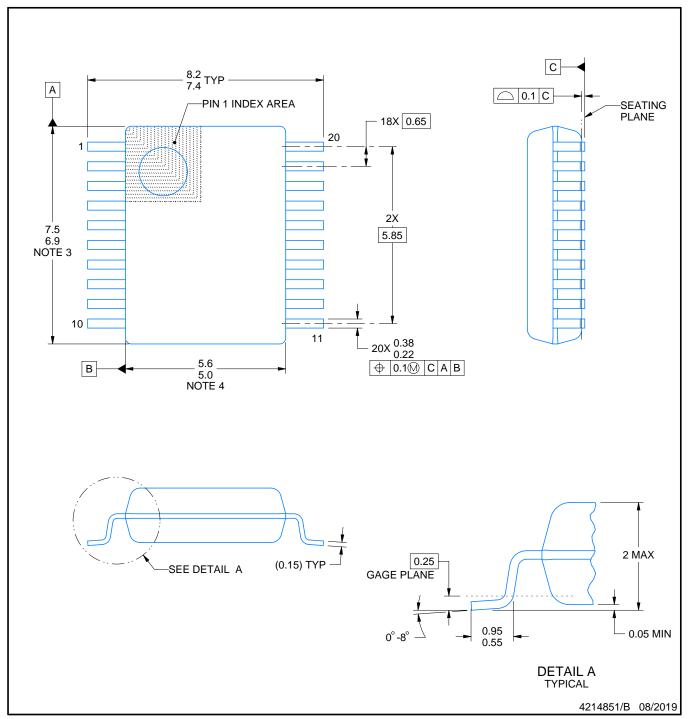
NOTES: (continued)


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

FK (S-CQCC-N**)

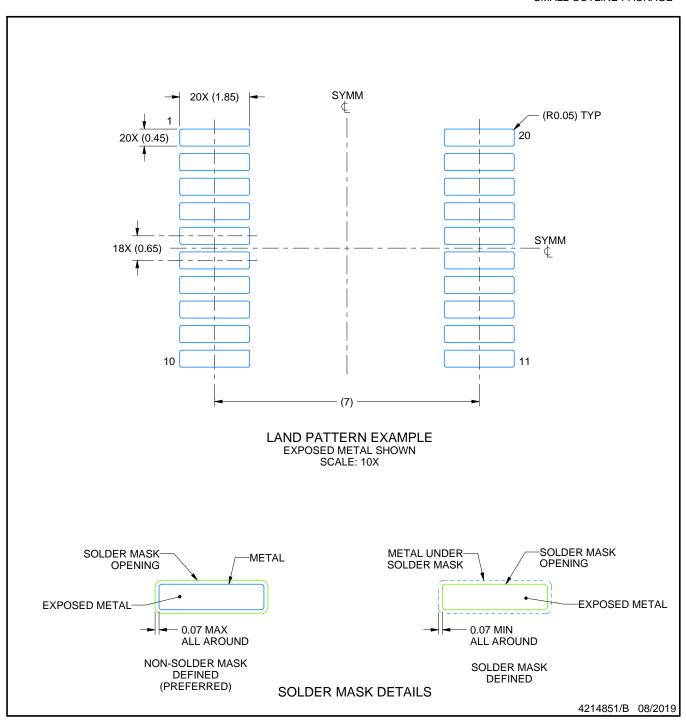
LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

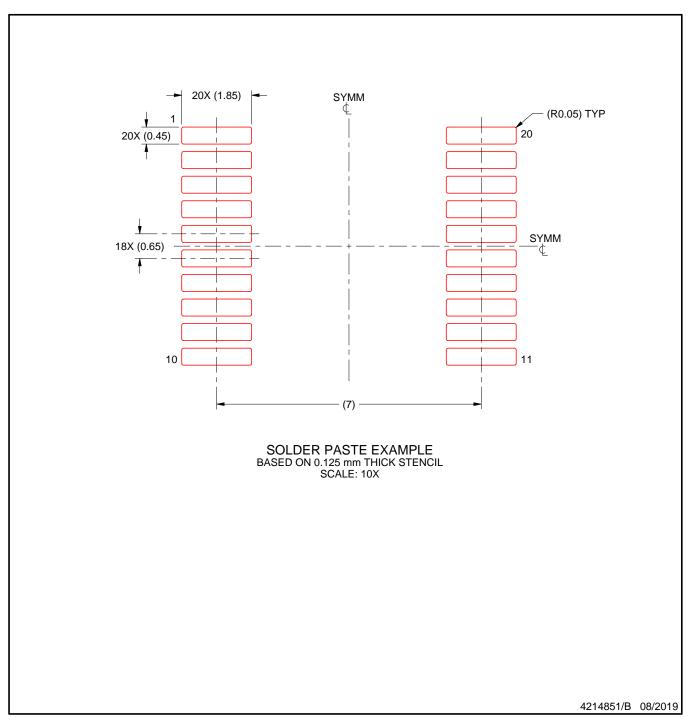
SMALL OUTLINE PACKAGE


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated