

Applications

- Smart Meters
- In-home appliances
- Smart thermostats

Features

- Integrated PA with up to 24 dBm output power
- Integrated LNA with programmable bypass
- Integrated antenna switching with Tx and Rx diversity function
- Low FEM noise figure of 2 dB typical
- Single ended 50 Ω Tx/Rx RF interface
- Fast switch ON/OFF time <1 µsec
- 2.0 V 3.6 V supply operation
- Sleep mode current 0.05 µA typical
- 3 x 4 x 0.9 mm 24 pin QFN, NiPdAu plated
- Pb-free, RoHS compliant and Halogen free

Ordering Information

Part No.	Package	Remark
SE2431L-R	24 pin QFN	Tape & Reel
SE2431L-EK1	N/A	Evaluation kit

Functional Block Diagram

Product Description

The SE2431L is a high performance, fully integrated RF Front End Module designed for ZigBee/Smart Energy and 802.15.4 applications.

The SE2431L is designed for ease of use and maximum flexibility, with fully matched 50 Ω input and output, integrated inter-stage matching and harmonic filter, and digital controls compatible with 1.6 – 3.6 V CMOS levels.

The RF blocks operate over a wide supply voltage range from 2.0 to 3.6V allowing the SE2431L to be used in battery powered applications over a wide spectrum of the battery discharge curve.

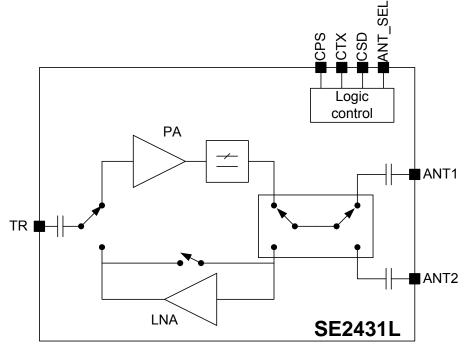
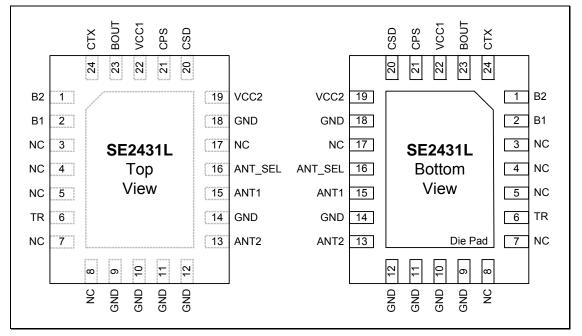



Figure 1: Functional Block Diagram

Pin Out Diagram

Figure 2: SE2431L Pinout

Pin Out Description

Pin No.	Name	Description			
1	B2	Connect through bias resistor to Pin 23			
2	B1	Connect through bias resistor to Pin 23			
3	NC	Not connected internally to the device			
4	NC	Not connected internally to the device			
5	NC	Not connected internally to the device			
6	T/R	Transmit/Receive port from/to transceiver, single ended 50 Ω			
7	NC	Not connected internally to the device			
8	NC	Not connected internally to the device			
9	GND	Connect to PCB ground			
10	GND	Connect to PCB ground			
11	GND	Connect to PCB ground			
12	GND	Connect to PCB ground			
13	ANT2	Connect to 50 Ω antenna			
14	GND	Connect to PCB ground			
15	ANT1	Connect to 50 Ω antenna			
16	ANT_SEL	Connect to GPIO signal to control antenna switch (see "Logic controls" table)			
17	NC	Not connected internally to the device			

SE2431L 2.4 GHz ZigBee/802.15.4 Front End Module Preliminary Datasheet

Pin No.	Name	Description
18	GND	Connect to PCB ground
19	VCC2	Connect to positive supply
20	CSD	Connect to GPIO signal to control SE2431L modes (see "Logic controls" table)
21	CPS	Connect to GPIO signal to control SE2431L modes (see "Logic controls" table)
22	VCC1	Connect to positive supply
23	BOUT	Connect to Pin 1 and Pin 2 through bias resistors
24	СТХ	Connect to GPIO signal to control SE2431L modes (see "Logic controls" table)
Paddle	GND	Exposed die paddle; electrical and thermal ground; Connect to PCB ground

Absolute Maximum Ratings

These are stress ratings only. Exposure to stresses beyond these maximum ratings may cause permanent damage to, or affect the reliability of the device. Avoid operating the device outside the recommended operating conditions defined below. This device is ESD sensitive. Handling and assembly of this device should be at ESD protected workstations.

Symbol	Definition	Min.	Max.	Unit
VCC1	Supply Voltage	-0.3	3.6	V
VCC2	Supply Voltage	-0.3	3.8	V
	Control pin voltages	-0.3	3.6	V
T _{OP}	Operating temperature	-40	85	°C
T _{STORAGE}	Storage temperature	-40	125	°C
	ESD Voltage ALL pins (HBM)	-	1000	V
Pout_Tx_max	Tx output power at ANT1 or ANT2 port into 50 Ω load	-	24	dBm
Pin_Tx_max	Pin_Tx_max Tx input power at TR port		+6	dBm
Pin_Rx_max	Rx input power at ANT1 or ANT2 ports	-	+5	dBm

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
TA	Ambient temperature	-40	25	85	°C
VCC1	Supply voltage on VCC pins	2.0	3.0	3.6	V
VCC2	Supply voltage on VCC pins	2.0	3.0	3.6	V

DC Electrical Characteristics

Conditions: VCC = 3.0 V, T_A = 25 °C, as measured on SiGe Semiconductor's SE2431L-EK1 evaluation board (deembedded to device), unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Ісс-тх20	Total Supply Current	Tx mode P _{OUT} = 20 dBm CPS = CSD = CTX = 3.0 V	-	115	-	mA
ICC-Tx17	Total Supply Current	Tx mode P _{OUT} = 17 dBm CPS = CSD = CTX = 3.0 V	-	90	-	mA
ICC-Tx10	Total Supply Current	Tx mode P_{OUT} = 10 dBm CPS = CSD = CTX = 3.0 V	-	50	-	mA
Ісq-тх	Quiescent Current	No RF CPS = CSD = CTX = 3.0 V	-	30	-	mA
ICC-Rx	Total Supply Current	Rx mode CPS = CSD = 3.0 V, CTX = 0 V	-	5	7	mA
ICC- RxBypass	Total Supply Current	Rx bypass mode CSD = 3.0 V, CPS = CTX = 0 V	-	-	300	uA
ICC_OFF	Sleep Supply Current	No RF, CTX=CPS=CSD = 0 V	-	0.05	1	μA

Logic Characteristics

Conditions: VCC = 3.0 V, T_A = 25 °C, as measured on SiGe Semiconductor's SE2431L-EK1 evaluation board (deembedded to device), unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{IH}	Logic input high		VCC- 0.3	-	3.6	V
V _{IL}	Logic input low		0	-	0.3	V
I _{IH}	Logic input high		-	-	1	μA
I _{IL}	Logic input low		-	-	1	μA

Logic Controls

Conditions: VCC = 3.0 V, TA = 25 °C

Mode	Mode description	Note	CPS	CSD	СТХ
0	All off (sleep mode)	1, 3	0	0	0
1	Rx bypass mode	1, 2	0	1	0
2	Rx LNA mode	1, 2	1	1	0
3	Tx mode	1, 2	Х	1	1

Note: (1) Logic '0' level compliant to V_{IL} as specified in the "Logic Characteristics" table

(2) Logic '1' level compliant to $V_{\rm IH}$ as specified in the "Logic Characteristics" table

(3) All controls must be at logic '0' in order to achieve the specified sleep current

Conditions: VCC = 3.0 V, T_A = $25 \circ \text{C}$

Mode description	Note	CPS	CSD	СТХ	ANT_SEL
ANT1 port enabled	1	х	х	х	0
ANT2 port enabled	2	Х	Х	Х	1

Note: (1) Logic '0' level compliant to V_{IL} as specified in the "Logic Characteristics" table

(2) Logic '1' level compliant to V_{IH} as specified in the "Logic Characteristics" table

AC Electrical Characteristics, Transmit

Conditions:	VCC = 3.0 V, T _A = 25 °C, as measured on SiGe Semiconductor's SE2431L-EK1 evaluation board (de-
	embedded to device), all unused ports terminated with 50 Ω , unless otherwise noted.

Symbol	Parameter	Condition	Note	Min.	Тур.	Max.	Unit
Fin	Frequency Range			2400	-	2483	MHz
Pout	Output power at ANT1 or ANT2 ports	VCC = 3.6 V VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V VCC = 2.0 V	1, 6	-	24.0 22.5 21.0 20.5 17.0	-	dBm
S 21	Small Signal Gain	2400 – 2483 MHz		21	23	25	dB
ΔS_{21}	Small Signal Gain Variation	Gain variation across all ZigBee channels	1	-	-	1	dBp-p
HD2, HD3	Harmonics	Роит = 20 dBm	1, 2	-	-	-42	dBm/MHz
S _{22_ANT}	Output return loss	At ANT1 or ANT2 ports	1	-	-10	-5	dB
S 11	Input return loss	At TR Port, Tx mode	1	-	-10	-5	dB
ACP	Spectral Mask		1, 3	-	-	-30	dBm
Trise	Turn on time		4	-	-	800	ns
Tfall	Turn off time		5	-	-	800	ns
STAB	Stability	CW, Piℕ = 0 dBm 0.1 GHz – 20 GHz Load VSWR = 6:1		All non-harmonically related outputs less than -42 dBm/MHz			
RU	Ruggedness	CW, PIN = +6 dBm, Load VSWR = 10:1		No permanent damage			

(1) (2) (3) (4) (5) 2400 – 2483 MHz

IEEE 802.15.4 source

Integrated power from band edges to Fc \pm 3.5 MHz

From 50% of CTX edge to 90% of final RF output power From 50% of CTX edge to 10% of final RF output power

(6) oEVM = 1% typ

AC Electrical Characteristics, Receive

Symbol	Parameter	Condition	Note	Min.	Тур.	Max.	Unit
Fin	Frequency Range			2400	-	2483	MHz
Rx_gain	Receive gain	CPS = CSD = logic '1', CTX = logic '0'	1	10	12.5	15	dB
NF	Receive noise figure	CPS = CSD = logic '1', CTX = logic '0'	1	-	2	2.5	dB
IIP3	Input 3 rd order intercept	CPS = CSD = logic '1', CTX = logic '0'	1	-3	2	-	dBm
IP1dB	Input 1-dB compression point	CPS = CSD = logic '1', CTX = logic '0'	1	-13	-8	-	dBm
S _{11_ANT}	Antenna port return loss		1	-	-10	-5	dB
S 22	Output return loss	At TR Port, Rx mode	1	-	-10	-5	dB
Trise	Turn on time		2	-	-	800	ns
Tfall	Turn off time		3	-	-	800	ns
G_bp	Gain in bypass mode	CPS = CTX = logic '0', CSD = logic '1'		-3	-2	-	dB
IP1dB	Input 1-dB compression point in bypass mode	CPS = CTX = logic '0', CSD = logic '1'		10	-	-	dBm

Conditions: VCC = 3.0 V, T_A = 25 °C, as measured on SiGe Semiconductor's SE2431L-EK1 evaluation board (deembedded to device), all unused ports terminated with 50 Ω, unless otherwise noted.

Note: (1) 2400 – 2483 MHz

(2) From 50% of CTX edge to 90% of final RF output power

(3) From 50% of CTX edge to 10% of final RF output power

AC Electrical Characteristics, Diversity Antenna Function

Conditions: VCC1 = VCC2 = 3.0 V, T_A = 25 °C, as measured on SiGe Semiconductor's SE2432L-EK1 evaluation board (de-embedded to device), all unused ports terminated with 50 Ω, unless otherwise noted.

Symbol	Parameter	Min.	Тур.	Max.	Unit
ISOL _{ANTSW}	Isolation Between ANT1 and ANT2 Ports	-	-20	-	dB
T _{ANT1-ANT2}	Antenna 1 to Antenna 2 switching time	-	400	-	nsec

SE2431L 2.4 GHz ZigBee/802.15.4 Front End Module Preliminary Datasheet

Package Information

This package is Pb free, RoHS compliant and halogen free. The product is also rated MSL1.

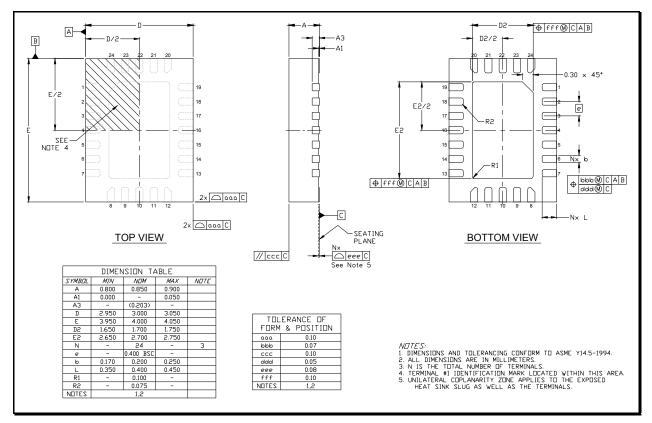
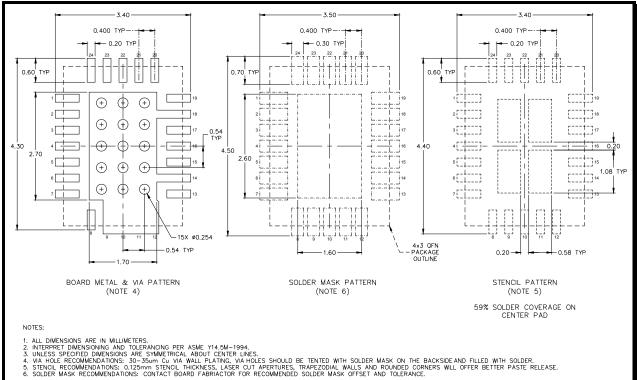


Figure 3: SE2431L Package Diagram

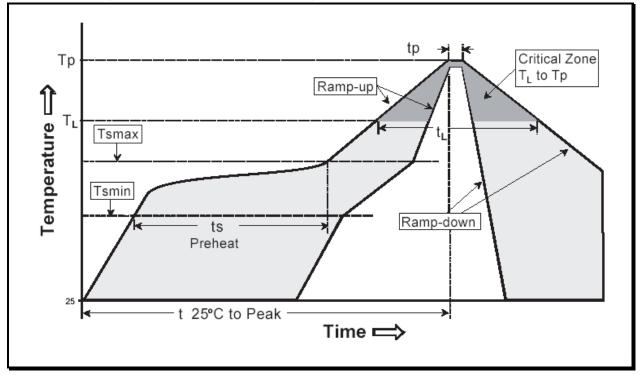


Recommended PCB Footprint

The PCB footprint below is only for reference.

The user should modify the design layout in order to meet their specific solder fillet requirements & solder joint reliability requirements.

All dimensions in the figure below are in mm.


- 2.3.4.5.6.

Recommended Reflow Temperature Profile

Profile Feature	SnPb Eutectic Assembly	Lead (Pb) Free Assembly			
Average Ramp-up Rate (T_L to T_P)	3°C/s (max)	3°C/s (max)			
Preheat					
Temperature Min. (T _{smin})	100°C	150°C			
Temperature Max. (T _{smax})	150°C	200°C			
Time (Min. to Max) (t _s)	60 - 120s	60 - 80s			
Ramp Up					
Tsmax to t_L	-	3°C/s (max)			
Time 25°C to Peak Temperature	6 mins. (max)	8 mins. (max)			
Reflow					
Temperature (t_L)	183°C 217°C				
Time maintained above t_L	60 - 150s	60 - 150s			
Peak Temperature (t _p)	240 ±5°C	260 +0/-5°C			
Time Within 5°C of Actual Peak Temperature (t_p)	10 - 30s	20 - 40s			
Ramp-Down					
Ramp-Down Rate	6°C/s (max)	6°C/s (max)			

Reflow Profile (Reference JEDEC J-STD-020)

Branding Information

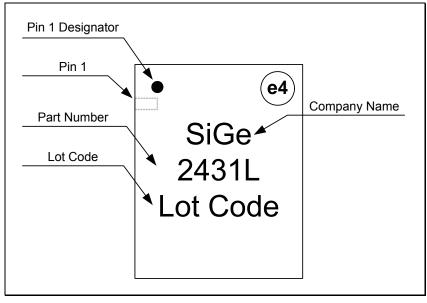


Figure 4: SE2431L Branding

Tape and Reel Information

Parameter	Value			
Devices Per Reel	3000			
Reel Diameter	13 inches			
Tape Width	12 millimeters			
pin 1 corner				
	$\circ \circ \circ \circ \circ \langle$			
Product Cole Lot Number Lot Number	Product Code Lot Number			

Figure 5: SE2431L-R Tape and Reel Information

http://www.sige.com

Email: sales@sige.com

Customer Service Locations:

North America: 1050 Morrison Drive, Suite 100 Ottawa ON K2H 8K7 Canada

Phone: +1 613 820 9244 Fax: +1 613 820 4933 Hong Kong Phone: +852 3428 7222 Fax: +852 3579 5450

San Diego Phone:+1 858 668 3541 (ext. 226) Fax: +1 858 668 3546

United Kingdom Phone: +44 1279 464217 Fax: +44 1279 464201

Product Preview

The datasheet contains information from the product concept specification. SiGe Semiconductor, Inc. reserves the right to change information at any time without notification.

Preliminary Information

The datasheet contains information from the design target specification. SiGe Semiconductor, Inc. reserves the right to change information at any time without notification.

Production testing may not include testing of all parameters.

Information furnished is believed to be accurate and reliable and is provided on an "as is" basis. SiGe Semiconductor, Inc. assumes no responsibility or liability for the direct or indirect consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license or indemnity is granted by implication or otherwise under any patent or other intellectual property rights of SiGe Semiconductor, Inc. or third parties. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SiGe Semiconductor, Inc. products are NOT authorized for use in implantation or life support applications or systems without express written approval from SiGe Semiconductor, Inc.

Copyright 2011 SiGe Semiconductor, Inc. All Rights Reserved