

5<u>05</u>K-110

Векторный измеритель импеданса – Антенный анализатор

Руководство пользователя

Версия руководства 1.0.1

Updated to Firmware Version 0.7.x

This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Содержание

1	I	BBB	ЕДЕНИЕ		3			
2	I	ВОЗМОЖНОСТИ4						
3	I	PAE	50TA C SAI	RK-110	5			
	3.1	1	Информаци	ІЯ НА ЭКРАНЕ	5			
	3.2	2	Значение с	ИМВОЛОВ СТАТУСА	6			
	3.3	3	Средства в	вода	6			
	3.4	4	Установка	ЦЕНТРАЛЬНОЙ ЧАСТОТЫ	7			
	3.5	5	Установка	ПОЛОСЫ КАЧАНИЯ	8			
	3.6	6	Предустан	ОВКИ ДИАПАЗОНОВ	8			
	3.7	7	Использов	АНИЕ МАРКЕРОВ	9			
	3.8	3	Выбор пари	МЕТРА, ОТОБРАЖАЕМОГО ПО ВЕРТИКАЛЬНОЙ ОСИ	11			
	3.9	9	Сохранени	Е И ВЫЗОВ ИЗМЕРЕНИЙ	12			
	3.1	10	Снимки з		14			
	3.1	11	Выбор ви	ІДА РАБОТЫ	15			
	3.1	12	Установ	ки	15			
4	I	PE>	ким прям	ОУГОЛЬНЫХ ГРАФИ <mark>КОВ</mark> (RECTANGULAR CHART)	22			
5	I	КРУ	ГОВАЯ ДИ	АГРАММА СМИТА (SMITH CHART)	23			
6	(оді	ночастот	НЫЙ РЕ <mark>ЖИМ (SI</mark> NGLE FREQUENCY)	24			
7	I	РΕλ	КИМ ИЗМЕ	РЕНИЯ КАБЕЛЯ (CABLE TEST)	26			
8	I	пол	ЛЕВОЙ РЕХ	КИМ (FIELD MODE)	28			
9	(СП	ЕЦИФИКАЦ	ия	29			
1	0	П	РЕДОСТЕР	ЕЖЕНИЯ	32			
1	1	0	БЩ <mark>ИЕ</mark> ПРЕ	дупреждения	32			
1	2	Б	ЛАГОДАРН	ости	33			
П	<mark>РИ</mark> .	ло	ЖЕНИЕ А.	ИЗМЕРЯЕМЫЕ ПАРАМЕТРЫ	34			
п	РИ	ло	жение в.	UPDATE ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	36			
п	РИ	ло	жение с.	OSL КАЛИБРОВКА	37			
п	РИ	ЛО	ЖЕНИЕ D.	КАЛИБРОВКА ДЕТЕКТОРОВ	40			
п	РИ	ло	ЖЕНИЕ Е.	УСТАНОВКИ ШКАЛ	43			
п	ПРИЛОЖЕНИЕ F. ИЗГОТОВЛЕНИЕ КАЛИБРОВОЧНЫХ НАГРУЗОК							

1 Введение

Антенный анализатор SARK-110 – карманный инструмент, обеспечивающий измерение с высокой точностью вектора импеданса, КСВ, векторного коэффициента отражения, возвратных потерь и R-L-C (в последовательном и параллельном эквивалентах).

Типичное применение: настройка и проверка антенн, согласующих устройств, тестирование пассивных компонентов, поиск неисправностей в коаксиальном кабеле, точное измерение электрической длины кабеля.

Особенность SARK-110 – применение цифрового синтезатора частоты (DDS) с диапазоном от 0,1 до 230 МГц и шагом перестройки 1 Гц. SARK-110 – это векторный измеритель импеданса с хорошей точностью измерения резистивной, емкостной и индуктивной составляющих импеданса нагрузки. Точка измерения может находиться не только на входе прибора, но и на конце используемого кабеля. Чтобы устранить влияние этого кабеля на измерения используется OSL (Open/Short/Load) калибровка, которая является стандартом для подобных измерений.

Прибор имеет трехдюймовый цветной дисплей, на котором отображаются интуитивно понятные результаты измерений в виде графиков и схем. Это обеспечивает быстрый обзор характеристик антенны в заданной полосе частот. В прямоугольных координатах строятся одновременно два графика по выбору пользователя, в круговой диаграмме Смит выводится комплексный коэффициент отражения. Два маркера позиционируются вручную или автоматически, повышая скорость измерений.

В режиме измерения на одной частоте выводятся все возможные параметры сразу и схемы эквивалентных цепей.

Анализатор может измерять длину коаксиального кабеля и расстояние до неоднородности в нем, через определение коэффициента отражения в частотной области (FDR).

Анализатор имеет 2 МВ встроенной памяти, используемой для хранения, вызова и переноса на РС результатов измерений, скриншотов, конфигураций и файлов новых прошивок прибора. При подключении к компьютеру эта область памяти определяемся как обычный внешний USB диск.

Пожалуйста, присылайте ваши предложения через страницу <u>http://sark110.ea4frb.eu</u>, автор охотно откликается на предложения по расширению функциональности прибора.

Мини USB

Вкл/Выкл

2 Возможности

- Карманный размер и малый вес
- Прочный алюминиевый корпус
- Интуитивно понятное применение
- Пять видов работы: прямоугольные графики, круговая диаграмма Смита, работа на одной частоте, измерения кабеля, полевой режим
- Хорошая точность в широком диапазоне импедансов
- Определение знака импеданса
- Ручное и автоматическое позиционирование маркеров
- Внутренний 2MB USB диск для сохранения измерений, скриншотов, конфигурации и файлов прошивки для upgrade
- Экспорт файлов в формате csv ZPLOTS для дальнейшего анализа на PC
- Пожизненно бесплатное обновление программного обеспечения
- Реализация запросов пользователей в новых версиях
- Открытые исходные коды (Software Development Kit), включающие симулятор прибора для собственных приложений пользователя
- Программа SARK Plots для Windows

3 Работа с SARK-110

Эта часть мануала содержит информацию о базовых функциях и интерфейсе SARK-110.

3.1 Информация на экране

Следующий рисунок показывает, что выводится на экране в режиме прямоугольных графиков. Область графиков идентична для всех видов измерений. Надписи на экране зависят от вида работы и описаны в соответствующих частях данного руководства.

1	Область графиков	10	Ранее выбранный пункт подменю
2	Графики измерений	11	Информация о маркерах
3	Маркеры	12	Информация о измерении
4	Название вертикальной оси	13	Центральная частота и полоса качания (Span).
5	Название горизонтальной оси	14	Образцовый импеданс
6	Главное меню	15	Имя открытого файла
7	Выделенный пункт меню	16	Статус калибровки
8	Подменю	17	Состояние измерения
9	Выделенный пункт подменю	18	Статус USB\аккумулятора

3.2 Значение символов статуса

Статус	Φ	Откалибровано
калибровки	0 0	Не калибровано
Состояние		Измерение в процессе
измерения	•	Измерения остановлены
Статус	1.10 × 1.00	Работа от USB
USB\аккумулятора	4	Уровень заряда аккумулятора (при работе без USB)
Disk		Процесс записи данных в память

3.3 Средства ввода

Четыре кнопки и два джойстика

Джойстик А

Джойстик А используется для навигации по главному меню (слева экрана). Активный пункт меню подсвечен зеленым.

Джойстик В

Джойстик В используется для изменения выбранной величины в активном пункте меню (для Center, Span, Marker1, Marker2, LeftY и RightY) и для навигации по всплывающим субменю.

Кнопка Старт/Стоп [>||]

Кнопка Старт/Стоп используется запуска и остановки измерений. При остановленных измерениях генератор и измерительные цепи отключены.

Примечание: после загрузки данных из ранее сохраненного файла прибор автоматически устанавливается в положение Стоп

Кнопка Выбор [•]

Кнопка вызывает подменю, соответствующие ранее выделенному пункту главного меню.

> Внимание: Нажатие любой другой кнопки отменяет выбор.

Кнопка снимка экрана [•]

При нажатии этой кнопки будет сделан скриншот (снимок экрана) текущего состояния. Файл снимка экрана (*.bmp) будет сохранен во внутренней памяти.

Кнопка Сохранить конфигурацию []

Эта кнопка сохраняет текущую конфигурацию прибора в память. Если нажать эту кнопку, то прибор после нового включения питания будет иметь такие же настройки (частота, полоса, вид, шкалы и типы графиков), какие были при нажатии кнопки [**^**]. Если эта кнопка не была ранее нажата, то прибор включится с настройками по умолчанию.

3.4 Установка центральной частоты

Центральная частота устанавливается при выборе пункта «**Center**» в главном меню. Есть два способа установки: нажать [**-**] и использовать диалог редактирования частоты (подробнее см. ниже) или джойстиком **B**.

Диалог редактирования показан на следующем скриншоте (окошко Center внизу справа). Цифра в выделенном (подсвеченном) разряде значения частоты меняется джойстиком В. Выбор разряда производится джойстиком А. Установленная частота записывается в прибор после нажатия кнопки []. Нажатие любой другой кнопки отменяет выбор.

На следующем скриншоте показан пример диалога редактирования навигатором В, меняется цифра сотен килогерц.

Второй метод установки частоты: нажать навигатор В, когда в главном меню выделен пункт «**Center**». Частота будет меняться в том разряде, который ранее был выделен в окне диалога редактирования.

Внимание: полоса при изменении центральной частоты не меняется, кроме случаев, когда получающиеся границы выходят за диапазон прибора.

3.5 Установка полосы качания

Полоса устанавливается при выделенном пункте «**Span**» главного меню. Есть два способа установки: нажать [**•**] и использовать диалог редактирования полосы (подробнее см. ниже) или джойстиком В.

Диалог редактирования показан на следующем скриншоте (окошко Span внизу справа). Цифра в выделенном (подсвеченном) разряде значения полосы меняется джойстиком В. Выбор разряда производится джойстиком А. Установленная полоса записывается в прибор после нажатия кнопки [■]. Нажатие любой другой кнопки отменяет выбор.

На следующем скриншоте показан пример диалога редактирования навигатором В, меняется цифра сотен килогерц (с шагом 100 кГц).

Второй метод установки полосы: нажать навигатор В, когда в главном меню выделен пункт **«Span**». Полоса будет менять в том разряде, который ранее был выделен в окне диалога редактирования.

3.6 Предустановки диапазонов

Анализатор имеет предустановленные значения центральной частоты и полосы для всех любительских диапазонов, попадающих в диапазон работы прибора. Это подменю вызывается кнопкой [•] после выбора пункта «**Preset**» в главном меню, как показано на следующем скриншоте:

Джойстик В используется для выбора, кнопка [-] – для подтверждения, любая другая кнопка отменяет выбор.

3.7 Использование маркеров

SARK-110 имеет два маркера, положение которых может управляться вручную или автоматически. Маркеры (тонкие вертикальные линии) индицируют положение точки графиков, в которой они его пересекают. Цифровая информация маркеров выводится над диаграммой на синей подложке. Эта информации содержит частоту или дистанцию (в режиме измерения кабеля) и значения графиков в точке пересечения.

Положение маркеров управляется джойстиком В когда в главном меню выбраны пункты «Marker1» или «Marker2».

Опции маркера находятся в подменю, которое вызывается нажатием кнопки [•] когда в главном меню выбраны пункты «Marker1» или «Marker2» (см. следующий скриншот). Пункт: «Enable» включает и выключает маркер, «Select» активирует и деактивирует выбор маркера, «Tracking» выбирает тип автоматического позиционирования.

Lenter 1	,800,0	00	Span:	2.40M	20:50			- 19	-
Swr:6.29	Z:46.	9-j102.	0 2 :11	2.3<-65	.3 Rh	:0.73<-4	5.3		
M1	1.83M	6.14 110	0.9		12 7	2.20M 4.3	73 96.4		
Center	USW				MI	M2		HZ	Zsł
Span	16.72							563	
Preset	11.18							316	
Marker1	7.48							177	
Marker2	5.00							100	
Left Y	3.34								
Right Y									
Store	2.24						Mar	ker	1
Mode	1.50						En a Sele	ble ect	
Setup					100		Tra	cking	

Опция «Select» активирует или деактивирует отображение детального описания позиции маркера. Следующий скриншот показывает первый маркер в активном состоянии (белый):

Автоматическое позиционирование маркеров помогает ускорить измерения.

Виды автоматического позиционирования маркеров:

- Ближайший минимум (р)
- Ближайший максимум (P)
- Абсолютный минимум (m)
- Абсолютный максимум (M)
- Любое пересечение (X)
- Пересечение снизу вверх (^)
- Пересечение сверху вниз (v)

Автоматическое позиционирование маркеров активируется в подменю *«Tracking».* Выберите желаемый режим отслеживания из описанных выше и затем включите

автоматическое позиционирование. Если заданы виды позиционирования, связанные с пересечением, то должны быть указаны величины, пересечение с которыми ищется.

Например, вы можете установить маркер 1 на автоматическое позиционирование по минимуму КСВ как: «**Marker1**» «*Tracking*» «Peak Min» «VSWR»; и маркер 2 на автоматическое позиционирование по модулю импеданса 50 Ом как: «**Marker2**» «*Tracking*» «Cross Any» «Z» «50.0».

Вы можете также настроить автоматическое определение полосы по уровню KCB < 2, установив «**Marker1**» «*Tracking*» «Cross Down» «VSWR» «2.0»; и «**Marker2**» «*Tracking*» «Cross Up» «VSWR» «2.0».

Джойстик В используется для перебора точек, соответствующих установленным критериям, кроме случаев поиска абсолютного максимума Мах и абсолютного минимума Min, которые по определению являются единственными.

Вид автоматического позиционирования отображается на синей подложке над экраном с информацией о маркерах. Эта информация отображается красным, если заданный критерий не найден, и зеленым – если найден.

На следующем скриншоте показано автоматическое позиционирование маркеров: первого по минимуму КСВ, второго по |Z| = 50 Ом:

3.8 Выбор параметра, отображаемого по вертикальной оси

В режиме прямоугольных координат SARK-110 может отображать одновременно два графика. Есть два метода выбора, какие именно графики будут отображаться.

Первый: для установки левой оси выбрать пункт главного меню «LeftY», нажать кнопку [•], и в появившемся подменю джойстиком В выбрать желаемый параметр и подтвердить его нажатием кнопки [•] (нажатие любой другой кнопки – отказ). Повторить то же самое для правой оси через пункт меню «RightY», выбрав другой параметр, отображаемый по этой оси.

Следующий скриншот показывает, как установить отображение КСВ по левой оси:

Второй метод выбора параметра, отображаемого по вертикальной оси, состоит в использовании джойстика В, когда активирован пункт главного меню «LeftY» или «RightY». Нажатие джойстика В последовательно перелистывает все возможные для отображения параметры.

3.9 Сохранение и вызов измерений

SARK-110 может сохранять результаты измерений во внутреннюю память и затем вызвать их для просмотра или копировать на PC для последующего анализа компьютерной программой, например SARK Plots client для Windows http://sark110.ea4frb.eu/files/sark-plots или ZPLOTS http://www.ac6la.com/zplots.html.

Выберите пункт главного меню «Store» и нажмите кнопку [■], появится подменю работы с фалами, как показано на следующем скриншоте:

После выбора «*Save File*» После этого будет предложено ввести имя файла. По умолчанию имя имеет вид "sark_xxx.csv", где xxx это автоматически добавляемый номер, как показано на следующем скриншоте:

Пользователь может изменить имя файла, используя джойстик В для изменения выделенного символа и джойстик В для изменения позиции выбора символа. Выбранный символ показывается в инверсной цветовой гамме. Нажатие кнопки [•] подтверждает выбор, нажатие любой другой – отменяет.

Чтобы просмотреть ранее сохраненные файлы выберите пункт подменю «Load data file». Появится окно со списком имеющихся файлов. Выберите нужный файл джойстиком В и подтвердите кнопкой [_]. Данные из файла будут отображены на экране, как показано на следующем скриншоте:

Ненужные более файлы могут быть удалены через пункты подменю «Delete file» или «Delete All».

После выбора пункта *«Delete File» п*оявится окно со списком имеющихся файлов. Выберите нужный файл джойстиком В и подтвердите кнопкой [.].

При выборе пункта *«Delete All»* будут удалены все файлы. Но не срезу, а после диалога подтверждения ([_] – да, удалить всё, любая другая кнопка – отказ).

3.10 Снимки экрана

Текущий вид экрана может быть сохранен как bmp файл нажатием кнопки [•]. После этого будет предложено ввести имя файла. По умолчанию имя имеет вид "sark_xxx.bmp", где xxx это автоматически добавляемый номер. Пользователь может изменить имя файла, используя джойстик В для изменения выделенного символа и джойстик В для изменения позиции выбора символа. Выбранный символ показывается в инверсной цветовой гамме. Нажатие кнопки [•] подтверждает выбор, нажатие любой другой – отменяет.

Сохраненные скриншоты могут быть просмотрены через заход в пункт меню «**Store**» и выбор пункта подменю «*Review bitmap file*». Также скриншоты могут быть открыты на PC, т.к. они имеют совместимый с Windows bmp формат.

Внимание: bmp файлы имеют значительный размер (~188 кБ каждый), поэтому регулярно удаляйте или перемещайте на PC ненужные скриншоты.

3.11 Выбор вида работы

Прибор имеет несколько видов работы. Джойстиком А выберите пункт «**Mode**» и нажмите кнопку **[**].Появится подменю выбора вида работы, как показано на следующем скриншоте:

Джойстик В используется для выбора вида работы. Выбор подтверждается нажатием кнопки [■]. Нажатие любой другой кнопки отменяет выбор.

3.12 Установки

Меню установок обеспечивает доступ ко всем установкам SARK-110. Джойстиком А выберите пункт «**Setup**» и нажмите кнопку [**•**]. Появится подменю установок, как показано на следующем скриншоте:

Джойстик В используется для выбора опций установок. Выбор подтверждается нажатием кнопки [**–**]. Нажатие любой другой кнопки отменяет выбор.

Setup – Calibration (калибровки)

Калибровки вызываются через подменю:

Setup – Calibration - OSL Calibration (OSL калибровка)

См. Приложение С:

Setup – Calibration - Frequency Calibration (калибровка частоты)

Этак калибровка корректирует погрешность внутреннего опорного генератора. Для калибровки подключите к выходу прибора частотомер и, меняя частоту прибора, добейтесь показаний частотомера 10 000 000 Гц. Другой способ: меняя установки частоты прибора, добейтесь на приемнике нулевых биений с радиостанцией WWV. Когда на выходе будет точно 10 000 000 Гц, нажмите кнопку [•] для записи калибровки в память.

Заводские установки частоты можно вернуть, нажав кнопку [•].

См. приложение D:

Setup –Computer Control (pa6oma c PC)

Эта установка активирует работу SARK-110 под управлением компьютера, при соединении по USB. Программа управления называется SARK Plots client и работает под Windows.

546K-110

Спецификация команд управления отрыта и даются примеры кода управления. Больше информации по линку <u>http://sark110.ea4frb.eu/commands-interface</u>

Setup – Scale (Шкалы)

В приборе имеется три режима вертикального масштаба шкалы Y: нормальный (Normal), высокий (High) и низкий (Low). Границы шкал для каждого режима даны в приложении E.

Данная установка действует только в режиме прямоугольных графиков (Rectangular Chart).

Setup - Z0 (образцовый импеданс)

Эта установка позволяет выбрать стандартное сопротивление, относительно которого вычисляется КСВ и отражения.

Setup - Automatic Power Off (автовыключение)

Установка времени, через которое прибор выключится сам при отсутствии активности пользователя.

Center 13,800,000 Span:5.00M Z0:: Swr:2.22 Z:109.3+j11.7 Z :109.9<6.1 Rh :0	50 sark_000.csv ⊕• +***).38<7.0
MI 13.86M 1.98 98.6 M2 Center USUR	14.63M 4.08 16.7
Sp an 16.72	562
Marker1 7.48	477
Marker2 5.00	Set up Calibration
Left Y Right Y 3.34	Scale ZO
Store 2.24 Auto Power Off Off	Automatic Power Off Cable YF Average Filter
Mode 1.50 5 Minutes 10 Minutes 30 Minutes	SWR Circle Reset Factory Defaults About
MHz 11.30 12.13 12.97 13.80	14.63 15.47 16.30

После автоматического выключения прибор может быть включен либо кнопкой [=], либо передергиванием выключателя питания.

Setup - Cable Velocity Factor (коэффициент укорочения)

Эта установка выбирает коэффициент укорочения используемого коаксиального кабеля из имеющегося списка кабелей.

Center 13 Swr:2.22	3,800,00 Z:109.3	00 Span:5.00 +j11.7 Z :109.9≺(M 20:50 5.1 Rh :0.	0 <mark>sark_000.csv</mark> 38<7.0	00 ++
M1 1	3.86M 1	.98 98.6	M2	14.63M 4.08 16.7	
Center	USUR	Cable VF		M2	ZS
Span		RG-6U pe RG-6U foam			562
Preset		RG-8U pe RG-8U foam			316
Marker1		RG-8U 9913 RG-9U		Setup	177
Marker2		RG-11U pe RG-11U foom		Calibration	al
Left Y		RG-58U pe		Scale 20	.01
Right T		RG-59U pe RG-59U foam		Automatic Powe	er Off
Mode		RG-62U RG-71U		Average Filter SWR Circle	
Setup		RG-122U RG-141U		Reset Factory About	Defaults
	MHz 1	1.30 12.13 12.9	97 13.80	14.63 15.47	16.30

Setup – Average Filter (сглаживающий фильтр)

Позволяет установить сглаживающий фильтр и выбрать его тип для режимов прямоугольных графиков (Rectangular Chart), диаграммы Смита (Smith Chart) и полевого (Field).

Setup – VSWR Circle (круг КСВ)

Эта установка позволяет изменить диаметр «прицельного круга» на диаграмме Смита. «Прицельный круг» удобен при работе с круговой диаграммой. Всё, что попадает внутрь этого круга, имеет КСВ меньше, чем установлено в настройках этого круга. По умолчанию диаметр «прицельного круга» установлен на КСВ = 2.

На скриншоте ниже показан пример установки «прицельного кругу» на КСВ = 5.0

Сброс в заводские установки.

Setup – About (о приборе)

Этот экран показывает информацию о приборе, авторе, номер версии программного обеспечения и использование памяти.

4 Режим прямоугольных графиков (Rectangular Chart)

1	Область графиков	8	Информация о маркерах
2	Графики	9	Подробности измерения
3	Маркеры	10	Центральная частота и полоса
4	Обозначение вертикальной оси	11	Образцовый импеданс
5	Обозначение горизонтальной оси	12	Статус калибровки
6	Главное меню	13	Состояние измерения
7	Выделенный пункт меню	14	Статус USB/аккумулятора

В режиме прямоугольных графиков анализатор выводит два (по выбору пользователя) частотных графика в декартовой системе координат. Пользователь также задает центральную частоту и полосу.

Два вертикальных маркера перемещаются как вручную, так и автоматически. Они используются для индикации характерных точек на графиках.

При включении этого режима измерения идут непрерывно, но они могут быть остановлены, а потом вновь запущены кнопкой [>||].

Измеренные данные могут быть сохранены во внутреннюю память через опцию меню «Store».

5 Круговая диаграмма Смита (Smith Chart)

1	Область графиков	8	Информация о маркерах
2	График	9	Подробности измерения
3	Маркеры	10	Центральная частота и полоса
4	Constant impedance circle	11	Образцовый импеданс
5	Frequency start and end	12	Статус калибровки
6	Главное меню	13	Состояние измерения
7	Выделенный пункт меню	14	Статус USB/аккумулятора

Режим круговой диаграммы Смита во многом аналогичен режиму прямоугольных графиков, но тут строится полярный график комплексного коэффициента отражения.

Как и в режиме прямоугольных графиков измерения выполняются непрерывно, но они могут быть остановлены, а потом вновь запущены кнопкой [>||].

Положение маркеров сохраняется при переключении между круговой диаграммой и прямоугольными графиками. Например, маркеры в диаграмме Смита могут быть установлены на ноль реактивности (который лежит на горизонтальном диаметре) и затем, переключившись в прямоугольные графики, посмотреть чему соответствуют эти точки.

6 Одночастотный режим (Single Frequency)

	5	импеданс в параллельном эквиваленте	13
	6	Схема параллельная	14
	7	Параллельные сопротивление и емкость или индуктивность	15
ð	8	Частота	16

В этом режиме измеряются сразу все возможные параметры, но на одной частоте. Кроме того, выводится линейный индикатор КСВ и схемы последовательного и параллельного эквивалентов.

Статус калибровки

Состояние измерения

Статус USB/аккумулятора

Измерения выполняются непрерывно, но они могут быть остановлены, а потом вновь запущены кнопкой [>||].

В этом режиме имеется акустическая индикация КСВ для КСВ от 10 до 1. Если в меню активирована опция *«Audio»*, анализатор издает короткие звуковые сигналы. Частота их повторения зависит от КСВ: чем ниже КСВ, тем чаще. Это удобно при работе с СУ на антенне, когда глаза и руки заняты согласованием, а КСВ можно оценивать на слух.

В одночастотном режиме прибор может быть использован как прецизионный генератор с точностью установки частоты 1 Гц.

7 Режим измерения кабеля (Cable Test)

1	Область графиков	9	Подробности измерения
2	Графики	10	Длина
3	Маркеры	11	Коэффициент укорочения
4	Метка вертикальной оси	12	Образцовый импеданс
5	Шкала дистанции	13	Статус калибровки
6	Главное меню	14	Состояние измерения
7	Выд <mark>елен</mark> ный пункт меню	15	Статус USB/аккумулятора
8	Информация о маркерах		

Этот режим предназначен для выявления мест потенциальных нарушений коаксиальных кабелей. Метод измерений основан на определении коэффициента отражения в частотной области (Frequency Domain Reflectrometry или FDR).

Анализатор сканирует во всем частотном диапазоне и измеряет коэффициенты отражения. А затем математически делает обратное преобразование Фурье. В результате на дисплее мы видим скачок и импульс, точнее реакцию кабеля на них, которая несет информацию о неоднородностях в кабеле и их положении.

Реакция на импульс (красная линия) дает информацию о месте расположения неоднородности. Реакция на скачок (зеленая линия) показывает характер этой неоднородности.

Как в других режимах измерения запускаются кнопкой [>||], но здесь надо подождать несколько секунд до появления результатов (анализатору требуется время на сканирование и затем обратное преобразование Фурье).

Это измерение требует выбора типа кабеля, его волнового сопротивления и его коэффициента укорочения. Эти установки доступны в меню Setup.

Рисунок ниже иллюстрирует реакции при некоторых неоднородностях:

Неоднородност	Реакция на скачок	Реакция на импуль
Обры		
D	Отражение	Отражение
КЗ		V CONTRACTOR
	Отражение, -180	Отражение , -180°
		<u>_</u>
Сопротивлени		(\
<u>κ</u> > Δ ₀	Positive level shift	Положительный пик
Сопротивлени		\checkmark
R < Z ₀	Сдвиг уровня вниз	Отрицательный
1.0		пи/
10.00		/
Индуктивность		\vee
550	Положительный пик	Плюс, потом минус
		\wedge
Индуктивность		
	Отрицательный	Минус, потом плюс
	ПИК	

8 Полевой режим (Field Mode)

1	Область графиков	7	Центральная частота и полоса
2	График	8	Образцовый импеданс
3	Метка вертикальной оси	9	Статус калибровки
4	Начальная и конечная частоты	10	Состояние измерения
5	Главное меню	11	Статус USB/аккумулятора
6	Выделенный пункт меню		

Полевой режим эквивалентен режиму прямоугольной диаграммы, но ориентирован на лучшую видимость в поле: белый цвет подложки и график и цифры крупнее.

В этом режиме строится только график, маркеры недоступны.

9 Специфика	ция
Синтезатор	• Прямой цифровой синтез частоты с точностью 1 Гц
	• Синусоидальный выходной сигнал
	• Диапазон частот от 0,1 до 230 МГц
Измеряемые параметры	Комплексный импеданс (последовательный и параллельный эквивалент) в прямоугольных и полярных координатах, комплексный коэффициент отражения в прямоугольных и полярных координатах, КСВ, потери отражения, процент отраженной мощности, добротность, эквивалентные емкость и индуктивность
Виды работы	• Прямоугольные графики
	• Круговая диаграмма Смита
	• Одночастотный
	• Измерения кабеля (FDR)
	• Полевой
Режим	• Два графика частотных зависимостей по выбору пользователя
прямоугольных	• Настройка центральной частоты и полосы
ерификов	• Отображение центральной частоты и позиций маркеров
	• Предустановки для любительских диапазонов
	• Три масштаба шкалы
	• Запись в память и последующий вызов результатов измерений
	• Установка образцового импеданса
Режи <mark>м кр</mark> уговой	• Полярный график комплексного коэффициента отражения
диаграммы Смита	• Настройка центральной частоты и полосы
	• Отображение центральной частоты и позиций маркеров
	• Предустановки для любительских диапазонов
	• Три масштаба шкалы
	• Запись в память и последующий вызов результатов измерений
	• Установка образцового импеданса

Одночастотный • Отображение всех параметров на одной частоте

режим	• Предварительные установки для любительских диапазонов
	 Графическое представление последовательного и параллельного эквивалентов
	• Настройка образцового импеданса
	• Использование как ВЧ генератора с шагом 1 Гц
	• Звуковая обратная связь по КСВ
Измерение кабелей	• Измерения для 25, 50, 75 и 100 омных кабелей
	• Максимальная длина 250 м
	 Предустановка коэффициента укорочения для большинства популярных кабелей
Маркеры	• Два маркера с ручным и автоматическим позиционированием
	• Виды автоматического позиционирования:
	о Ближайший минимум
	о Ближайший максимум
	о Абсолютный минимум
	 Абсолютный максимум
	 Пересечение графиков любое
	о Пересечение сверху вниз
	 Пересечение снизу вверх
Интерфейсы	• Цветной экран 3" TFT LCD 400 * 240
	• 4 специальные кнопки
	• 2 навигационные джойстика
	USB Mini-B
Память	• 2 МВ внутренней памяти, совместимой с FAT
	USB Mass Storage
	• Сохранение и последующий вызов скриншотов
	• Сохранение и последующий вызов данных измерения
	• Данные измерений совместимы с форматом ZPLOTS
Калибровка	• Автоматическая OSL калибровка

	• 256 точек калибровки
	• Сохранение данных калибровки в память
	• Калибровка частоты
Структура	• Супергетеродин с одним преобразованием
	• Два независимых измерительных канала для одновременного измерения амплитуды и фазы тока и напряжения нагрузки
	• Два синхронных АЦП 12 бит
Процессор	• 72 МГц STM32 MCU
	• 256 КВ флэш
	• 48 KB SRAM
ВЧ выход	• Разъем МСХ
	 Мощность на выходе: -10 dBm (0,1 мВт или 70,7 мВ эфф.) на нагрузке 50 Ом
Питание	• Литиево-полимерный аккумулятор 3.7 В 1000 мАч
	• USB для работы с PC и зарядки аккумулятора
	• Автоматическое выключение (через 5, 10, или 30 минут)
	• Время автономной работы 2,5 часа
	• Время заряда 3,5 часа
Диапазон рабочих	От 0°С до 50°С
температур	
Размеры	98 * 60 * 14,5 (мм)
Bec	300 гр
Состав поставки	• SARK-110 x 1
	• Аккумулятор х 1
	• Короткий кабель-переходник MCX на BNC x 1
	• Шестигранный ключ х 1

10 Предостережения

- Никогда не подключайте прибор к антенне во время грозы. Молнии и статическое электричество на антенне могут повредить и необратимо вывести из строя прибор и оператора.
- Никогда не подключайте передатчик к входу прибора. Это может необратимо повредить прибор. Близко расположенные передающие антенны могут своим излучением навести значительные напряжения на измеряемой антенне, чем исказить показания или повредить прибор.
- 3. Хотя выход прибора и защищен от электростатики, но большой статический заряд на антенне может повредить прибор. Поэтому перед подключением к прибору кратковременно заземляйте (т.е. разряжайте) оба конца антенны. А после измерений отключайте антенну от прибора.
- 4. Прибор генерирует около 70 мВ ВЧ напряжения на своем выходе. При подключении к нему внешней антенны это может быть причиной радиопомех. Держите прибор подключенным к антенне не дольше, чем это необходимо для измерений.

11 Общие предупреждения

Прибор предназначен только для лабораторных измерений.

Прибор генерирует ВЧ напряжение на своем выходе в диапазоне частот 0,1 – 230 МГц и не был испытан на соответствие требованием FCC.

При подключенной внешней антенне работа прибора может быть причиной радиопомех другому оборудованию. Ответственность за устранение этих помех лежит на пользователе прибора.

12 Благодарности

- Я хотел бы выразить особую благодарность фирме Seeed Studio, которая изготавливает прибор.
- Схема и печатная плата анализатора были сделаны с использованием программы DesignSpark PCB. Информация о ней: <u>www.designspark.com/pcb</u>
- Программное обеспечение анализатора сделано с использованием Lite edition программые Atollic TrueSTUDIO[®] для STM32. Информация о ней: <u>www.atollic.com</u>
- Файловая система FAT File была предоставлена ChaN, модуль FatFs.
- Программное обеспечение для STM32 и библиотеки для USB были предоставлены STMicroelectronics.
- Большое спасибо Dan Maguire, AC6LA, за отличное приложение ZPLOTS для MSExcel: <u>http://www.ac6la.com/zplots.html</u>

Приложение А. Измеряемые параметры

Название	Параметр	Описание
Rs	Последовательное активное сопротивление	Активная часть последовательного импеданса
Xs	Последовательное реактивное сопротивление	Реактивная часть последовательного импеданса
Rp	Параллельное активное сопротивление	Активная часть параллельного импеданса
Хр	Параллельное реактивное сопротивление	Реактивная часть параллельного импеданса
Zs	Модуль импеданса	$ Z = \sqrt{\left(R^2 + X^2\right)}$
<zs< td=""><td>Фазовый угол импеданса</td><td>Фаза между током и напряжением</td></zs<>	Фазовый угол импеданса	Фаза между током и напряжением
VSWR	КСВ	Показывает, насколько эффективно ВЧ энергия передается от источника к нагрузке.
RL	Потери отражения	Коэффициент отражения в dB. $RL = 20 \times \log 10 (Rho)$
Rho	Модуль коэффициента отражения (Rho)	Отношение амплитуд отраженной и падающей волн
<rho< td=""><td>Фазовый угол коэффициента отражения</td><td>Фаза между отраженной и падающей волнами$Ph = a \tan\left(\frac{RhoI}{RhoR}\right)$</td></rho<>	Фазовый угол коэффициента отражения	Фаза между отраженной и падающей волнами $Ph = a \tan\left(\frac{RhoI}{RhoR}\right)$

Название	Параметр	Описание
%Ref Pwr	Процент отраженной мощности	$\% RPwr = Rho^2 \times 100$
Q	Добротность	Отношение реактивной энергии, запасенной в компоненте к активной, рассеиваемой энергии $Q = \frac{X}{R}$
Cs	Последовательная емкость	Эквивалентная последовательная емкость на измеряемой частоте
Ls	Последовательная индуктивность	Эквивалентная последовательная индуктивность на измеряемой частоте
Ср	Параллельная емкость	Эквивалентная параллельная емкость на измеряемой частоте
Lp	Параллельная индуктивность	Эквивалентная параллельная индуктивность на измеряемой частоте

Приложение B. Update программного обеспечения

Программное обеспечение SARK-110 может быть обновлено. Предполагается, что вы уже скачали с <u>http://sark110.ea4frb.eu/files/firmware</u> и разархивировали файл новой прошивки с именем SARK110-VAA-APP-x.y.z.dfu, где x.y.z – номер версии.

Отметим, что на странице <u>http://sark110.ea4frb.eu/files/firmware</u> всегда имеются два файла прошивки для каждой версии. Дело в том, что первые версии прибора работали до 200 МГц, а более новые – до 230 МГц. Вот в зависимости от этого и надо выбрать один из двух файлов прошивки. Подробности на странице <u>http://sark110.ea4frb.eu/files/firmware</u>.

Процедура прошивки:

- 1. Соедините SARK-110 с компьютером по USB
- 2. Скопируйте файл прошивки. SARK110-VAA-APP.x.y.z.dfu на SARK-110
- 3. Выключите SARK-110 снова включите, держа зажатой кнопку [>||]
- 4. Появится экран предлагающий установку нового программного обеспечения
- 5. Если в прибор скопировано одновременно несколько разных прошивок, то используйте джойстик В, чтобы выбрать нужный файл.
- 6. Прошивка начнется после нажатия кнопки []
- 7. После завершения прошивки нажмите кнопку [▲], которая перезапустит прибор и применит новую прошивку

Приложение C. OSL калибровка

SARK-110 должен быть откалиброван provides для компенсации влияния кабеля, соединяющего измеряемую цепь с прибором. Эта калибровка должна выполняться для каждого нового кабеля.

Калибровка выполняется, используя разомкнутую (<u>O</u>pen), короткозамкнутую (<u>S</u>hort) и образцовую (<u>L</u>oad) нагрузки, отчего и называется **OSL** калибровкой. Прибор выполняет ряд последовательных измерений с этими нагрузками, и сохраняет поправочные коэффициенты, которые затем используются при измерениях для коррекции показаний.

Путь к OSL калибровке: «Setup» «Calibration» «OSL Calibration».

Процесс OSL калибровки следующий:

Подключите разомкнутую нагрузку.

Нажмите кнопку [■] для продолжения или кнопку [▲] для отказа.

1: Connect open load	i
[=]:Continue [+]:Exi	t

		-
Прогресс калибровки и	ндицируется	
торизонтальной зеленой пол		CALIBRATION
		Open Standard
	_	Progress:21%
		CN-CN
Подключите короткозамкнут	ую нагрузку.	CALIBRATION
Нажмите кнопку [■] для п	продолжения	2: Connect short load
или кнопку [🔺] для отказа.		[=]:Continue [+]:Exit
		Colle To
Прогресс калибровки и	ндицируется	Sec.
горизонтальной зеленой пол	осой.	CALIBRATION
		Short Standard
		Progress:22 A
Подключите нагрузку 50 Ом.		
		CALIBRATION
Нажмите кнопку [=] для п	продолжения	3: Connect 50-ohm load
или кнопку [] для отказа.		[∎]:Continue [▲]:Evit

(CC) BY-NC-SA	SARK-110	Руководство пользователя
Прогресс калибровки горизонтальной зеленой по	индицируется	CALIBRATION Termination Standard Progress:70%
Нажмите кнопку [•], что результаты калибровки, и для отказа.	бы применить ли кнопку [▲]	CALIBRATION Completed [=]:Apply [+]:Cancel

Приложение D. Калибровка детекторов

Эта процедура внутренней настройки прибора. Она сделана на заводе и в норме пользователю нет необходимости проводить ее. Но мы опишем ее для полноты.

Требуются нагрузки: 0, 50, 100, и 200 Ом. Нагрузки должны быть точными, стабильными и не иметь сколь-нибудь заметной паразитной реактивности в полосе до 230 МГц.

Чтобы потом не жалеть о последствиях, перед выполнением калибровки детекторов рекомендуется забэкапить (скопировать с прибора на компьютер) файл detcalib.dat, содержащий данные по заводской калибровке детекторов. Тогда, если у вас что-то пойдет не так с процессом калибровки, то вернув заводской файл detcalib.dat на прибор, вы восстановите заводские калибровки детекторов.

Путь к калибровке детекторов: «Setup» «Calibration» «Detector Calibration».

Процесс калибровки детекторов следующий:

Подключите короткозамкнутую нагрузку.

Нажмите кнопку [•] для продолжения или кнопку [▲] для отказа.

DETECTOR CALIBRATION
1: Connect short load
<pre>[=]:Continue [+]:Exit</pre>

		Руковооство пользователя	
Прогресс калибровки инд горизонтальной зеленой полос	ицируется ой.		
		DETECTOR CALIBRATION	
		Progress:10%	
Подключите нагрузку 50 Ом.		DETECTOR CALIBRATION	
Нажмите кнопку [•] для про	одолжения	2: Connect 50-ohm load	
или кнопку [🔺] для отказа.		<pre>[=]:Continue [+]:Exit</pre>	
		Osla in	
Подключите нагрузку 100 Ом.		Ju.	
	1125	DETECTOR CALIBRATION	
Нажмите кнопку [=] для про	одолжения	3: Connect 100-ohm load	
или кнопку [] для отказа.		[=]:Continue [+]:Exit	
Подключите нагрузку 200 Ом.			
		DETECTOR CALIBRATION	
Нажмите кнопку [=] для про	должения	4: Connect 200-ohm load	
или кнопку [🔺] для отказа.		[■]:Continue [▲]:Exit	

Калибровка завершена

Внизу для информации показаны калибровочные коэффициенты.

Нажмите кнопку [•], чтобы применить полученные коэффициенты, или кнопку [▲] для отказа.

-- DETECTOR CALIBRATION --

Completed

[#]:Apply [*]:Cancel

M:1.082290, B:2.665426, P:3.017183

Приложение Е. Установки шкал

Normal	Min	Мах	Шкала
Rs	10	1000	Лог.
Xs	-500	500	Линейная
Rp	10	1000	Лог.
Хр	-500	500	Линейная
Zs	10	1000	Лог.
<zs< td=""><td>-90</td><td>90</td><td>Линейная</td></zs<>	-90	90	Линейная
VSWR	1.00	25.00	Лог.
RI	-40	0	Лог.
Rho	0	1.0	Линейная
<rho< td=""><td>-180</td><td>180</td><td>Линейная</td></rho<>	-180	180	Линейная
%Rp	0	100	Линейная
Q	0	20	Линейная
Cs	-10000	10000	Линейная
Ls	-10000	10000	Линейная
Ср	-10000	10000	Линейная
Lp	-10000	10000	Линейная

High	Min	Max	Шкала
Rs	10	5000	Лог.
Xs	-2500	2500	Линейная
Rp	10	5000	Лог.
Хр	-2500	2500	Линейная
Zs	10	5000	Лог.
<zs< td=""><td>-90</td><td>90</td><td>Линейная</td></zs<>	-90	90	Линейная
VSWR	1.00	100.00	Лог.
RI	-80	0	Лог.
Rho	0	1.0	Линейная
<rho< td=""><td>-180</td><td>180</td><td>Линейная</td></rho<>	-180	180	Линейная
%Rp	0	100	Линейная
Q	0	50	Линейная
Cs	-100000	100000	Линейная
Ls	-100000	100000	Линейная
Ср	-100000	100000	Линейная
Lp	-100000	100000	Линейная

Low	Min	Max	Шкала
Rs	0	250	Линей <mark>на</mark> я
Xs	-125	125	Лин <mark>ейн</mark> ая
Rp	0	250	<mark>Линейн</mark> ая
Хр	-125	125	Линейная
Zs	0	250	Линейная
<zs< td=""><td>-90</td><td>90</td><td>Линейная</td></zs<>	-90	90	Линейная
VSWR	1.00	10.00	Лог.
Rl	-20	0	Лог.
Rho	0	1.0	Линейная
<rho< td=""><td>-180</td><td>180</td><td>Линейная</td></rho<>	-180	180	Линейная
%Rp	0	100	Линейная
Q	0	20	Линейная
Cs	-1000	1000	Линейная
Ls	-1000	1000	Линейная
Ср	-1000	1000	Линейная

Приложение F. Изготовление калибровочных нагрузок

Калибровочные нагрузки могут быть изготовлены из байонетных BNC разъемов, например таких, как показано ниже:

Список рекомендованных деталей для изготовления нагрузок:

Короткозамкнутая:

Деталь	Номер в каталоге	Источник	Описание
BNC разъем	171-9311	Mouser	BNC кабельный разъем
0 Ом		5	Запаяйте центральную жилу на корпус

50 Ом:

Деталь	Номер в каталоге	Источник	Описание
ВNС разъем	171-9311	Mouser	BNC кабельный разъем
R 49.9 Ом	989-1152-1-ND	DigiKey	Резистор 49,9 Ом, 1/8 Вт,1% 0805 SMD

100 Ом:

Деталь	Номер в каталоге	Источник	Описание
BNC разъем	171-9311	Mouser	BNC кабельный разъем
R 100 Ом	P100DACT-ND	<u>DigiKey</u>	Резистор 100 Ом, 1/8 Вт,1% 0805 SMD

200 Ом:

Деталь	Part number	Источник	Описание
BNC разъем	171-9311	Mouser	ВNС кабельный разъем
R 200 Ом	P200DACT-ND	DigiKey	Резистор 200 Ом, 1/8 Вт,1% 0805 SMD

Разомкнутая:

Деталь	Part number	Источник	Описание
BNC разъем	171-9311	Mouser	ВNС кабельный разъем
			Просто оставьте разъем как есть