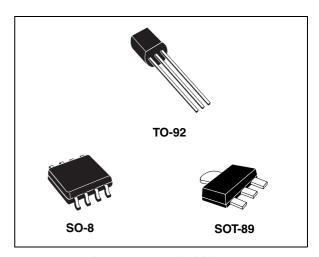


L79LxxAB L79LxxAC - L79LxxC

Negative voltage regulators


Features

- Output current up to 100 mA
- Output voltages of -5; -6; -8; -9; -12; -15 V
- Thermal overload protection
- Short circuit protection
- No external components are required
- Available in either ±5% (AC) or ±10% (C) selection

Description

The L79Lxx series of three-terminal negative regulators employ internal current limiting and thermal shutdown, making them essentially indestructible. If adequate heat-sink is provided, they can deliver up to 100 mA output current.

They are intended as fixed voltage regulators in a wide range of applications including local or oncard regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, they can be used with

power pass elements to make high-current voltage regulators.

The L79Lxx series used as Zener diode/resistor combination replacement, offers an effective output impedance improvement of typically two orders of magnitude, along with lower quiescent current and lower noise.

Table 1. Device summary

Part numbers					
L79L05AC	L79L09AC				
L79L05AB	L79L09AB				
L79L06C	L79L12C				
L79L06AC	L79L12AC				
L79L06AB	L79L12AB				
L79L08C	L79L15C				
L79L08AC	L79L15AC				
L79L08AB	L79L15AB				
L79L09C					

July 2009 Doc ID 2511 Rev 16 1/27

Contents

1	Diagram 3
2	Pin configuration 4
3	Maximum ratings 5
4	Electrical characteristics 6
5	Package mechanical data
6	Order codes
7	Revision history

1 Diagram

Figure 1. Schematic diagram

2 Pin configuration

Figure 2. Pin connection (top view, bottom view for TO-92)

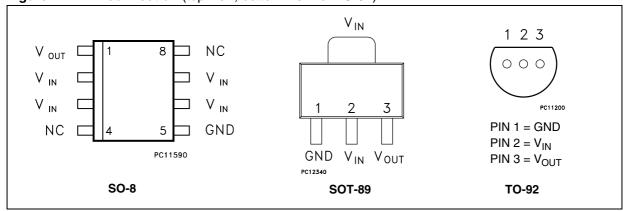


Figure 3. Test circuit

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter		Value	Unit	
V	DC input voltage	V _O = -5 to -9 V	-30	V	
V _I	Do input voltage	V _O = -12 to -15 V	-35	V	
Io	Output current	100	mA		
P _D	Power dissipation		Internally limited ⁽¹⁾	mW	
T _{STG}	Storage temperature range		-40 to 150	°C	
т.	Operating junction temperature range	For L79L00C, L79L00AC	0 to 125	°C	
T _{OP}	Operating junction temperature range	For L79L00AB	-40 to 125		

Our SO-8 package used for Voltage Regulators is modified internally to have pins 2, 3, 6 and 7 electrically communed to
the die attach flag. This particular frame decreases the total thermal resistance of the package and increases its ability to
dissipate power when an appropriate area of copper on the printed circuit board is available for heat-sinking. The external
dimensions are the same as for the standard SO-8.

Table 3. Thermal data

Symbol	Parameter	SO-8	TO-92	SOT-89	Unit
R _{thJC}	Thermal resistance junction-case. (Max)	20		15	°C/W
R _{thJA}	Thermal resistance junction-ambient. (Max)	55 ⁽¹⁾	200		°C/W

^{1.} Considering 6 cm² of copper Board heat-sink.

4 Electrical characteristics

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = -10 V, I $_O$ = 40 mA, C $_I$ = 0.33 $\mu F,$ C $_O$ = 0.1 μF unless otherwise specified.

Table 4. Electrical characteristics of L79L05

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	-4.6	-5	-5.4	V
V	Output voltage	$I_O = 1 \text{ to } 40 \text{ mA}, V_I = -7 \text{ to } -20 \text{ V}$	-4.5		-5.5	V
V _O	Output voltage	$I_{O} = 1 \text{ to } 70 \text{ mA}, V_{I} = -10 \text{ V}$	-4.5		-5.5	V
ΔV _O	Line regulation	$V_{I} = -7 \text{ to } -20 \text{ V}, T_{J} = 25^{\circ}\text{C}$			200	mV
740	Line regulation	$V_{I} = -8 \text{ to } -20 \text{ V}, T_{J} = 25^{\circ}\text{C}$			150	1110
۸۷۰	ΔV _O Load regulation	I _O = 1 to 100 mA, T _J = 25°C			60	mV
740		$I_{O} = 1 \text{ to } 40 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			30	1117
	Quiescent current	T _J = 25°C			6	mA
I _d	Quiescent current	T _J = 125°C			5.5	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.2	mA
Δl _d	Quiescent current change	V _I = -8 to -20 V			1.5	ША
eN	Output noise voltage	B =10Hz to 100kHz, $T_J = 25^{\circ}C$		40		μV
SVR	Supply voltage rejection	$V_I = -8 \text{ to } -18V, f = 120Hz$ $I_O = 40 \text{ mA}, T_J = 25^{\circ}\text{C}$	40	49		dB
V_d	Dropout voltage			1.7		V

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = -12 V, I $_O$ = 40 mA, C $_I$ = 0.33 $\mu F,$ C $_O$ = 0.1 μF unless otherwise specified.

Table 5. Electrical characteristics of L79L06

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	-5.52	-6	-6.48	V
V	Output voltage	$I_O = 1 \text{ to } 40 \text{ mA}, V_I = -8.5 \text{ to } -20 \text{ V}$	-5.4		-6.6	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = -12 V	-5.4		-6.6	V
41/	Line regulation	$V_I = -8.5 \text{ to } -20 \text{ V}, T_J = 25^{\circ}\text{C}$			200	mV
ΔV_{O}	Line regulation	V _I = -9 to -20 V, T _J = 25°C			150	IIIV
AV/ -	Load regulation	I _O = 1 to 100 mA, T _J = 25°C			60	mV
ΔV_{O}	Load regulation	I _O = 1 to 40 mA, T _J = 25°C			30	1117
	Quiescent current	T _J = 25°C			6	mA
I _d		T _J = 125°C			5.5	mA
41	Quincoant current change	I _O = 1 to 40 mA			0.2	mA
∆l _d	Quiescent current change	V _I = -8 to -20 V			1.5	IIIA
eN	Output noise voltage	B =10Hz to 100kHz, T _J = 25°C		50		μV
SVR	Supply voltage rejection	$V_I = -9 \text{ to } -20 \text{V, f} = 120 \text{Hz}$ $I_O = 40 \text{ mA, T}_J = 25^{\circ}\text{C}$	38	46		dB
V_{d}	Dropout voltage			1.7		V

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = -14 V, I $_O$ = 40 mA, C $_I$ = 0.33 $\mu F,$ C $_O$ = 0.1 μF unless otherwise specified.

Table 6. Electrical characteristics of L79L08

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	-7.36	-8	-8.64	V
V	У О	$I_O = 1$ to 40 mA, $V_I = -10.5$ to -23 V	-7.2		-8.8	V
V _O	Output voltage	$I_{O} = 1 \text{ to } 70 \text{ mA}, V_{I} = -14 \text{ V}$	-7.2		-8.8	V
ΔV _O	Line very letion	$V_I = -10.5 \text{ to } -23 \text{ V}, T_J = 25^{\circ}\text{C}$			200	mV
ΔνΟ	Line regulation	$V_I = -11 \text{ to } -23 \text{ V}, T_J = 25^{\circ}\text{C}$			150	111 V
۸۷۰	ΔV _O Load regulation	$I_{O} = 1$ to 100 mA, $T_{J} = 25^{\circ}C$			80	mV
740		$I_{O} = 1 \text{ to } 40 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			40	111 V
I _d	Quiescent current	$T_J = 25^{\circ}C$			6	mA
'd	Quiescent current	T _J = 125°C			5.5	mA
Al.	Quiescent current change	I _O = 1 to 40 mA			0.2	mA
Δl_{d}	Quiescent current change	V _I = -11 to -23 V			1.5	
eN	Output noise voltage	B =10Hz to 100kHz, T _J = 25°C		60		μV
SVR	Supply voltage rejection	V_I = -12 to -23V, f = 120Hz I_O = 40 mA, T_J = 25°C	36	45		dB
V _d	Dropout voltage			1.7		V

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = -15 V, I $_O$ = 40 mA, C $_I$ = 0.33 $\mu F,$ C $_O$ = 0.1 μF unless otherwise specified.

Table 7. Electrical characteristics of L79L09

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	-8.28	-9	-9.72	V
V	Output voltage	$I_O = 1 \text{ to } 40 \text{ mA}, V_I = -11.5 \text{ to } -23 \text{ V}$	-8.1		-9.9	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = -15 V	-8.1		-9.9	V
AV.	Line regulation	$V_I = -11.5 \text{ to } -23 \text{ V}, T_J = 25^{\circ}\text{C}$			250	mV
ΔV_{O}	Line regulation	$V_I = -12 \text{ to } -23 \text{ V}, T_J = 25^{\circ}\text{C}$			200	IIIV
ΔV_{O}	Load regulation	I _O = 1 to 100 mA, T _J = 25°C			80	mV
ΔνΟ	Load regulation	I _O = 1 to 40 mA, T _J = 25°C			40	111 V
ı	Quiescent current	$T_J = 25^{\circ}C$			6	mA
I _d	Quiescent current	T _J = 125°C			5.5	mA
ΔI	Quioscont current change	I _O = 1 to 40 mA			0.2	mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = -12 to -23 V			1.5	IIIA
eN	Output noise voltage	B =10Hz to 100kHz, $T_J = 25^{\circ}C$		70		μV
SVR	Supply voltage rejection	$V_I = -12 \text{ to } -23 \text{V, f} = 120 \text{Hz}$ $I_O = 40 \text{ mA, T}_J = 25^{\circ}\text{C}$	36	44		dB
V _d	Dropout voltage			1.7		V

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = - 19 V, I $_O$ = 40 mA, C $_I$ = 0.33 $\mu F,$ C $_O$ = 0.1 μF unless otherwise specified.

Table 8. Electrical characteristics of L79L12

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	-11.1	-12	-12.9	V
V	V Outrotoulland	$I_O = 1 \text{ to } 40 \text{ mA}, V_I = -14.5 \text{ to } -27 \text{ V}$	-10.8		-13.2	V
V _O	Output voltage	$I_{O} = 1 \text{ to } 70 \text{ mA}, V_{I} = -19 \text{ V}$	-10.8		-13.2	V
ΔV _O	Line regulation	$V_I = -14.5 \text{ to } -27 \text{ V}, T_J = 25^{\circ}\text{C}$			250	mV
ΔνΟ	Line regulation	$V_I = -16 \text{ to } -27 \text{ V}, T_J = 25^{\circ}\text{C}$			200	111 V
۸۷۷۰	ΔV _O Load regulation	$I_{O} = 1$ to 100 mA, $T_{J} = 25^{\circ}C$			100	mV
740		$I_O = 1$ to 40 mA, $T_J = 25$ °C			50	111 V
I _d	Quiescent current	$T_J = 25^{\circ}C$			6.5	mA
'd	Quiescent current	T _J = 125°C			6	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.2	mA
Δl _d	Quiescent current change	V _I = -16 to -27 V			1.5	шк
eN	Output noise voltage	B =10Hz to 100kHz, $T_J = 25$ °C		80		μV
SVR	Supply voltage rejection	$V_I = -15 \text{ to } -25\text{V}, f = 120\text{Hz}$ $I_O = 40 \text{ mA}, T_J = 25^{\circ}\text{C}$	36	42		dB
V _d	Dropout voltage			1.7		V

Refer to the test circuits, T $_J$ = 0 to 125 °C, V $_I$ = - 23 V, I $_O$ = 40 mA, C $_I$ = 0.33 $\mu F,$ C $_O$ = 0.1 μF unless otherwise specified.

Table 9. Electrical characteristics of L79L15

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	-13.8	-15	-16.2	V
V	Output voltage	$I_O = 1$ to 40 mA, $V_I = -17.5$ to -30 V	-13.5		-16.5	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = -23 V	-13.5		-16.5	V
AV.	I line very detice	$V_I = -17.5 \text{ to } -30 \text{ V}, T_J = 25^{\circ}\text{C}$			300	mV
ΔV_{O}	Line regulation	$V_{I} = -20 \text{ to } -30 \text{ V}, T_{J} = 25^{\circ}\text{C}$			250	IIIV
ΔV _O	Load regulation	$I_{O} = 1 \text{ to } 100 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			150	mV
700	Load regulation	I _O = 1 to 40 mA, T _J = 25°C			75	IIIV
ı	Quiescent current	T _J = 25°C			6.5	mA
I _d		T _J = 125°C			6	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.2	mA
Δl _d	Quiescent current change	V _I = -20 to -30 V			1.5	IIIA
eN	Output noise voltage	B =10Hz to 100kHz, $T_J = 25^{\circ}C$		90		μV
SVR	Supply voltage rejection	$V_I = -18.5 \text{ to } -28.5.\text{V, f} = 120\text{Hz}$ $I_O = 40 \text{ mA, T}_J = 25^{\circ}\text{C}$	33	39		dB
V_{d}	Dropout voltage			1.7		V

Refer to the test circuits, V $_I$ = - 10 V, I $_O$ = 40 mA, C $_I$ = 0.33 μF , C $_O$ = 0.1 μF , T $_J$ = 0 to 125 °C for L79L05AC, T $_J$ = -40 to 125 °C for L79L05AB, unless otherwise specified.

Table 10. Electrical characteristics of L79L05AB and L79L05AC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	-4.8	-5	-5.2	V
V.	Output voltage	$I_O = 1 \text{ to } 40 \text{ mA}, V_I = -7 \text{ to } -20 \text{ V}$	-4.75		-5.25	V
V _O	Output voltage	$I_{O} = 1 \text{ to } 70 \text{ mA}, V_{I} = -10 \text{ V}$	-4.75		-5.25	V
AV.	Line regulation	$V_{I} = -7 \text{ to } -20 \text{ V}, T_{J} = 25^{\circ}\text{C}$			150	mV
ΔV _O	Line regulation	$V_{I} = -8 \text{ to } -20 \text{ V}, T_{J} = 25^{\circ}\text{C}$			100	111 V
ΔV _O	Load regulation	$I_{O} = 1 \text{ to } 100 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			60	mV
ΔVO	Load regulation	I _O = 1 to 40 mA, T _J = 25°C			30	1110
	Quiescent current	T _J = 25°C			6	mA
I _d		T _J = 125°C			5.5	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.1	mA
ΔI_{d}	Quiescent current change	V _I = -8 to -20 V			1.5	IIIA
eN	Output noise voltage	B =10Hz to 100kHz, T _J = 25°C		40		μV
SVR	Supply voltage rejection	$V_I = -8 \text{ to } -18V, f = 120Hz$ $I_O = 40 \text{ mA}, T_J = 25^{\circ}\text{C}$	41	49		dB
V_d	Dropout voltage			1.7		V

Refer to the test circuits, V $_I$ = - 12 V, I $_O$ = 40 mA, C $_I$ = 0.33 μF , C $_O$ = 0.1 μF , T $_J$ = 0 to 125 °C for L79L05AC, T $_J$ = -40 to 125 °C for L79L05AB, unless otherwise specified.

Table 11. Electrical characteristics of L79L06AB and L79L06AC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	-5.76	-6	-6.24	V
V.	Output voltage	$I_O = 1$ to 40 mA, $V_I = -8.5$ to -20 V	-5.7		-6.3	V
V _O	Output voltage	$I_{O} = 1 \text{ to } 70 \text{ mA}, V_{I} = -12 \text{ V}$	-5.7		-6.3	v
AV.	Line regulation	$V_{I} = -8.5 \text{ to } -20 \text{ V}, T_{J} = 25^{\circ}\text{C}$			150	mV
ΔV_{O}	Line regulation	$V_{I} = -9 \text{ to } -20 \text{ V}, T_{J} = 25^{\circ}\text{C}$			100	IIIV
۸\/	ΔV _O Load regulation	I _O = 1 to 100 mA, T _J = 25°C			60	mV
Δν _Ο		I _O = 1 to 40 mA, T _J = 25°C			30	IIIV
- 1	Quiescent current	T _J = 25°C			6	mA
I _d		T _J = 125°C			5.5	mA
Al	Quincoant current change	I _O = 1 to 40 mA			0.1	mA
Δl _d	Quiescent current change	V _I = -8 to -20 V			1.5	IIIA
eN	Output noise voltage	B =10Hz to 100kHz, $T_J = 25^{\circ}C$		50		μV
SVR	Supply voltage rejection	$V_I = -9 \text{ to } -20V, f = 120Hz$ $I_O = 40 \text{ mA}, T_J = 25^{\circ}\text{C}$	39	46		dB
V _d	Dropout voltage			1.7		V

Refer to the test circuits, V $_I$ = - 14 V, I $_O$ = 40 mA, C $_I$ = 0.33 μF , C $_O$ = 0.1 μF , T $_J$ = 0 to 125 °C for L79L05AC, T $_J$ = -40 to 125 °C for L79L05AB, unless otherwise specified.

Table 12. Electrical characteristics of L79L08AB and L79L08AC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _O	Output voltage	T _J = 25°C	-7.68	-8	-8.32	V	
W	Output voltage	$I_O = 1$ to 40 mA, $V_I = -10.5$ to -23 V	-7.6		-8.4	V	
V _O	Output voltage	$I_{O} = 1 \text{ to 70 mA}, V_{I} = -14 \text{ V}$	-7.6		-8.4	V	
ΔV _O	Line regulation	$V_I = -10.5 \text{ to } -23 \text{ V}, T_J = 25^{\circ}\text{C}$			175	m\/	
740	Line regulation	$V_I = -11 \text{ to } -23 \text{ V}, T_J = 25^{\circ}\text{C}$			125	mV	
ΔV _O	Load regulation	$I_{O} = 1$ to 100 mA, $T_{J} = 25^{\circ}C$			80	mV	
740	Load regulation	$I_O = 1$ to 40 mA, $T_J = 25$ °C			40	1111	
I _d	Quiescent current	$T_J = 25^{\circ}C$			6	mA	
'd	Quiescent current	T _J = 125°C			5.5	mA	
A1.	Quiescent current change	I _O = 1 to 40 mA			0.1	mA	
$\Delta l_{\sf d}$	Quiescent current change	V _I = -11 to -23 V			1.5		
eN	Output noise voltage	B =10Hz to 100kHz, $T_J = 25$ °C		60		μV	
SVR	Supply voltage rejection	V_I = -12 to -23V, f = 120Hz I_O = 40 mA, T_J = 25°C	37	45		dB	
V_d	Dropout voltage			1.7		V	

Refer to the test circuits, V $_I$ = - 15 V, I $_O$ = 40 mA, C $_I$ = 0.33 μF , C $_O$ = 0.1 μF , T $_J$ = 0 to 125 °C for L79L05AC, T $_J$ = -40 to 125 °C for L79L05AB, unless otherwise specified.

Table 13. Electrical characteristics of L79L09AB and L79L09AC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	-8.64	-9	-9.36	V
V	Output voltage	$I_O = 1$ to 40 mA, $V_I = -11.5$ to -23 V	-8.55		-9.45	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = -15 V	-8.55		-9.45	V
AV.	Line regulation	$V_I = -11.5 \text{ to } -23 \text{ V}, T_J = 25^{\circ}\text{C}$			225	mV
ΔV_{O}	Line regulation	V _I = -12 to -23 V, T _J = 25°C			150	IIIV
AV/	Load regulation	$I_{O} = 1 \text{ to } 100 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			80	mV
ΔV_{O}		$I_O = 1 \text{ to } 40 \text{ mA}, T_J = 25^{\circ}\text{C}$			40	IIIV
- 1	Quiescent current	T _J = 25°C			6	mA
I _d	Quiescent current	T _J = 125°C			5.5	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.1	mA
Δl _d	Quiescent current change	V _I = -12 to -23 V			1.5	IIIA
eN	Output noise voltage	B =10Hz to 100kHz, T _J = 25°C		70		μV
SVR	Supply voltage rejection	$V_I = -12 \text{ to } -23V, f = 120Hz$ $I_O = 40 \text{ mA}, T_J = 25^{\circ}\text{C}$	37	44		dB
V_d	Dropout voltage			1.7		V

Refer to the test circuits, V $_I$ = - 19 V, I $_O$ = 40 mA, C $_I$ = 0.33 μF , C $_O$ = 0.1 μF , T $_J$ = 0 to 125 °C for L79L05AC, T $_J$ = -40 to 125 °C for L79L05AB, unless otherwise specified.

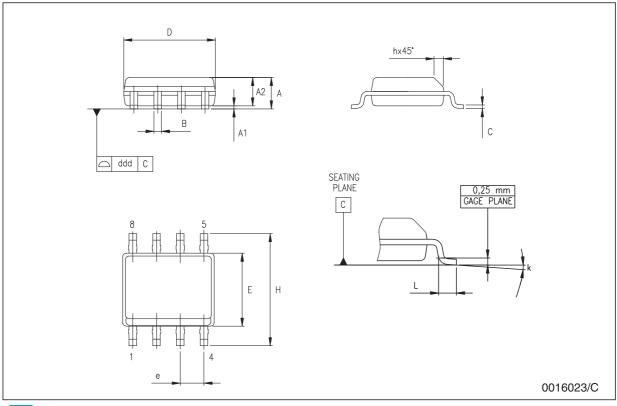
Table 14. Electrical characteristics of L79L12AB and L79L12AC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	-11.5	-12	-12.5	V
V.	Output voltage	$I_O = 1$ to 40 mA, $V_I = -14.5$ to -27 V	-11.4		-12.6	V
V _O	Output voltage	$I_{O} = 1 \text{ to } 70 \text{ mA}, V_{I} = -19 \text{ V}$	-11.4		-12.6	V
AV/	Line regulation	$V_I = -14.5 \text{ to } -27 \text{ V}, T_J = 25^{\circ}\text{C}$			250	mV
ΔV _O	Line regulation	$V_I = -16 \text{ to } -27 \text{ V}, T_J = 25^{\circ}\text{C}$			200	111 V
ΔV _O	Load regulation	$I_{O} = 1 \text{ to } 100 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			100	mV
ΔVO	Load regulation	I _O = 1 to 40 mA, T _J = 25°C			50	
	Quiescent current	T _J = 25°C			6.5	mA
I _d	Quiescent current	T _J = 125°C			6	mA
Al	Quincoant current change	I _O = 1 to 40 mA			0.1	mA
ΔI_d	Quiescent current change	V _I = -16 to -27 V			1.5	IIIA
eN	Output noise voltage	B =10Hz to 100kHz, T _J = 25°C		80		μV
SVR	Supply voltage rejection	$V_I = -15 \text{ to } -25V, f = 120Hz$ $I_O = 40 \text{ mA}, T_J = 25^{\circ}\text{C}$	37	42		dB
V_d	Dropout voltage			1.7		V

Refer to the test circuits, V $_I$ = - 23 V, I $_O$ = 40 mA, C $_I$ = 0.33 μF , C $_O$ = 0.1 μF , T $_J$ = 0 to 125 °C for L79L05AC, T $_J$ = -40 to 125 °C for L79L05AB, unless otherwise specified.

Table 15. Electrical characteristics of L79L15AB and L79L15AC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	-14.4	-15	-15.6	V
V.	Output voltage	$I_O = 1$ to 40 mA, $V_I = -17.5$ to -30 V	-14.25		-15.75	V
V _O	Output voltage	$I_O = 1 \text{ to } 70 \text{ mA}, V_I = -23 \text{ V}$	-14.25		-15.75	V
AV.	Line regulation	V _I = -17.5 to -30 V, T _J = 25°C			300	mV
ΔV_{O}	Line regulation	V _I = -20 to -30 V, T _J = 25°C			250	IIIV
AV/	Load regulation	$I_{O} = 1$ to 100 mA, $T_{J} = 25^{\circ}C$			150	mV
ΔV_{O}		$I_O = 1 \text{ to } 40 \text{ mA}, T_J = 25^{\circ}\text{C}$			75	IIIV
- 1	Quiescent current	T _J = 25°C			6.5	mA
I _d	Quiescent current	T _J = 125°C			6	mA
41	Quiescent current change	I _O = 1 to 40 mA			0.1	mA
ΔI_d	Quiescent current change	V _I = -20 to -30 V			1.5	IIIA
eN	Output noise voltage	B =10Hz to 100kHz, T _J = 25°C		90		μV
SVR	Supply voltage rejection	$V_I = -18.5 \text{ to } -28.5.\text{V, f} = 120\text{Hz}$ $I_O = 40 \text{ mA, T}_J = 25^{\circ}\text{C}$	34	39		dB
V _d	Dropout voltage			1.7		V

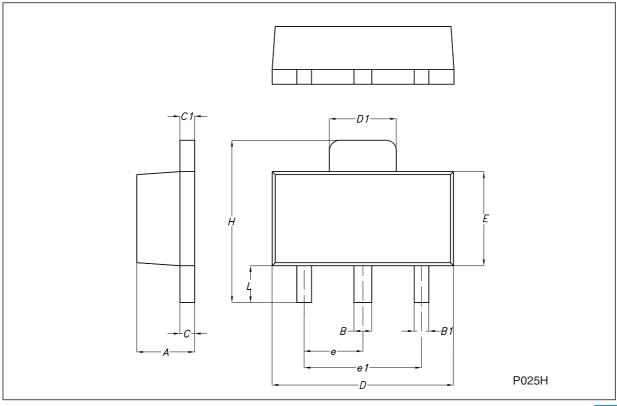

5 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

18/27 Doc ID 2511 Rev 16

SO-8 mechanical data

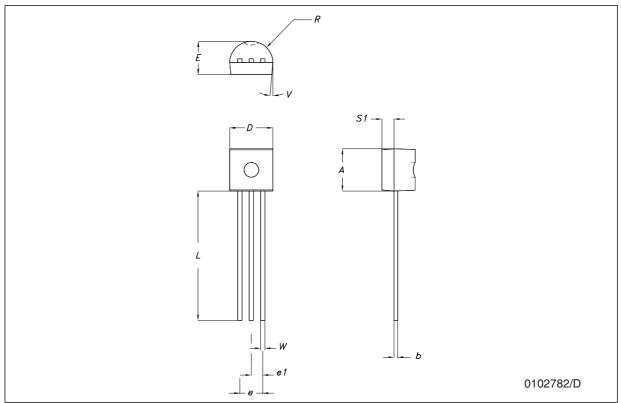
Dim.		mm.		inch.			
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	1.35		1.75	0.053		0.069	
A1	0.10		0.25	0.04		0.010	
A2	1.10		1.65	0.043		0.065	
В	0.33		0.51	0.013		0.020	
С	0.19		0.25	0.007		0.010	
D	4.80		5.00	0.189		0.197	
Е	3.80		4.00	0.150		0.157	
е		1.27			0.050		
Н	5.80		6.20	0.228		0.244	
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
k		8° (max.)					
ddd			0.1			0.04	



577

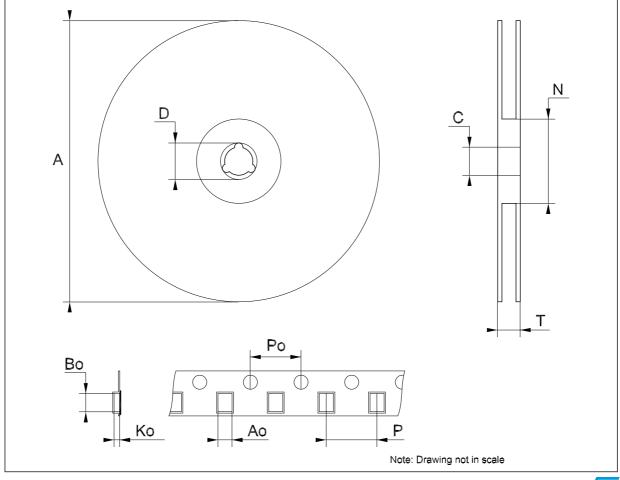
Doc ID 2511 Rev 16

SOT-89 mechanical data

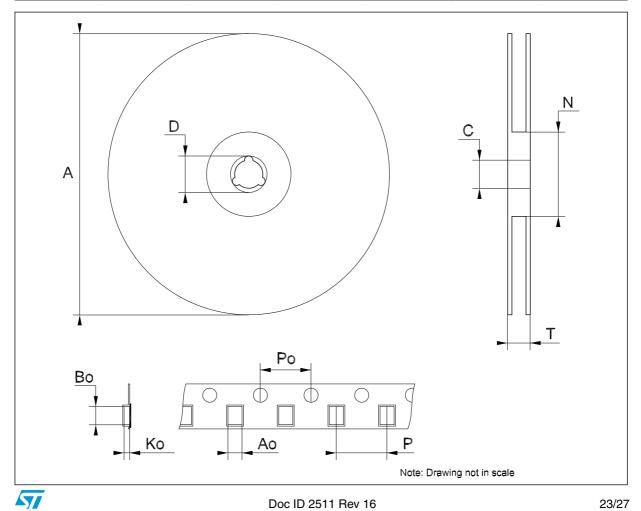

Dim	mm.			mils.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	1.4		1.6	55.1		63.0
В	0.44		0.56	17.3		22.0
B1	0.36		0.48	14.2		18.9
С	0.35		0.44	13.8		17.3
C1	0.35		0.44	13.8		17.3
D	4.4		4.6	173.2		181.1
D1	1.62		1.83	63.8		72.0
E	2.29		2.6	90.2		102.4
е	1.42		1.57	55.9		61.8
e1	2.92		3.07	115.0		120.9
Н	3.94		4.25	155.1		167.3
L	0.89		1.2	35.0		47.2

20/27 Doc ID 2511 Rev 16

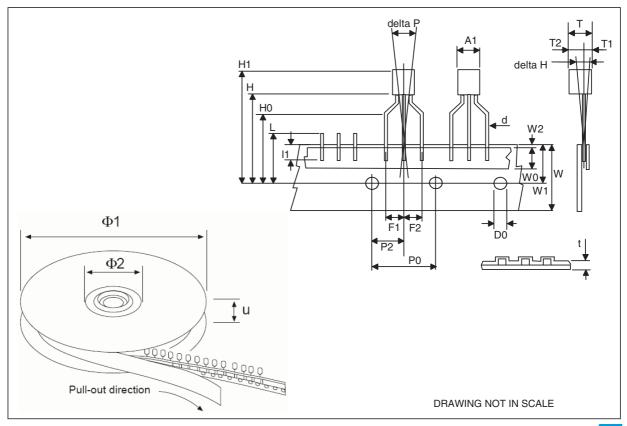
TO-92 mechanical data


Dim.		mm.				
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.32		4.95	170.1		194.9
b	0.36		0.51	14.2		20.1
D	4.45		4.95	175.2		194.9
E	3.30		3.94	129.9		155.1
е	2.41		2.67	94.9		105.1
e1	1.14		1.40	44.9		55.1
L	12.7		15.49	500.0		609.8
R	2.16		2.41	85.0		94.9
S1	0.92		1.52	36.2		59.8
W	0.41		0.56	16.1		22.0
α		5°			5°	

577


Tape & reel SO-8 mechanical data

Dim.	mm.			inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	8.1		8.5	0.319		0.335
Во	5.5		5.9	0.216		0.232
Ko	2.1		2.3	0.082		0.090
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319



22/27 Doc ID 2511 Rev 16

Dim.	mm.			inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	4.70	4.80	4.90	0.185	0.189	0.193
Во	4.30	4.40	4.50	0.169	0.173	0.177
Ko	1.70	1.80	1.90	0.067	0.071	0.075
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319

Dim.	mm.			inch.			
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.	
A1		4.80			0.189		
Т		3.80			0.150		
T1		1.60			0.063		
T2		2.30			0.091		
d		0.48			0.019		
P0	12.5		12.9	0.492		0.508	
P2	5.65		7.05	0.222		0.278	
F1, F2	2.44	2.54	2.94	0.096	0.100	0.116	
delta H		±2			0.079		
W	17.5	18.00	19.0	0.689	0.709	0.748	
W0	5.7		6.3	0.224		0.248	
W1	8.5		9.25	0.335		0.364	
W2		0.50			0.20		
Н		18.50	18.70		0.728	0.726	
H0	15.50		16.50	0.610		0.650	
H1		25.00			0.984		
D0	3.8		4.2	0.150		0.165	
t		0.90			0.035		
L1		3			0.118		
delta P		±1			0.039		
u		50			1.968		
Ф1		360			14.173		
Ф2		30			1.181		

24/27 Doc ID 2511 Rev 16

6 Order codes

Table 16. Order codes

Packaging			
SO-8	TO92 (BAG) ⁽¹⁾	SOT-89	Output voltage
L79L05ACD13TR	L79L05ACZ	L79L05ACUTR	-5 V
L79L05ABD13TR	L79L05ABZ	L79L05ABUTR	-5 V
L79L06CD13TR (2)			-6 V
L79L06ACD13TR	L79L06ACZ		-6 V
L79L06ABD13TR (2)	L79L06ABZ	L79L06ABUTR	-6 V
L79L08CD13TR (2)			-8 V
L79L08ACD13TR	L79L08ACZ	L79L08ACUTR (2)	-8 V
L79L08ABD13TR (2)	L79L08ABZ ⁽²⁾	L79L08ABUTR (2)	-8 V
L79L09CD13TR (2)			-9 V
L79L09ACD13TR (2)	L79L09ACZ	L79L09ACUTR	-9 V
L79L09ABD13TR (2)	L79L09ABZ ⁽²⁾	L79L09ABUTR (2)	-9 V
L79L12CD13TR (2)			-12 V
L79L12ACD13TR	L79L12ACZ	L79L12ACUTR	-12 V
L79L12ABD13TR (2)	L79L12ABZ ⁽²⁾	L79L12ABUTR (2)	-12 V
L79L15CD13TR (2)			-15 V
L79L15ACD13TR		L79L15ACUTR	-15 V
L79L15ABD13TR	L79L15ABZ ⁽²⁾		-15 V

^{1.} Available in Ammopak with the suffix "-AP" or in Tape & Reel with the suffix "TR". Please note that in these cases pins are shaped according to Tape & Reel specifications.

^{2.} Available on request.

7 Revision history

Table 17. Document revision history

Date	Revision	Changes
14-Mar-2005	9	Add Tape & Reel for TO-92.
15-Mar-2005	10	Add note on Table 3.
23-Dec-2005	11	Mistake on ordering Table in Header.
12-Sep-2006	12	Order codes updated.
25-Jul-2007	13	Pin connection for SOT-89 updated on Figure 2, add Table 1 in cover page.
04-Dec-2007	14	Modified: Table 16.
14-Jul-2008	15	Modified: Table 16 on page 25.
29-Jul-2009	16	Modified: Table 16 on page 25.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 2511 Rev 16

27/27